1032 lines
40 KiB
Rust
Raw Normal View History

2017-11-02 11:58:02 +01:00
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
2017-11-02 11:58:02 +01:00
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
2017-11-02 11:58:02 +01:00
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
2017-11-02 11:58:02 +01:00
// DEALINGS IN THE SOFTWARE.
//! Implementation of the libp2p `Transport` trait for TCP/IP.
//!
//! # Usage
//!
//! This crate provides a `TcpConfig` and `TokioTcpConfig`, depending on
//! the enabled features, which implement the `Transport` trait for use as a
//! transport with `libp2p-core` or `libp2p-swarm`.
mod provider;
#[cfg(feature = "async-io")]
pub use provider::async_io;
2017-11-02 11:58:02 +01:00
/// The type of a [`GenTcpConfig`] using the `async-io` implementation.
#[cfg(feature = "async-io")]
pub type TcpConfig = GenTcpConfig<async_io::Tcp>;
#[cfg(feature = "tokio")]
pub use provider::tokio;
/// The type of a [`GenTcpConfig`] using the `tokio` implementation.
#[cfg(feature = "tokio")]
pub type TokioTcpConfig = GenTcpConfig<tokio::Tcp>;
use futures::{
future::{self, BoxFuture, Ready},
prelude::*,
ready,
};
use futures_timer::Delay;
use libp2p_core::{
address_translation,
multiaddr::{Multiaddr, Protocol},
transport::{ListenerEvent, Transport, TransportError},
};
use socket2::{Domain, Socket, Type};
use std::{
collections::HashSet,
io,
net::{SocketAddr, IpAddr, TcpListener},
pin::Pin,
sync::{Arc, RwLock},
task::{Context, Poll},
time::Duration,
};
2017-09-18 16:52:51 +02:00
use provider::{Provider, IfEvent};
/// The configuration for a TCP/IP transport capability for libp2p.
2017-11-02 11:58:02 +01:00
///
/// A [`GenTcpConfig`] implements the [`Transport`] interface and thus
/// is consumed on [`Transport::listen_on`] and [`Transport::dial`].
/// However, the config can be cheaply cloned to perform multiple such
/// operations with the same config.
#[derive(Clone, Debug)]
pub struct GenTcpConfig<T> {
/// The type of the I/O provider.
_impl: std::marker::PhantomData<T>,
/// TTL to set for opened sockets, or `None` to keep default.
ttl: Option<u32>,
/// `TCP_NODELAY` to set for opened sockets, or `None` to keep default.
nodelay: Option<bool>,
/// Size of the listen backlog for listen sockets.
backlog: u32,
/// The configuration of port reuse when dialing.
port_reuse: PortReuse,
}
type Port = u16;
/// The configuration for port reuse of listening sockets.
#[derive(Debug, Clone)]
enum PortReuse {
/// Port reuse is disabled, i.e. ephemeral local ports are
/// used for outgoing TCP connections.
Disabled,
/// Port reuse when dialing is enabled, i.e. the local
/// address and port that a new socket for an outgoing
/// connection is bound to are chosen from an existing
/// listening socket, if available.
Enabled {
/// The addresses and ports of the listening sockets
/// registered as eligible for port reuse when dialing.
listen_addrs: Arc<RwLock<HashSet<(IpAddr, Port)>>>
},
}
impl PortReuse {
/// Registers a socket address for port reuse.
///
/// Has no effect if port reuse is disabled.
fn register(&mut self, ip: IpAddr, port: Port) {
if let PortReuse::Enabled { listen_addrs } = self {
log::trace!("Registering for port reuse: {}:{}", ip, port);
listen_addrs
.write()
.expect("`register()` and `unregister()` never panic while holding the lock")
.insert((ip, port));
}
}
/// Unregisters a socket address for port reuse.
///
/// Has no effect if port reuse is disabled.
fn unregister(&mut self, ip: IpAddr, port: Port) {
if let PortReuse::Enabled { listen_addrs } = self {
log::trace!("Unregistering for port reuse: {}:{}", ip, port);
listen_addrs
.write()
.expect("`register()` and `unregister()` never panic while holding the lock")
.remove(&(ip, port));
}
}
/// Selects a listening socket address suitable for use
/// as the local socket address when dialing.
///
/// If multiple listening sockets are registered for port
/// reuse, one is chosen whose IP protocol version and
/// loopback status is the same as that of `remote_ip`.
