1304 lines
48 KiB
Rust
Raw Normal View History

2017-11-02 11:58:02 +01:00
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
2017-11-02 11:58:02 +01:00
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
2017-11-02 11:58:02 +01:00
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
2017-11-02 11:58:02 +01:00
// DEALINGS IN THE SOFTWARE.
//! Implementation of the libp2p `Transport` trait for TCP/IP.
//!
//! # Usage
//!
//! This crate provides a `TcpTransport` and `TokioTcpTransport`, depending on
//! the enabled features, which implement the `Transport` trait for use as a
//! transport with `libp2p-core` or `libp2p-swarm`.
mod provider;
use if_watch::{IfEvent, IfWatcher};
#[cfg(feature = "async-io")]
pub use provider::async_io;
2017-11-02 11:58:02 +01:00
/// The type of a [`GenTcpTransport`] using the `async-io` implementation.
#[cfg(feature = "async-io")]
pub type TcpTransport = GenTcpTransport<async_io::Tcp>;
#[cfg(feature = "tokio")]
pub use provider::tokio;
/// The type of a [`GenTcpTransport`] using the `tokio` implementation.
#[cfg(feature = "tokio")]
pub type TokioTcpTransport = GenTcpTransport<tokio::Tcp>;
use futures::{
future::{self, Ready},
prelude::*,
};
use futures_timer::Delay;
use libp2p_core::{
address_translation,
multiaddr::{Multiaddr, Protocol},
transport::{ListenerId, Transport, TransportError, TransportEvent},
};
use socket2::{Domain, Socket, Type};
use std::{
collections::{HashSet, VecDeque},
io,
net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, TcpListener},
pin::Pin,
sync::{Arc, RwLock},
task::{Context, Poll},
time::Duration,
};
2017-09-18 16:52:51 +02:00
use provider::{Incoming, Provider};
/// The configuration for a TCP/IP transport capability for libp2p.
#[derive(Clone, Debug)]
pub struct GenTcpConfig {
/// TTL to set for opened sockets, or `None` to keep default.
ttl: Option<u32>,
/// `TCP_NODELAY` to set for opened sockets, or `None` to keep default.
nodelay: Option<bool>,
/// Size of the listen backlog for listen sockets.
backlog: u32,
/// Whether port reuse should be enabled.
enable_port_reuse: bool,
}
type Port = u16;
/// The configuration for port reuse of listening sockets.
#[derive(Debug, Clone)]
enum PortReuse {
/// Port reuse is disabled, i.e. ephemeral local ports are
/// used for outgoing TCP connections.
Disabled,
/// Port reuse when dialing is enabled, i.e. the local
/// address and port that a new socket for an outgoing
/// connection is bound to are chosen from an existing
/// listening socket, if available.
Enabled {
/// The addresses and ports of the listening sockets
/// registered as eligible for port reuse when dialing.
listen_addrs: Arc<RwLock<HashSet<(IpAddr, Port)>>>,
},
}
impl PortReuse {
/// Registers a socket address for port reuse.
///
/// Has no effect if port reuse is disabled.
fn register(&mut self, ip: IpAddr, port: Port) {
if let PortReuse::Enabled { listen_addrs } = self {
log::trace!("Registering for port reuse: {}:{}", ip, port);
listen_addrs
.write()
.expect("`register()` and `unregister()` never panic while holding the lock")
.insert((ip, port));
}
}
/// Unregisters a socket address for port reuse.
///
/// Has no effect if port reuse is disabled.
fn unregister(&mut self, ip: IpAddr, port: Port) {
if let PortReuse::Enabled { listen_addrs } = self {
log::trace!("Unregistering for port reuse: {}:{}", ip, port);
listen_addrs
.write()
.expect("`register()` and `unregister()` never panic while holding the lock")
.remove(&(ip, port));
}
}
/// Selects a listening socket address suitable for use
/// as the local socket address when dialing.
///
/// If multiple listening sockets are registered for port
/// reuse, one is chosen whose IP protocol version and
/// loopback status is the same as that of `remote_ip`.
///
/// Returns `None` if port reuse is disabled or no suitable
/// listening socket address is found.
fn local_dial_addr(&self, remote_ip: &IpAddr) -> Option<SocketAddr> {
if let PortReuse::Enabled { listen_addrs } = self {
for (ip, port) in listen_addrs
.read()
.expect("`local_dial_addr` never panic while holding the lock")
.iter()
{
if ip.is_ipv4() == remote_ip.is_ipv4()
&& ip.is_loopback() == remote_ip.is_loopback()
{
if remote_ip.is_ipv4() {
return Some(SocketAddr::new(IpAddr::V4(Ipv4Addr::UNSPECIFIED), *port));
} else {
return Some(SocketAddr::new(IpAddr::V6(Ipv6Addr::UNSPECIFIED), *port));
}
}
}
}
None
}
}
impl GenTcpConfig {
/// Creates a new configuration for a TCP/IP transport:
///
/// * Nagle's algorithm, i.e. `TCP_NODELAY`, is _enabled_.
/// See [`GenTcpConfig::nodelay`].
/// * Reuse of listening ports is _disabled_.
/// See [`GenTcpConfig::port_reuse`].
/// * No custom `IP_TTL` is set. The default of the OS TCP stack applies.
/// See [`GenTcpConfig::ttl`].
/// * The size of the listen backlog for new listening sockets is `1024`.