///
/// Returns `None` if port reuse is disabled or no suitable
/// listening socket address is found.
fn local_dial_addr(&self, remote_ip: &IpAddr) -> Option<SocketAddr> {
if let PortReuse::Enabled { listen_addrs } = self {
for (ip, port) in listen_addrs
.read()
.expect("`register()` and `unregister()` never panic while holding the lock")
.iter()
{
if ip.is_ipv4() == remote_ip.is_ipv4()
&& ip.is_loopback() == remote_ip.is_loopback()
{
return Some(SocketAddr::new(*ip, *port))
}
}
}
None
}
}
impl<T> GenTcpConfig<T>
where
T: Provider + Send,
{
/// Creates a new configuration for a TCP/IP transport:
///
/// * Nagle's algorithm, i.e. `TCP_NODELAY`, is _enabled_.
/// See [`GenTcpConfig::nodelay`].
/// * Reuse of listening ports is _disabled_.
/// See [`GenTcpConfig::port_reuse`].
/// * No custom `IP_TTL` is set. The default of the OS TCP stack applies.
/// See [`GenTcpConfig::ttl`].
/// * The size of the listen backlog for new listening sockets is `1024`.
/// See [`GenTcpConfig::listen_backlog`].
pub fn new() -> Self {
Self {
ttl: None,
nodelay: None,
backlog: 1024,
port_reuse: PortReuse::Disabled,
_impl: std::marker::PhantomData,
}
}
/// Configures the `IP_TTL` option for new sockets.
pub fn ttl(mut self, value: u32) -> Self {
self.ttl = Some(value);
self
}
/// Configures the `TCP_NODELAY` option for new sockets.
pub fn nodelay(mut self, value: bool) -> Self {
self.nodelay = Some(value);
self
}
2017-09-18 16:52:51 +02:00
/// Configures the listen backlog for new listen sockets.
pub fn listen_backlog(mut self, backlog: u32) -> Self {
self.backlog = backlog;
self
}
/// Configures port reuse for local sockets, which implies
/// reuse of listening ports for outgoing connections to
/// enhance NAT traversal capabilities.
///
/// Please refer to e.g. [RFC 4787](https://tools.ietf.org/html/rfc4787)
/// section 4 and 5 for some of the NAT terminology used here.
///
/// There are two main use-cases for port reuse among local
/// sockets:
///
/// 1. Creating multiple listening sockets for the same address
/// and port to allow accepting connections on multiple threads
/// without having to synchronise access to a single listen socket.
///
/// 2. Creating outgoing connections whose local socket is bound to
/// the same address and port as a listening socket. In the rare
/// case of simple NATs with both endpoint-independent mapping and
/// endpoint-independent filtering, this can on its own already
/// permit NAT traversal by other nodes sharing the observed
/// external address of the local node. For the common case of
/// NATs with address-dependent or address and port-dependent
/// filtering, port reuse for outgoing connections can facilitate
/// further TCP hole punching techniques for NATs that perform
/// endpoint-independent mapping. Port reuse cannot facilitate
/// NAT traversal in the presence of "symmetric" NATs that employ
/// both address/port-dependent mapping and filtering, unless
/// there is some means of port prediction.
///
/// Both use-cases are enabled when port reuse is enabled, with port reuse
/// for outgoing connections (`2.` above) always being implied.
///
/// > **Note**: Due to the identification of a TCP socket by a 4-tuple
/// > of source IP address, source port, destination IP address and
/// > destination port, with port reuse enabled there can be only
/// > a single outgoing connection to a particular address and port
/// > of a peer per local listening socket address.
///
/// If enabled, the returned `GenTcpConfig` and all of its `Clone`s
/// keep track of the listen socket addresses as they are reported
/// by polling [`TcpListenStream`]s obtained from [`GenTcpConfig::listen_on()`].