/// See [`GenTcpConfig::listen_backlog`].
pub fn new() -> Self {
Self {
ttl: None,
nodelay: None,
backlog: 1024,
enable_port_reuse: false,
}
}
/// Configures the `IP_TTL` option for new sockets.
pub fn ttl(mut self, value: u32) -> Self {
self.ttl = Some(value);
self
}
/// Configures the `TCP_NODELAY` option for new sockets.
pub fn nodelay(mut self, value: bool) -> Self {
self.nodelay = Some(value);
self
}
2017-09-18 16:52:51 +02:00
/// Configures the listen backlog for new listen sockets.
pub fn listen_backlog(mut self, backlog: u32) -> Self {
self.backlog = backlog;
self
}
/// Configures port reuse for local sockets, which implies
/// reuse of listening ports for outgoing connections to
/// enhance NAT traversal capabilities.
///
/// Please refer to e.g. [RFC 4787](https://tools.ietf.org/html/rfc4787)
/// section 4 and 5 for some of the NAT terminology used here.
///
/// There are two main use-cases for port reuse among local
/// sockets:
///
/// 1. Creating multiple listening sockets for the same address
/// and port to allow accepting connections on multiple threads
/// without having to synchronise access to a single listen socket.
///
/// 2. Creating outgoing connections whose local socket is bound to
/// the same address and port as a listening socket. In the rare
/// case of simple NATs with both endpoint-independent mapping and
/// endpoint-independent filtering, this can on its own already
/// permit NAT traversal by other nodes sharing the observed
/// external address of the local node. For the common case of
/// NATs with address-dependent or address and port-dependent
/// filtering, port reuse for outgoing connections can facilitate
/// further TCP hole punching techniques for NATs that perform
/// endpoint-independent mapping. Port reuse cannot facilitate
/// NAT traversal in the presence of "symmetric" NATs that employ
/// both address/port-dependent mapping and filtering, unless
/// there is some means of port prediction.
///
/// Both use-cases are enabled when port reuse is enabled, with port reuse
/// for outgoing connections (`2.` above) always being implied.
///
/// > **Note**: Due to the identification of a TCP socket by a 4-tuple
/// > of source IP address, source port, destination IP address and
/// > destination port, with port reuse enabled there can be only
/// > a single outgoing connection to a particular address and port
/// > of a peer per local listening socket address.
///
/// [`GenTcpTransport`] keeps track of the listen socket addresses as they
/// are reported by polling it. It is possible to listen on multiple
/// addresses, enabling port reuse for each, knowing exactly which listen
/// address is reused when dialing with a specific [`GenTcpTransport`], as in the
/// following example:
///
/// ```no_run
/// # use futures::StreamExt;
/// # use libp2p_core::transport::{ListenerId, TransportEvent};
/// # use libp2p_core::{Multiaddr, Transport};
/// # use std::pin::Pin;
/// # #[cfg(not(feature = "async-io"))]
/// # fn main() {}
/// #
/// #[cfg(feature = "async-io")]
/// #[async_std::main]
/// async fn main() -> std::io::Result<()> {
/// use libp2p_tcp::{GenTcpConfig, TcpTransport};
///
/// let listen_addr1: Multiaddr = "/ip4/127.0.0.1/tcp/9001".parse().unwrap();
/// let listen_addr2: Multiaddr = "/ip4/127.0.0.1/tcp/9002".parse().unwrap();
///
/// let mut tcp1 = TcpTransport::new(GenTcpConfig::new().port_reuse(true)).boxed();
/// tcp1.listen_on( listen_addr1.clone()).expect("listener");
/// match tcp1.select_next_some().await {
/// TransportEvent::NewAddress { listen_addr, .. } => {
/// println!("Listening on {:?}", listen_addr);
/// let mut stream = tcp1.dial(listen_addr2.clone()).unwrap().await?;
/// // `stream` has `listen_addr1` as its local socket address.
/// }
/// _ => {}
/// }
///
/// let mut tcp2 = TcpTransport::new(GenTcpConfig::new().port_reuse(true)).boxed();
/// tcp2.listen_on( listen_addr2).expect("listener");
/// match tcp2.select_next_some().await {
/// TransportEvent::NewAddress { listen_addr, .. } => {
/// println!("Listening on {:?}", listen_addr);
/// let mut socket = tcp2.dial(listen_addr1).unwrap().await?;
/// // `stream` has `listen_addr2` as its local socket address.
/// }
/// _ => {}
/// }
/// Ok(())
/// }
/// ```
///
/// If a wildcard listen socket address is used to listen on any interface,
/// there can be multiple such addresses registered for port reuse. In this
/// case, one is chosen whose IP protocol version and loopback status is the
/// same as that of the remote address. Consequently, for maximum control of
/// the local listening addresses and ports that are used for outgoing
/// connections, a new [`GenTcpTransport`] should be created for each listening
/// socket, avoiding the use of wildcard addresses which bind a socket to
/// all network interfaces.
///
/// When this option is enabled on a unix system, the socket
/// option `SO_REUSEPORT` is set, if available, to permit
/// reuse of listening ports for multiple sockets.
pub fn port_reuse(mut self, port_reuse: bool) -> Self {
self.enable_port_reuse = port_reuse;
self
}
}
impl Default for GenTcpConfig {
fn default() -> Self {
Self::new()
}
}
pub struct GenTcpTransport<T>
where
T: Provider + Send,
{
config: GenTcpConfig,
/// The configuration of port reuse when dialing.
port_reuse: PortReuse,
/// All the active listeners.