///
/// In contrast, two `GenTcpConfig`s constructed separately via [`GenTcpConfig::new()`]
/// maintain these addresses independently. It is thus possible to listen on
/// multiple addresses, enabling port reuse for each, knowing exactly which
/// listen address is reused when dialing with a specific `GenTcpConfig`, as in
/// the following example:
///
/// ```no_run
/// # use libp2p_core::transport::ListenerEvent;
/// # use libp2p_core::{Multiaddr, Transport};
/// # use futures::stream::StreamExt;
/// #[cfg(feature = "async-io")]
/// #[async_std::main]
/// async fn main() -> std::io::Result<()> {
/// use libp2p_tcp::TcpConfig;
///
/// let listen_addr1: Multiaddr = "/ip4/127.0.0.1/tcp/9001".parse().unwrap();
/// let listen_addr2: Multiaddr = "/ip4/127.0.0.1/tcp/9002".parse().unwrap();
///
/// let tcp1 = TcpConfig::new().port_reuse(true);
/// let mut listener1 = tcp1.clone().listen_on(listen_addr1.clone()).expect("listener");
/// match listener1.next().await.expect("event")? {
/// ListenerEvent::NewAddress(listen_addr) => {
/// println!("Listening on {:?}", listen_addr);
/// let mut stream = tcp1.dial(listen_addr2.clone()).unwrap().await?;
/// // `stream` has `listen_addr1` as its local socket address.
/// }
/// _ => {}
/// }
///
/// let tcp2 = TcpConfig::new().port_reuse(true);
/// let mut listener2 = tcp2.clone().listen_on(listen_addr2).expect("listener");
/// match listener2.next().await.expect("event")? {
/// ListenerEvent::NewAddress(listen_addr) => {
/// println!("Listening on {:?}", listen_addr);
/// let mut socket = tcp2.dial(listen_addr1).unwrap().await?;
/// // `stream` has `listen_addr2` as its local socket address.
/// }
/// _ => {}
/// }
/// Ok(())
/// }
/// ```
///
/// If a single `GenTcpConfig` is used and cloned for the creation of multiple
/// listening sockets or a wildcard listen socket address is used to listen
/// on any interface, there can be multiple such addresses registered for
/// port reuse. In this case, one is chosen whose IP protocol version and
/// loopback status is the same as that of the remote address. Consequently, for
/// maximum control of the local listening addresses and ports that are used
/// for outgoing connections, a new `GenTcpConfig` should be created for each
/// listening socket, avoiding the use of wildcard addresses which bind a
/// socket to all network interfaces.
///
/// When this option is enabled on a unix system, the socket
/// option `SO_REUSEPORT` is set, if available, to permit
/// reuse of listening ports for multiple sockets.
pub fn port_reuse(mut self, port_reuse: bool) -> Self {
self.port_reuse = if port_reuse {
PortReuse::Enabled {
listen_addrs: Arc::new(RwLock::new(HashSet::new()))
}
} else {
PortReuse::Disabled
};
self
}
fn create_socket(&self, socket_addr: &SocketAddr) -> io::Result<Socket> {
let domain = if socket_addr.is_ipv4() {
Domain::IPV4
} else {
Domain::IPV6
};
let socket = Socket::new(domain, Type::STREAM, Some(socket2::Protocol::TCP))?;
if socket_addr.is_ipv6() {
socket.set_only_v6(true)?;
}
if let Some(ttl) = self.ttl {
socket.set_ttl(ttl)?;
}
if let Some(nodelay) = self.nodelay {
socket.set_nodelay(nodelay)?;
}
socket.set_reuse_address(true)?;
#[cfg(unix)]
if let PortReuse::Enabled { .. } = &self.port_reuse {
socket.set_reuse_port(true)?;
}
Ok(socket)
}
fn do_listen(self, socket_addr: SocketAddr) -> io::Result<TcpListenStream<T>> {
let socket = self.create_socket(&socket_addr)?;
socket.bind(&socket_addr.into())?;
socket.listen(self.backlog as _)?;
socket.set_nonblocking(true)?;
TcpListenStream::<T>::new(socket.into(), self.port_reuse)
}
async fn do_dial(self, socket_addr: SocketAddr) -> Result<T::Stream, io::Error> {
let socket = self.create_socket(&socket_addr)?;
if let Some(addr) = self.port_reuse.local_dial_addr(&socket_addr.ip()) {
log::trace!("Binding dial socket to listen socket {}", addr);
socket.bind(&addr.into())?;
}
socket.set_nonblocking(true)?;
match socket.connect(&socket_addr.into()) {
Ok(()) => {}
Err(err) if err.raw_os_error() == Some(libc::EINPROGRESS) => {}
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
Err(err) => return Err(err),
};
let stream = T::new_stream(socket.into()).await?;
Ok(stream)
}
2017-09-18 16:52:51 +02:00
}
impl<T> Transport for GenTcpConfig<T>
where
T: Provider + Send + 'static,
T::Listener: Unpin,
T::IfWatcher: Unpin,
T::Stream: Unpin,