/// The `TcpListenStream` struct contains a stream that we want to be pinned. Since the `VecDeque`
/// can be resized, the only way is to use a `Pin<Box<>>`.
listeners: VecDeque<Pin<Box<TcpListenStream<T>>>>,
/// Pending transport events to return from [`GenTcpTransport::poll`].
pending_events: VecDeque<TransportEvent<<Self as Transport>::ListenerUpgrade, io::Error>>,
}
impl<T> GenTcpTransport<T>
where
T: Provider + Send,
{
pub fn new(config: GenTcpConfig) -> Self {
let port_reuse = if config.enable_port_reuse {
PortReuse::Enabled {
listen_addrs: Arc::new(RwLock::new(HashSet::new())),
}
} else {
PortReuse::Disabled
};
GenTcpTransport {
config,
port_reuse,
..Default::default()
}
}
fn create_socket(&self, socket_addr: &SocketAddr) -> io::Result<Socket> {
let domain = if socket_addr.is_ipv4() {
Domain::IPV4
} else {
Domain::IPV6
};
let socket = Socket::new(domain, Type::STREAM, Some(socket2::Protocol::TCP))?;
if socket_addr.is_ipv6() {
socket.set_only_v6(true)?;
}
if let Some(ttl) = self.config.ttl {
socket.set_ttl(ttl)?;
}
if let Some(nodelay) = self.config.nodelay {
socket.set_nodelay(nodelay)?;
}
socket.set_reuse_address(true)?;
#[cfg(unix)]
if let PortReuse::Enabled { .. } = &self.port_reuse {
socket.set_reuse_port(true)?;
}
Ok(socket)
}
fn do_listen(
&mut self,
id: ListenerId,
socket_addr: SocketAddr,
) -> io::Result<TcpListenStream<T>> {
let socket = self.create_socket(&socket_addr)?;
socket.bind(&socket_addr.into())?;
socket.listen(self.config.backlog as _)?;
socket.set_nonblocking(true)?;
let listener: TcpListener = socket.into();
let local_addr = listener.local_addr()?;
if local_addr.ip().is_unspecified() {
return TcpListenStream::<T>::new(
id,
listener,
Some(IfWatcher::new()?),
self.port_reuse.clone(),
);
}
self.port_reuse.register(local_addr.ip(), local_addr.port());
let listen_addr = ip_to_multiaddr(local_addr.ip(), local_addr.port());
self.pending_events.push_back(TransportEvent::NewAddress {
listener_id: id,
listen_addr,
});
TcpListenStream::<T>::new(id, listener, None, self.port_reuse.clone())
}
2017-09-18 16:52:51 +02:00
}
impl<T> Default for GenTcpTransport<T>
where
T: Provider + Send,
{
2022-04-19 12:13:45 +02:00
fn default() -> Self {
let config = GenTcpConfig::default();
let port_reuse = if config.enable_port_reuse {
PortReuse::Enabled {
listen_addrs: Arc::new(RwLock::new(HashSet::new())),
}
} else {
PortReuse::Disabled
};
GenTcpTransport {
port_reuse,
config,
listeners: VecDeque::new(),
pending_events: VecDeque::new(),
}
2022-04-19 12:13:45 +02:00
}
}
impl<T> Transport for GenTcpTransport<T>
where
T: Provider + Send + 'static,
T::Listener: Unpin,
T::Stream: Unpin,
{
type Output = T::Stream;
type Error = io::Error;
type Dial = Pin<Box<dyn Future<Output = Result<Self::Output, Self::Error>> + Send>>;
type ListenerUpgrade = Ready<Result<Self::Output, Self::Error>>;
fn listen_on(&mut self, addr: Multiaddr) -> Result<ListenerId, TransportError<Self::Error>> {
let socket_addr = if let Ok(sa) = multiaddr_to_socketaddr(addr.clone()) {
sa
} else {
return Err(TransportError::MultiaddrNotSupported(addr));
};
let id = ListenerId::new();
log::debug!("listening on {}", socket_addr);
let listener = self
.do_listen(id, socket_addr)
.map_err(TransportError::Other)?;
self.listeners.push_back(Box::pin(listener));
Ok(id)
}
fn remove_listener(&mut self, id: ListenerId) -> bool {
if let Some(index) = self.listeners.iter().position(|l| l.listener_id != id) {
self.listeners.remove(index);
self.pending_events
.push_back(TransportEvent::ListenerClosed {
listener_id: id,
reason: Ok(()),
});
true
} else {
false
}
}
fn dial(&mut self, addr: Multiaddr) -> Result<Self::Dial, TransportError<Self::Error>> {
let socket_addr = if let Ok(socket_addr) = multiaddr_to_socketaddr(addr.clone()) {
if socket_addr.port() == 0 || socket_addr.ip().is_unspecified() {
return Err(TransportError::MultiaddrNotSupported(addr));
}
socket_addr
} else {
return Err(TransportError::MultiaddrNotSupported(addr));
};
log::debug!("dialing {}", socket_addr);
let socket = self
.create_socket(&socket_addr)
.map_err(TransportError::Other)?;
if let Some(addr) = self.port_reuse.local_dial_addr(&socket_addr.ip()) {
log::trace!("Binding dial socket to listen socket {}", addr);
socket.bind(&addr.into()).map_err(TransportError::Other)?;
}
socket
.set_nonblocking(true)
.map_err(TransportError::Other)?;
Ok(async move {
// [`Transport::dial`] should do no work unless the returned [`Future`] is polled. Thus
// do the `connect` call within the [`Future`].
match socket.connect(&socket_addr.into()) {
Ok(()) => {}
Err(err) if err.raw_os_error() == Some(libc::EINPROGRESS) => {}
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
Err(err) => return Err(err),
};
let stream = T::new_stream(socket.into()).await?;
Ok(stream)
}
.boxed())
}
fn dial_as_listener(
&mut self,
addr: Multiaddr,
) -> Result<Self::Dial, TransportError<Self::Error>> {
2022-01-17 16:35:14 +01:00
self.dial(addr)
}
/// When port reuse is disabled and hence ephemeral local ports are
/// used for outgoing connections, the returned address is the
/// `observed` address with the port replaced by the port of the
/// `listen` address.
///
/// If port reuse is enabled, `Some(observed)` is returned, as there
/// is a chance that the `observed` address _and_ port are reachable
/// for other peers if there is a NAT in the way that does endpoint-
/// independent filtering. Furthermore, even if that is not the case
/// and TCP hole punching techniques must be used for NAT traversal,
/// the `observed` address is still the one that a remote should connect
/// to for the purpose of the hole punching procedure, as it represents
/// the mapped IP and port of the NAT device in front of the local
/// node.
///
/// `None` is returned if one of the given addresses is not a TCP/IP
/// address.
fn address_translation(&self, listen: &Multiaddr, observed: &Multiaddr) -> Option<Multiaddr> {
if !is_tcp_addr(listen) || !is_tcp_addr(observed) {
return None;
}
match &self.port_reuse {
PortReuse::Disabled => address_translation(listen, observed),
PortReuse::Enabled { .. } => Some(observed.clone()),
}
}
/// Poll all listeners.
fn poll(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<TransportEvent<Self::ListenerUpgrade, Self::Error>> {
// Return pending events from closed listeners.
if let Some(event) = self.pending_events.pop_front() {
return Poll::Ready(event);
}
// We remove each element from `listeners` one by one and add them back.
let mut remaining = self.listeners.len();
while let Some(mut listener) = self.listeners.pop_back() {
match TryStream::try_poll_next(listener.as_mut(), cx) {
Poll::Pending => {
self.listeners.push_front(listener);
remaining -= 1;
if remaining == 0 {
break;
}
}
Poll::Ready(Some(Ok(TcpListenerEvent::Upgrade {
upgrade,
local_addr,
remote_addr,
}))) => {
let id = listener.listener_id;
self.listeners.push_front(listener);
return Poll::Ready(TransportEvent::Incoming {
listener_id: id,
upgrade,
local_addr,
send_back_addr: remote_addr,
});
}
Poll::Ready(Some(Ok(TcpListenerEvent::NewAddress(a)))) => {
let id = listener.listener_id;
self.listeners.push_front(listener);
return Poll::Ready(TransportEvent::NewAddress {
listener_id: id,
listen_addr: a,
});
}
Poll::Ready(Some(Ok(TcpListenerEvent::AddressExpired(a)))) => {
let id = listener.listener_id;
self.listeners.push_front(listener);
return Poll::Ready(TransportEvent::AddressExpired {
listener_id: id,
listen_addr: a,
});
}
Poll::Ready(Some(Ok(TcpListenerEvent::Error(error)))) => {
let id = listener.listener_id;
self.listeners.push_front(listener);
return Poll::Ready(TransportEvent::ListenerError {
listener_id: id,
error,
});
}
Poll::Ready(None) => {
return Poll::Ready(TransportEvent::ListenerClosed {
listener_id: listener.listener_id,
reason: Ok(()),
});
}
Poll::Ready(Some(Err(err))) => {
return Poll::Ready(TransportEvent::ListenerClosed {
listener_id: listener.listener_id,
reason: Err(err),
});
}
}
}
Poll::Pending
}
}
/// Event produced by a [`TcpListenStream`].
#[derive(Debug)]
pub enum TcpListenerEvent<S> {
/// The listener is listening on a new additional [`Multiaddr`].
NewAddress(Multiaddr),
/// An upgrade, consisting of the upgrade future, the listener address and the remote address.
Upgrade {
/// The upgrade.
upgrade: Ready<Result<S, io::Error>>,
/// The local address which produced this upgrade.
local_addr: Multiaddr,
/// The remote address which produced this upgrade.
remote_addr: Multiaddr,
},
/// A [`Multiaddr`] is no longer used for listening.
AddressExpired(Multiaddr),
/// A non-fatal error has happened on the listener.
///
/// This event should be generated in order to notify the user that something wrong has
/// happened. The listener, however, continues to run.
Error(io::Error),
}
/// A stream of incoming connections on one or more interfaces.
pub struct TcpListenStream<T>
where
T: Provider,
{
/// The ID of this listener.
listener_id: ListenerId,
/// The socket address that the listening socket is bound to,
/// which may be a "wildcard address" like `INADDR_ANY` or `IN6ADDR_ANY`
/// when listening on all interfaces for IPv4 respectively IPv6 connections.
listen_addr: SocketAddr,
/// The async listening socket for incoming connections.
listener: T::Listener,
/// Watcher for network interface changes.
/// Reports [`IfEvent`]s for new / deleted ip-addresses when interfaces
/// become or stop being available.
///
/// `None` if the socket is only listening on a single interface.
if_watcher: Option<IfWatcher>,
/// The port reuse configuration for outgoing connections.