{
type Output = T::Stream;
type Error = io::Error;
type Dial = Pin<Box<dyn Future<Output = Result<Self::Output, Self::Error>> + Send>>;
type Listener = TcpListenStream<T>;
type ListenerUpgrade = Ready<Result<Self::Output, Self::Error>>;
fn listen_on(self, addr: Multiaddr) -> Result<Self::Listener, TransportError<Self::Error>> {
let socket_addr = if let Ok(sa) = multiaddr_to_socketaddr(&addr) {
sa
} else {
return Err(TransportError::MultiaddrNotSupported(addr));
};
log::debug!("listening on {}", socket_addr);
self.do_listen(socket_addr)
.map_err(TransportError::Other)
}
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, TransportError<Self::Error>> {
let socket_addr = if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
if socket_addr.port() == 0 || socket_addr.ip().is_unspecified() {
return Err(TransportError::MultiaddrNotSupported(addr));
}
socket_addr
} else {
return Err(TransportError::MultiaddrNotSupported(addr));
};
log::debug!("dialing {}", socket_addr);
Ok(Box::pin(self.do_dial(socket_addr)))
}
/// When port reuse is disabled and hence ephemeral local ports are
/// used for outgoing connections, the returned address is the
/// `observed` address with the port replaced by the port of the
/// `listen` address.
///
/// If port reuse is enabled, `Some(observed)` is returned, as there
/// is a chance that the `observed` address _and_ port are reachable
/// for other peers if there is a NAT in the way that does endpoint-
/// independent filtering. Furthermore, even if that is not the case
/// and TCP hole punching techniques must be used for NAT traversal,
/// the `observed` address is still the one that a remote should connect
/// to for the purpose of the hole punching procedure, as it represents
/// the mapped IP and port of the NAT device in front of the local
/// node.
///
/// `None` is returned if one of the given addresses is not a TCP/IP
/// address.
fn address_translation(&self, listen: &Multiaddr, observed: &Multiaddr) -> Option<Multiaddr> {
match &self.port_reuse {
PortReuse::Disabled => address_translation(listen, observed),
PortReuse::Enabled { .. } => Some(observed.clone()),
}
}
}
type TcpListenerEvent<S> = ListenerEvent<Ready<Result<S, io::Error>>, io::Error>;
enum IfWatch<TIfWatcher> {
Pending(BoxFuture<'static, io::Result<TIfWatcher>>),
Ready(TIfWatcher),
}
/// The listening addresses of a [`TcpListenStream`].
enum InAddr<TIfWatcher> {
/// The stream accepts connections on a single interface.
One {
addr: IpAddr,
out: Option<Multiaddr>
},
/// The stream accepts connections on all interfaces.
Any {
addrs: HashSet<IpAddr>,
if_watch: IfWatch<TIfWatcher>,
}
}
/// A stream of incoming connections on one or more interfaces.
pub struct TcpListenStream<T>
where
T: Provider
{
/// The socket address that the listening socket is bound to,
/// which may be a "wildcard address" like `INADDR_ANY` or `IN6ADDR_ANY`
/// when listening on all interfaces for IPv4 respectively IPv6 connections.
listen_addr: SocketAddr,
/// The async listening socket for incoming connections.
listener: T::Listener,
/// The IP addresses of network interfaces on which the listening socket
/// is accepting connections.
///
/// If the listen socket listens on all interfaces, these may change over
/// time as interfaces become available or unavailable.
in_addr: InAddr<T::IfWatcher>,
/// The port reuse configuration for outgoing connections.
///
/// If enabled, all IP addresses on which this listening stream
/// is accepting connections (`in_addr`) are registered for reuse
/// as local addresses for the sockets of outgoing connections. They are
/// unregistered when the stream encounters an error or is dropped.
port_reuse: PortReuse,
/// How long to sleep after a (non-fatal) error while trying
/// to accept a new connection.
sleep_on_error: Duration,
/// The current pause, if any.
pause: Option<Delay>,
}
impl<T> TcpListenStream<T>
where
T: Provider
{
/// Constructs a `TcpListenStream` for incoming connections around
/// the given `TcpListener`.
fn new(listener: TcpListener, port_reuse: PortReuse) -> io::Result<Self> {
let listen_addr = listener.local_addr()?;
let in_addr = if match &listen_addr {
SocketAddr::V4(a) => a.ip().is_unspecified(),
SocketAddr::V6(a) => a.ip().is_unspecified(),
} {
// The `addrs` are populated via `if_watch` when the
// `TcpListenStream` is polled.
InAddr::Any {
addrs: HashSet::new(),
if_watch: IfWatch::Pending(T::if_watcher()),
}
} else {
InAddr::One {
out: Some(ip_to_multiaddr(listen_addr.ip(), listen_addr.port())),
addr: listen_addr.ip(),
}
};
let listener = T::new_listener(listener)?;
Ok(TcpListenStream {
port_reuse,
listener,
listen_addr,
in_addr,
pause: None,
sleep_on_error: Duration::from_millis(100),
})
}
/// Disables port reuse for any listen address of this stream.
///
/// This is done when the `TcpListenStream` encounters a fatal
/// error (for the stream) or is dropped.
///
/// Has no effect if port reuse is disabled.
fn disable_port_reuse(&mut self) {
match &self.in_addr {
InAddr::One { addr, .. } => {
self.port_reuse.unregister(*addr, self.listen_addr.port());
},
InAddr::Any { addrs, .. } => {
for addr in addrs {
self.port_reuse.unregister(*addr, self.listen_addr.port());
}
}
}
}
}
impl<T> Drop for TcpListenStream<T>
where
T: Provider
{
fn drop(&mut self) {
self.disable_port_reuse();
}
}
impl<T> Stream for TcpListenStream<T>
where
T: Provider,
T::Listener: Unpin,
T::Stream: Unpin,
T::IfWatcher: Unpin,
{
type Item = Result<TcpListenerEvent<T::Stream>, io::Error>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<Self::Item>> {
let me = Pin::into_inner(self);
loop {
match &mut me.in_addr {
InAddr::Any { if_watch, addrs } => match if_watch {
// If we listen on all interfaces, wait for `if-watch` to be ready.
IfWatch::Pending(f) => match ready!(Pin::new(f).poll(cx)) {
Ok(w) => {
*if_watch = IfWatch::Ready(w);
continue
}
Err(err) => {
log::debug! {
"Failed to begin observing interfaces: {:?}. Scheduling retry.",
err
};
*if_watch = IfWatch::Pending(T::if_watcher());
me.pause = Some(Delay::new(me.sleep_on_error));
return Poll::Ready(Some(Ok(ListenerEvent::Error(err))));
}
},
// Consume all events for up/down interface changes.
IfWatch::Ready(watch) => while let Poll::Ready(ev) = T::poll_interfaces(watch, cx) {
match ev {
Ok(IfEvent::Up(inet)) => {
let ip = inet.addr();
if me.listen_addr.is_ipv4() == ip.is_ipv4() && addrs.insert(ip) {
let ma = ip_to_multiaddr(ip, me.listen_addr.port());
log::debug!("New listen address: {}", ma);
me.port_reuse.register(ip, me.listen_addr.port());
return Poll::Ready(Some(Ok(ListenerEvent::NewAddress(ma))));
}
}
Ok(IfEvent::Down(inet)) => {
let ip = inet.addr();
if me.listen_addr.is_ipv4() == ip.is_ipv4() && addrs.remove(&ip) {
let ma = ip_to_multiaddr(ip, me.listen_addr.port());
log::debug!("Expired listen address: {}", ma);
me.port_reuse.unregister(ip, me.listen_addr.port());
return Poll::Ready(Some(Ok(ListenerEvent::AddressExpired(ma))));
}
}
Err(err) => {
log::debug! {
"Failure polling interfaces: {:?}. Scheduling retry.",
err
};
me.pause = Some(Delay::new(me.sleep_on_error));
return Poll::Ready(Some(Ok(ListenerEvent::Error(err))));
}
}
},
},
// If the listener is bound to a single interface, make sure the
// address is registered for port reuse and reported once.