///
/// If enabled, all IP addresses on which this listening stream
/// is accepting connections (`in_addr`) are registered for reuse
/// as local addresses for the sockets of outgoing connections. They are
/// unregistered when the stream encounters an error or is dropped.
port_reuse: PortReuse,
/// How long to sleep after a (non-fatal) error while trying
/// to accept a new connection.
sleep_on_error: Duration,
/// The current pause, if any.
pause: Option<Delay>,
}
impl<T> TcpListenStream<T>
where
T: Provider,
{
/// Constructs a [`TcpListenStream`] for incoming connections around
/// the given [`TcpListener`].
fn new(
listener_id: ListenerId,
listener: TcpListener,
if_watcher: Option<IfWatcher>,
port_reuse: PortReuse,
) -> io::Result<Self> {
let listen_addr = listener.local_addr()?;
let listener = T::new_listener(listener)?;
Ok(TcpListenStream {
port_reuse,
listener,
listener_id,
listen_addr,
if_watcher,
pause: None,
sleep_on_error: Duration::from_millis(100),
})
}
/// Disables port reuse for any listen address of this stream.
///
/// This is done when the `TcpListenStream` encounters a fatal
/// error (for the stream) or is dropped.
///
/// Has no effect if port reuse is disabled.
fn disable_port_reuse(&mut self) {
match &self.if_watcher {
Some(if_watcher) => {
for ip_net in if_watcher.iter() {
self.port_reuse
.unregister(ip_net.addr(), self.listen_addr.port());
}
}
None => self
.port_reuse
.unregister(self.listen_addr.ip(), self.listen_addr.port()),
}
}
}
impl<T> Drop for TcpListenStream<T>
where
T: Provider,
{
fn drop(&mut self) {
self.disable_port_reuse();
}
}
impl<T> Stream for TcpListenStream<T>
where
T: Provider,
T::Listener: Unpin,
T::Stream: Unpin,
{
type Item = Result<TcpListenerEvent<T::Stream>, io::Error>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<Self::Item>> {
let me = Pin::into_inner(self);
if let Some(mut pause) = me.pause.take() {
match pause.poll_unpin(cx) {
Poll::Ready(_) => {}
Poll::Pending => {
me.pause = Some(pause);
return Poll::Pending;
}
}
}
if let Some(if_watcher) = me.if_watcher.as_mut() {
while let Poll::Ready(event) = if_watcher.poll_if_event(cx) {
match event {
Ok(IfEvent::Up(inet)) => {
let ip = inet.addr();
if me.listen_addr.is_ipv4() == ip.is_ipv4() {
let ma = ip_to_multiaddr(ip, me.listen_addr.port());
log::debug!("New listen address: {}", ma);
me.port_reuse.register(ip, me.listen_addr.port());
return Poll::Ready(Some(Ok(TcpListenerEvent::NewAddress(ma))));
}
}
Ok(IfEvent::Down(inet)) => {
let ip = inet.addr();
if me.listen_addr.is_ipv4() == ip.is_ipv4() {
let ma = ip_to_multiaddr(ip, me.listen_addr.port());
log::debug!("Expired listen address: {}", ma);
me.port_reuse.unregister(ip, me.listen_addr.port());
return Poll::Ready(Some(Ok(TcpListenerEvent::AddressExpired(ma))));
}
}
Err(err) => {
me.pause = Some(Delay::new(me.sleep_on_error));
return Poll::Ready(Some(Ok(TcpListenerEvent::Error(err))));
}
}
}
}
// Take the pending connection from the backlog.
match T::poll_accept(&mut me.listener, cx) {
Poll::Ready(Ok(Incoming {
local_addr,
remote_addr,
stream,
})) => {
let local_addr = ip_to_multiaddr(local_addr.ip(), local_addr.port());
let remote_addr = ip_to_multiaddr(remote_addr.ip(), remote_addr.port());
log::debug!("Incoming connection from {} at {}", remote_addr, local_addr);
return Poll::Ready(Some(Ok(TcpListenerEvent::Upgrade {
upgrade: future::ok(stream),
local_addr,
remote_addr,
})));
}
Poll::Ready(Err(e)) => {
// These errors are non-fatal for the listener stream.
me.pause = Some(Delay::new(me.sleep_on_error));
return Poll::Ready(Some(Ok(TcpListenerEvent::Error(e))));
}
Poll::Pending => {}
};
Poll::Pending
}
}
/// Extracts a `SocketAddr` from a given `Multiaddr`.
///
/// Fails if the given `Multiaddr` does not begin with an IP
/// protocol encapsulating a TCP port.
fn multiaddr_to_socketaddr(mut addr: Multiaddr) -> Result<SocketAddr, ()> {
// "Pop" the IP address and TCP port from the end of the address,
// ignoring a `/p2p/...` suffix as well as any prefix of possibly
// outer protocols, if present.
let mut port = None;
while let Some(proto) = addr.pop() {
match proto {
Protocol::Ip4(ipv4) => match port {
Some(port) => return Ok(SocketAddr::new(ipv4.into(), port)),
None => return Err(()),
},
Protocol::Ip6(ipv6) => match port {
Some(port) => return Ok(SocketAddr::new(ipv6.into(), port)),
None => return Err(()),
},
Protocol::Tcp(portnum) => match port {
Some(_) => return Err(()),
None => port = Some(portnum),
},
Protocol::P2p(_) => {}
_ => return Err(()),
}
}
Err(())
}
// Create a [`Multiaddr`] from the given IP address and port number.