InAddr::One { addr, out } => if let Some(multiaddr) = out.take() {
me.port_reuse.register(*addr, me.listen_addr.port());
return Poll::Ready(Some(Ok(ListenerEvent::NewAddress(multiaddr))))
}
}
if let Some(mut pause) = me.pause.take() {
match Pin::new(&mut pause).poll(cx) {
Poll::Ready(_) => {}
Poll::Pending => {
me.pause = Some(pause);
return Poll::Pending;
}
}
}
// Take the pending connection from the backlog.
let incoming = match T::poll_accept(&mut me.listener, cx) {
Poll::Pending => return Poll::Pending,
Poll::Ready(Ok(incoming)) => incoming,
Poll::Ready(Err(e)) => {
// These errors are non-fatal for the listener stream.
log::error!("error accepting incoming connection: {}", e);
me.pause = Some(Delay::new(me.sleep_on_error));
return Poll::Ready(Some(Ok(ListenerEvent::Error(e))));
}
};
let local_addr = ip_to_multiaddr(incoming.local_addr.ip(), incoming.local_addr.port());
let remote_addr = ip_to_multiaddr(incoming.remote_addr.ip(), incoming.remote_addr.port());
log::debug!("Incoming connection from {} at {}", remote_addr, local_addr);
return Poll::Ready(Some(Ok(ListenerEvent::Upgrade {
upgrade: future::ok(incoming.stream),
local_addr,
remote_addr,
})));
}
}
}
2017-09-18 16:52:51 +02:00
// This type of logic should probably be moved into the multiaddr package
fn multiaddr_to_socketaddr(addr: &Multiaddr) -> Result<SocketAddr, ()> {
let mut iter = addr.iter();
let proto1 = iter.next().ok_or(())?;
let proto2 = iter.next().ok_or(())?;
if iter.next().is_some() {
return Err(());
}
match (proto1, proto2) {
(Protocol::Ip4(ip), Protocol::Tcp(port)) => Ok(SocketAddr::new(ip.into(), port)),
(Protocol::Ip6(ip), Protocol::Tcp(port)) => Ok(SocketAddr::new(ip.into(), port)),
_ => Err(()),
}
}
// Create a [`Multiaddr`] from the given IP address and port number.
fn ip_to_multiaddr(ip: IpAddr, port: u16) -> Multiaddr {
Multiaddr::empty()
.with(ip.into())
.with(Protocol::Tcp(port))
}
2017-09-30 15:55:57 +02:00
#[cfg(test)]
mod tests {
use futures::channel::mpsc;
use super::*;
#[test]
fn multiaddr_to_tcp_conversion() {
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
assert!(
multiaddr_to_socketaddr(&"/ip4/127.0.0.1/udp/1234".parse::<Multiaddr>().unwrap())
.is_err()
);
2017-11-16 23:59:38 +08:00
assert_eq!(
multiaddr_to_socketaddr(&"/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(
&"/ip4/255.255.255.255/tcp/8080"
.parse::<Multiaddr>()
.unwrap()
),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)),
8080,
))
);
assert_eq!(
multiaddr_to_socketaddr(&"/ip6/::1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(
&"/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080"
.parse::<Multiaddr>()
.unwrap()
),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(
65535, 65535, 65535, 65535, 65535, 65535, 65535, 65535,
)),
8080,
))
);
}
#[test]
fn communicating_between_dialer_and_listener() {
env_logger::try_init().ok();
async fn listener<T: Provider>(addr: Multiaddr, mut ready_tx: mpsc::Sender<Multiaddr>) {
let tcp = GenTcpConfig::<T>::new();
let mut listener = tcp.listen_on(addr).unwrap();
loop {
match listener.next().await.unwrap().unwrap() {
ListenerEvent::NewAddress(listen_addr) => {
ready_tx.send(listen_addr).await.unwrap();
}
ListenerEvent::Upgrade { upgrade, .. } => {
let mut upgrade = upgrade.await.unwrap();
let mut buf = [0u8; 3];
upgrade.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, [1, 2, 3]);
upgrade.write_all(&[4, 5, 6]).await.unwrap();
return
}
e => panic!("Unexpected listener event: {:?}", e),
}
}
}
async fn dialer<T: Provider>(mut ready_rx: mpsc::Receiver<Multiaddr>) {
let addr = ready_rx.next().await.unwrap();
let tcp = GenTcpConfig::<T>::new();
// Obtain a future socket through dialing
let mut socket = tcp.dial(addr.clone()).unwrap().await.unwrap();
socket.write_all(&[0x1, 0x2, 0x3]).await.unwrap();
let mut buf = [0u8; 3];
socket.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, [4, 5, 6]);
}
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<async_io::Tcp>(addr.clone(), ready_tx);
let dialer = dialer::<async_io::Tcp>(ready_rx);
let listener = async_std::task::spawn(listener);
async_std::task::block_on(dialer);
async_std::task::block_on(listener);
}
#[cfg(feature = "tokio")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<tokio::Tcp>(addr.clone(), ready_tx);
let dialer = dialer::<tokio::Tcp>(ready_rx);
let rt = tokio_crate::runtime::Builder::new_current_thread().enable_io().build().unwrap();
let tasks = tokio_crate::task::LocalSet::new();
let listener = tasks.spawn_local(listener);
tasks.block_on(&rt, dialer);
tasks.block_on(&rt, listener).unwrap();
}
}
test("/ip4/127.0.0.1/tcp/0".parse().unwrap());
test("/ip6/::1/tcp/0".parse().unwrap());
}
#[test]
fn wildcard_expansion() {
env_logger::try_init().ok();
async fn listener<T: Provider>(addr: Multiaddr, mut ready_tx: mpsc::Sender<Multiaddr>) {
let tcp = GenTcpConfig::<T>::new();
let mut listener = tcp.listen_on(addr).unwrap();
loop {
match listener.next().await.unwrap().unwrap() {
ListenerEvent::NewAddress(a) => {
let mut iter = a.iter();
match iter.next().expect("ip address") {
Protocol::Ip4(ip) => assert!(!ip.is_unspecified()),
Protocol::Ip6(ip) => assert!(!ip.is_unspecified()),
other => panic!("Unexpected protocol: {}", other),
}
if let Protocol::Tcp(port) = iter.next().expect("port") {
assert_ne!(0, port)
} else {
panic!("No TCP port in address: {}", a)
}
ready_tx.send(a).await.ok();
return
}
_ => {}
}
}
}
async fn dialer<T: Provider>(mut ready_rx: mpsc::Receiver<Multiaddr>) {
let dest_addr = ready_rx.next().await.unwrap();
let tcp = GenTcpConfig::<T>::new();
tcp.dial(dest_addr).unwrap().await.unwrap();
}
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<async_io::Tcp>(addr.clone(), ready_tx);
let dialer = dialer::<async_io::Tcp>(ready_rx);
let listener = async_std::task::spawn(listener);
async_std::task::block_on(dialer);
async_std::task::block_on(listener);
}
#[cfg(feature = "tokio")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<tokio::Tcp>(addr.clone(), ready_tx);
let dialer = dialer::<tokio::Tcp>(ready_rx);
let rt = tokio_crate::runtime::Builder::new_current_thread().enable_io().build().unwrap();
let tasks = tokio_crate::task::LocalSet::new();
let listener = tasks.spawn_local(listener);
tasks.block_on(&rt, dialer);
tasks.block_on(&rt, listener).unwrap();
}
}
test("/ip4/0.0.0.0/tcp/0".parse().unwrap());
test("/ip6/::1/tcp/0".parse().unwrap());
}
#[test]
fn port_reuse_dialing() {
env_logger::try_init().ok();
async fn listener<T: Provider>(addr: Multiaddr, mut ready_tx: mpsc::Sender<Multiaddr>) {
let tcp = GenTcpConfig::<T>::new();
let mut listener = tcp.listen_on(addr).unwrap();
loop {
match listener.next().await.unwrap().unwrap() {
ListenerEvent::NewAddress(listen_addr) => {
ready_tx.send(listen_addr).await.ok();
}
ListenerEvent::Upgrade { upgrade, .. } => {
let mut upgrade = upgrade.await.unwrap();
let mut buf = [0u8; 3];
upgrade.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, [1, 2, 3]);
upgrade.write_all(&[4, 5, 6]).await.unwrap();
return
}
e => panic!("Unexpected event: {:?}", e),
}
}
}
async fn dialer<T: Provider>(addr: Multiaddr, mut ready_rx: mpsc::Receiver<Multiaddr>) {
let dest_addr = ready_rx.next().await.unwrap();
let tcp = GenTcpConfig::<T>::new().port_reuse(true);
let mut listener = tcp.clone().listen_on(addr).unwrap();