fn ip_to_multiaddr(ip: IpAddr, port: u16) -> Multiaddr {
Multiaddr::empty().with(ip.into()).with(Protocol::Tcp(port))
}
fn is_tcp_addr(addr: &Multiaddr) -> bool {
use Protocol::*;
let mut iter = addr.iter();
let first = match iter.next() {
None => return false,
Some(p) => p,
};
let second = match iter.next() {
None => return false,
Some(p) => p,
};
matches!(first, Ip4(_) | Ip6(_) | Dns(_) | Dns4(_) | Dns6(_)) && matches!(second, Tcp(_))
}
2017-09-30 15:55:57 +02:00
#[cfg(test)]
mod tests {
use super::*;
use futures::{
channel::{mpsc, oneshot},
future::poll_fn,
};
use libp2p_core::PeerId;
#[test]
fn multiaddr_to_tcp_conversion() {
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
assert!(
multiaddr_to_socketaddr("/ip4/127.0.0.1/udp/1234".parse::<Multiaddr>().unwrap())
.is_err()
);
2017-11-16 23:59:38 +08:00
assert_eq!(
multiaddr_to_socketaddr("/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(
"/ip4/255.255.255.255/tcp/8080"
.parse::<Multiaddr>()
.unwrap()
),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)),
8080,
))
);
assert_eq!(
multiaddr_to_socketaddr("/ip6/::1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(
"/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080"
.parse::<Multiaddr>()
.unwrap()
),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(
65535, 65535, 65535, 65535, 65535, 65535, 65535, 65535,
)),
8080,
))
);
}
#[test]
fn communicating_between_dialer_and_listener() {
env_logger::try_init().ok();
async fn listener<T: Provider>(addr: Multiaddr, mut ready_tx: mpsc::Sender<Multiaddr>) {
let mut tcp = GenTcpTransport::<T>::new(GenTcpConfig::new()).boxed();
tcp.listen_on(addr).unwrap();
loop {
match tcp.select_next_some().await {
TransportEvent::NewAddress { listen_addr, .. } => {
ready_tx.send(listen_addr).await.unwrap();
}
TransportEvent::Incoming { upgrade, .. } => {
let mut upgrade = upgrade.await.unwrap();
let mut buf = [0u8; 3];
upgrade.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, [1, 2, 3]);
upgrade.write_all(&[4, 5, 6]).await.unwrap();
return;
}
e => panic!("Unexpected transport event: {:?}", e),
}
}
}
async fn dialer<T: Provider>(mut ready_rx: mpsc::Receiver<Multiaddr>) {
let addr = ready_rx.next().await.unwrap();
let mut tcp = GenTcpTransport::<T>::new(GenTcpConfig::new());
// Obtain a future socket through dialing
let mut socket = tcp.dial(addr.clone()).unwrap().await.unwrap();
socket.write_all(&[0x1, 0x2, 0x3]).await.unwrap();
let mut buf = [0u8; 3];
socket.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, [4, 5, 6]);
}
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<async_io::Tcp>(addr.clone(), ready_tx);
let dialer = dialer::<async_io::Tcp>(ready_rx);
let listener = async_std::task::spawn(listener);
async_std::task::block_on(dialer);
async_std::task::block_on(listener);
}
#[cfg(feature = "tokio")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<tokio::Tcp>(addr, ready_tx);
let dialer = dialer::<tokio::Tcp>(ready_rx);
let rt = tokio_crate::runtime::Builder::new_current_thread()
.enable_io()
.build()
.unwrap();
let tasks = tokio_crate::task::LocalSet::new();
let listener = tasks.spawn_local(listener);
tasks.block_on(&rt, dialer);
tasks.block_on(&rt, listener).unwrap();
}
}
test("/ip4/127.0.0.1/tcp/0".parse().unwrap());
test("/ip6/::1/tcp/0".parse().unwrap());
}
#[test]
fn wildcard_expansion() {
env_logger::try_init().ok();
async fn listener<T: Provider>(addr: Multiaddr, mut ready_tx: mpsc::Sender<Multiaddr>) {
let mut tcp = GenTcpTransport::<T>::new(GenTcpConfig::new()).boxed();
tcp.listen_on(addr).unwrap();
loop {
match tcp.select_next_some().await {
TransportEvent::NewAddress { listen_addr, .. } => {
let mut iter = listen_addr.iter();
match iter.next().expect("ip address") {
Protocol::Ip4(ip) => assert!(!ip.is_unspecified()),
Protocol::Ip6(ip) => assert!(!ip.is_unspecified()),
other => panic!("Unexpected protocol: {}", other),
}
if let Protocol::Tcp(port) = iter.next().expect("port") {
assert_ne!(0, port)
} else {
panic!("No TCP port in address: {}", listen_addr)
}
ready_tx.send(listen_addr).await.ok();
transports/tcp/: Call take_error on TCP socket (#2458) Within `Provider::new_stream` we wait for the socket to become writable (`stream.writable`), before returning it as a stream. In other words, we are waiting for the socket to connect before returning it as a new TCP connection. Waiting to connect before returning it as a new TCP connection allows us to catch TCP connection establishment errors early. While `stream.writable` drives the process of connecting, it does not surface potential connection errors themselves. These need to be explicitly collected via `TcpSocket::take_error`. If not explicitly collected, they will surface on future operations on the socket. For now this commit explicitly calls `TcpSocket::take_error` when using `async-io` only. `tokio` introduced the method (`take_error`) in https://github.com/tokio-rs/tokio/pull/4364 though later reverted it in https://github.com/tokio-rs/tokio/pull/4392. Once re-reverted, the same patch can be applied when using `libp2p-tcp` with tokio. --- One example on how this bug surfaces today: A `/dnsaddr/xxx` `Multiaddr` can potentially resolve to multiple IP addresses, e.g. to the IPv4 and the IPv6 addresses of a node. `libp2p-dns` tries dialing each of them in sequence using `libp2p-tcp`, returning the first that `libp2p-tcp` reports as successful. Say that the local node tries the IPv6 address first. In the scenario where the local node's networking stack does not support IPv6, e.g. has no IPv6 route, the connection attempt to the resolved IPv6 address of the remote node fails. Given that `libp2p-tcp` does not call `TcpSocket::take_error`, it would falsly report the TCP connection attempt as successful. `libp2p-dns` would receive the "successful" TCP connection for the IPv6 address from `libp2p-tcp` and would not attempt to dial the IPv4 address, even though it supports IPv4, and instead bubble up the "successful" IPv6 TCP connection. Only later, when writing or reading from the "successful" IPv6 TCP connection, would the IPv6 error surface. Co-authored-by: Oliver Wangler <oliver@wngr.de>
2022-02-01 19:59:34 +01:00
}
TransportEvent::Incoming { .. } => {
return;
}
_ => {}
}
}
}
async fn dialer<T: Provider>(mut ready_rx: mpsc::Receiver<Multiaddr>) {
let dest_addr = ready_rx.next().await.unwrap();
let mut tcp = GenTcpTransport::<T>::new(GenTcpConfig::new());
tcp.dial(dest_addr).unwrap().await.unwrap();
}
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<async_io::Tcp>(addr.clone(), ready_tx);
let dialer = dialer::<async_io::Tcp>(ready_rx);
let listener = async_std::task::spawn(listener);
async_std::task::block_on(dialer);
async_std::task::block_on(listener);
}
#[cfg(feature = "tokio")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<tokio::Tcp>(addr, ready_tx);
let dialer = dialer::<tokio::Tcp>(ready_rx);
let rt = tokio_crate::runtime::Builder::new_current_thread()
.enable_io()
.build()
.unwrap();
let tasks = tokio_crate::task::LocalSet::new();
let listener = tasks.spawn_local(listener);
tasks.block_on(&rt, dialer);
tasks.block_on(&rt, listener).unwrap();
}
}
test("/ip4/0.0.0.0/tcp/0".parse().unwrap());
test("/ip6/::1/tcp/0".parse().unwrap());
}
#[test]
fn port_reuse_dialing() {
env_logger::try_init().ok();
async fn listener<T: Provider>(
addr: Multiaddr,
mut ready_tx: mpsc::Sender<Multiaddr>,
port_reuse_rx: oneshot::Receiver<Protocol<'_>>,
) {
let mut tcp = GenTcpTransport::<T>::new(GenTcpConfig::new()).boxed();
tcp.listen_on(addr).unwrap();
loop {
match tcp.select_next_some().await {
TransportEvent::NewAddress { listen_addr, .. } => {
ready_tx.send(listen_addr).await.ok();
}
TransportEvent::Incoming {
upgrade,
mut send_back_addr,
..
} => {
// Receive the dialer tcp port reuse
let remote_port_reuse = port_reuse_rx.await.unwrap();
// And check it is the same as the remote port used for upgrade
assert_eq!(send_back_addr.pop().unwrap(), remote_port_reuse);
let mut upgrade = upgrade.await.unwrap();
let mut buf = [0u8; 3];
upgrade.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, [1, 2, 3]);
upgrade.write_all(&[4, 5, 6]).await.unwrap();
return;
}
e => panic!("Unexpected event: {:?}", e),
}
}
}
async fn dialer<T: Provider>(
addr: Multiaddr,
mut ready_rx: mpsc::Receiver<Multiaddr>,
port_reuse_tx: oneshot::Sender<Protocol<'_>>,
) {
let dest_addr = ready_rx.next().await.unwrap();
let mut tcp = GenTcpTransport::<T>::new(GenTcpConfig::new().port_reuse(true));
tcp.listen_on(addr).unwrap();
match poll_fn(|cx| Pin::new(&mut tcp).poll(cx)).await {
TransportEvent::NewAddress { .. } => {
// Check that tcp and listener share the same port reuse SocketAddr
let listener = tcp.listeners.front().unwrap();
let port_reuse_tcp = tcp.port_reuse.local_dial_addr(&listener.listen_addr.ip());
let port_reuse_listener = listener
.port_reuse
.local_dial_addr(&listener.listen_addr.ip());
assert!(port_reuse_tcp.is_some());
assert_eq!(port_reuse_tcp, port_reuse_listener);
// Send the dialer tcp port reuse to the listener
port_reuse_tx
.send(Protocol::Tcp(port_reuse_tcp.unwrap().port()))
.ok();
// Obtain a future socket through dialing
let mut socket = tcp.dial(dest_addr).unwrap().await.unwrap();
socket.write_all(&[0x1, 0x2, 0x3]).await.unwrap();
// socket.flush().await;
let mut buf = [0u8; 3];
socket.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, [4, 5, 6]);
}
e => panic!("Unexpected transport event: {:?}", e),
}
}
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let (port_reuse_tx, port_reuse_rx) = oneshot::channel();
let listener = listener::<async_io::Tcp>(addr.clone(), ready_tx, port_reuse_rx);
let dialer = dialer::<async_io::Tcp>(addr.clone(), ready_rx, port_reuse_tx);
let listener = async_std::task::spawn(listener);
async_std::task::block_on(dialer);
async_std::task::block_on(listener);
}
#[cfg(feature = "tokio")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let (port_reuse_tx, port_reuse_rx) = oneshot::channel();
let listener = listener::<tokio::Tcp>(addr.clone(), ready_tx, port_reuse_rx);
let dialer = dialer::<tokio::Tcp>(addr, ready_rx, port_reuse_tx);
let rt = tokio_crate::runtime::Builder::new_current_thread()
.enable_io()
.build()
.unwrap();
let tasks = tokio_crate::task::LocalSet::new();
let listener = tasks.spawn_local(listener);
tasks.block_on(&rt, dialer);
tasks.block_on(&rt, listener).unwrap();
}
}
test("/ip4/127.0.0.1/tcp/0".parse().unwrap());
test("/ip6/::1/tcp/0".parse().unwrap());
}
#[test]
fn port_reuse_listening() {
env_logger::try_init().ok();
async fn listen_twice<T: Provider>(addr: Multiaddr) {
let mut tcp = GenTcpTransport::<T>::new(GenTcpConfig::new().port_reuse(true));
tcp.listen_on(addr).unwrap();
match poll_fn(|cx| Pin::new(&mut tcp).poll(cx)).await {
TransportEvent::NewAddress {
listen_addr: addr1, ..