match listener.next().await.unwrap().unwrap() {
ListenerEvent::NewAddress(_) => {
// Obtain a future socket through dialing
let mut socket = tcp.dial(dest_addr).unwrap().await.unwrap();
socket.write_all(&[0x1, 0x2, 0x3]).await.unwrap();
// socket.flush().await;
let mut buf = [0u8; 3];
socket.read_exact(&mut buf).await.unwrap();
assert_eq!(buf, [4, 5, 6]);
}
e => panic!("Unexpected listener event: {:?}", e)
}
}
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<async_io::Tcp>(addr.clone(), ready_tx);
let dialer = dialer::<async_io::Tcp>(addr.clone(), ready_rx);
let listener = async_std::task::spawn(listener);
async_std::task::block_on(dialer);
async_std::task::block_on(listener);
}
#[cfg(feature = "tokio")]
{
let (ready_tx, ready_rx) = mpsc::channel(1);
let listener = listener::<tokio::Tcp>(addr.clone(), ready_tx);
let dialer = dialer::<tokio::Tcp>(addr.clone(), ready_rx);
let rt = tokio_crate::runtime::Builder::new_current_thread().enable_io().build().unwrap();
let tasks = tokio_crate::task::LocalSet::new();
let listener = tasks.spawn_local(listener);
tasks.block_on(&rt, dialer);
tasks.block_on(&rt, listener).unwrap();
}
}
test("/ip4/127.0.0.1/tcp/0".parse().unwrap());
test("/ip6/::1/tcp/0".parse().unwrap());
}
#[test]
fn port_reuse_listening() {
env_logger::try_init().ok();
async fn listen_twice<T: Provider>(addr: Multiaddr) {
let tcp = GenTcpConfig::<T>::new().port_reuse(true);
let mut listener1 = tcp.clone().listen_on(addr).unwrap();
match listener1.next().await.unwrap().unwrap() {
ListenerEvent::NewAddress(addr1) => {
// Listen on the same address a second time.
let mut listener2 = tcp.clone().listen_on(addr1.clone()).unwrap();
match listener2.next().await.unwrap().unwrap() {
ListenerEvent::NewAddress(addr2) => {
assert_eq!(addr1, addr2);
return
}
e => panic!("Unexpected listener event: {:?}", e),
}
}
e => panic!("Unexpected listener event: {:?}", e),
}
}
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let listener = listen_twice::<async_io::Tcp>(addr.clone());
async_std::task::block_on(listener);
}
#[cfg(feature = "tokio")]
{
let listener = listen_twice::<tokio::Tcp>(addr.clone());
let rt = tokio_crate::runtime::Builder::new_current_thread().enable_io().build().unwrap();
rt.block_on(listener);
}
}
test("/ip4/127.0.0.1/tcp/0".parse().unwrap());
}
2018-01-02 16:00:08 +01:00
#[test]
fn listen_port_0() {
env_logger::try_init().ok();
2018-01-02 16:00:08 +01:00
async fn listen<T: Provider>(addr: Multiaddr) -> Multiaddr {
GenTcpConfig::<T>::new()
.listen_on(addr)
.unwrap()
.next()
.await
.expect("some event")
.expect("no error")
.into_new_address()
.expect("listen address")
}
2018-01-02 16:00:08 +01:00
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let new_addr = async_std::task::block_on(listen::<async_io::Tcp>(addr.clone()));
assert!(!new_addr.to_string().contains("tcp/0"));
}
#[cfg(feature = "tokio")]
{
let rt = tokio_crate::runtime::Builder::new_current_thread().enable_io().build().unwrap();
let new_addr = rt.block_on(listen::<tokio::Tcp>(addr.clone()));
assert!(!new_addr.to_string().contains("tcp/0"));
}
}
test("/ip6/::1/tcp/0".parse().unwrap());
test("/ip4/127.0.0.1/tcp/0".parse().unwrap());
2018-01-02 16:00:08 +01:00
}
#[test]
fn listen_invalid_addr() {
env_logger::try_init().ok();
fn test(addr: Multiaddr) {
#[cfg(feature = "async-io")]
{
let tcp = TcpConfig::new();
assert!(tcp.listen_on(addr.clone()).is_err());
}
#[cfg(feature = "tokio")]
{
let tcp = TokioTcpConfig::new();
assert!(tcp.listen_on(addr.clone()).is_err());
}
}
test("/ip4/127.0.0.1/tcp/12345/tcp/12345".parse().unwrap());
}
2017-09-18 16:52:51 +02:00
}