} => {
let listener1 = tcp.listeners.front().unwrap();
let port_reuse_tcp =
tcp.port_reuse.local_dial_addr(&listener1.listen_addr.ip());
let port_reuse_listener1 = listener1
.port_reuse
.local_dial_addr(&listener1.listen_addr.ip());
assert!(port_reuse_tcp.is_some());
assert_eq!(port_reuse_tcp, port_reuse_listener1);
// Listen on the same address a second time.
tcp.listen_on(addr1.clone()).unwrap();
match poll_fn(|cx| Pin::new(&mut tcp).poll(cx)).await {
TransportEvent::NewAddress {
listen_addr: addr2, ..
} => assert_eq!(addr1, addr2),
e => panic!("Unexpected transport event: {:?}", e),
}
}
e => panic!("Unexpected transport event: {:?}", e),
}
}
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let listener = listen_twice::<async_io::Tcp>(addr.clone());
async_std::task::block_on(listener);
}
#[cfg(feature = "tokio")]
{
let listener = listen_twice::<tokio::Tcp>(addr);
let rt = tokio_crate::runtime::Builder::new_current_thread()
.enable_io()
.build()
.unwrap();
rt.block_on(listener);
}
}
test("/ip4/127.0.0.1/tcp/0".parse().unwrap());
}
2018-01-02 16:00:08 +01:00
#[test]
fn listen_port_0() {
env_logger::try_init().ok();
2018-01-02 16:00:08 +01:00
async fn listen<T: Provider>(addr: Multiaddr) -> Multiaddr {
let mut tcp = GenTcpTransport::<T>::new(GenTcpConfig::new()).boxed();
tcp.listen_on(addr).unwrap();
tcp.select_next_some()
.await
.into_new_address()
.expect("listen address")
}
2018-01-02 16:00:08 +01:00
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let new_addr = async_std::task::block_on(listen::<async_io::Tcp>(addr.clone()));
assert!(!new_addr.to_string().contains("tcp/0"));
}
#[cfg(feature = "tokio")]
{
let rt = tokio_crate::runtime::Builder::new_current_thread()
.enable_io()
.build()
.unwrap();
let new_addr = rt.block_on(listen::<tokio::Tcp>(addr));
assert!(!new_addr.to_string().contains("tcp/0"));
}
}
test("/ip6/::1/tcp/0".parse().unwrap());
test("/ip4/127.0.0.1/tcp/0".parse().unwrap());
2018-01-02 16:00:08 +01:00
}
#[test]
fn listen_invalid_addr() {
env_logger::try_init().ok();
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let mut tcp = TcpTransport::new(GenTcpConfig::new());
assert!(tcp.listen_on(addr.clone()).is_err());
}
#[cfg(feature = "tokio")]
{
let mut tcp = TokioTcpTransport::new(GenTcpConfig::new());
assert!(tcp.listen_on(addr).is_err());
}
}
test("/ip4/127.0.0.1/tcp/12345/tcp/12345".parse().unwrap());
}
#[cfg(any(feature = "async-io", feature = "tcp"))]
#[test]
fn test_address_translation() {
#[cfg(feature = "async-io")]
let transport = TcpTransport::new(GenTcpConfig::new());
#[cfg(all(feature = "tokio", not(feature = "async-io")))]
let transport = TokioTcpTransport::new(GenTcpConfig::new());
let port = 42;
let tcp_listen_addr = Multiaddr::empty()
.with(Protocol::Ip4(Ipv4Addr::new(127, 0, 0, 1)))
.with(Protocol::Tcp(port));
let observed_ip = Ipv4Addr::new(123, 45, 67, 8);
let tcp_observed_addr = Multiaddr::empty()
.with(Protocol::Ip4(observed_ip))
.with(Protocol::Tcp(1))
.with(Protocol::P2p(PeerId::random().into()));
let translated = transport
.address_translation(&tcp_listen_addr, &tcp_observed_addr)
.unwrap();
let mut iter = translated.iter();
assert_eq!(iter.next(), Some(Protocol::Ip4(observed_ip)));
assert_eq!(iter.next(), Some(Protocol::Tcp(port)));
assert_eq!(iter.next(), None);
let quic_addr = Multiaddr::empty()
.with(Protocol::Ip4(Ipv4Addr::new(87, 65, 43, 21)))
.with(Protocol::Udp(1))
.with(Protocol::Quic);
assert!(transport
.address_translation(&tcp_listen_addr, &quic_addr)
.is_none());
assert!(transport
.address_translation(&quic_addr, &tcp_observed_addr)
.is_none());
}
2017-09-18 16:52:51 +02:00
}