Cleanup and remove unnecessary trait objects

This commit is contained in:
Vurich 2017-10-23 11:45:35 +02:00
parent 0e4375fc90
commit 384d15e24a
3 changed files with 187 additions and 150 deletions

View File

@ -3,39 +3,45 @@
extern crate futures;
extern crate libp2p_transport as transport;
use futures::{Future, IntoFuture, BoxFuture};
use transport::{ProtocolId, MultiAddr, Socket};
use futures::{Future, IntoFuture};
use transport::{ProtocolId, Socket};
use transport::multiaddr::Multiaddr;
/// Produces a future for each incoming `Socket`.
pub trait Handler<S: Socket> {
type Future: IntoFuture<Item=(), Error=()>;
type Future: IntoFuture<Item = (), Error = ()>;
/// Handle the incoming socket, producing a future which should resolve
/// Handle the incoming socket, producing a future which should resolve
/// when the handler is finished.
fn handle(&self, socket: S) -> Self::Future;
fn boxed(self) -> BoxHandler<S> where
Self: Sized + Send + 'static,
<Self::Future as IntoFuture>::Future: Send + 'static
fn boxed(self) -> BoxHandler<S>
where
Self: Sized + Send + 'static,
<Self::Future as IntoFuture>::Future: Send + 'static,
{
BoxHandler(Box::new(move |socket|
self.handle(socket).into_future().boxed()
))
BoxHandler(Box::new(move |socket| {
Box::new(self.handle(socket).into_future()) as _
}))
}
}
impl<S: Socket, F, U> Handler<S> for F
where F: Fn(S) -> U, U: IntoFuture<Item=(), Error=()>
impl<S: Socket, F, U> Handler<S> for F
where
F: Fn(S) -> U,
U: IntoFuture<Item = (), Error = ()>,
{
type Future = U;
fn handle(&self, socket: S) -> U { (self)(socket) }
fn handle(&self, socket: S) -> U {
(self)(socket)
}
}
/// A boxed handler.
pub struct BoxHandler<S: Socket>(Box<Handler<S, Future=BoxFuture<(), ()>>>);
pub struct BoxHandler<S: Socket>(Box<Handler<S, Future = Box<Future<Item = (), Error = ()>>>>);
impl<S: Socket> Handler<S> for BoxHandler<S> {
type Future = BoxFuture<(), ()>;
type Future = Box<Future<Item = (), Error = ()>>;
fn handle(&self, socket: S) -> Self::Future {
self.0.handle(socket)
@ -49,7 +55,7 @@ pub trait Mux: Sync {
/// Attach an incoming socket.
fn push(&self, socket: Self::Socket);
/// Set the socket handler for a given protocol id.
fn set_handler(&self, proto: ProtocolId, handler: BoxHandler<Self::Socket>);
@ -59,19 +65,21 @@ pub trait Mux: Sync {
/// Unimplemented. Maps peer IDs to connected addresses, protocols, and data.
pub trait PeerStore {}
/// This is a common abstraction over the low-level bits of libp2p.
///
/// It handles connecting over, adding and removing transports,
/// wraps an arbitrary event loop, and manages protocol IDs.
pub trait Host {
type Socket: Socket;
type Mux: Mux<Socket = Self::Socket>;
type Multiaddrs: IntoIterator<Item = Multiaddr>;
/// Get a handle to the peer store.
fn peer_store(&self) -> &PeerStore;
/// Get a handle to the underlying muxer.
fn mux(&self) -> &Mux<Socket=Self::Socket>;
fn mux(&self) -> &Self::Mux;
/// Set the socket handler for a given protocol id.
fn set_handler(&self, proto: ProtocolId, handler: BoxHandler<Self::Socket>) {
@ -84,5 +92,5 @@ pub trait Host {
}
/// Addresses we're listening on.
fn listen_addrs(&self) -> Vec<MultiAddr>;
}
fn listen_addrs(&self) -> Self::Multiaddrs;
}

View File

@ -14,153 +14,179 @@ use multiaddr::{Multiaddr, Protocol};
use transport::Transport;
pub struct Tcp {
pub event_loop: Core,
pub event_loop: Core,
}
impl Tcp {
pub fn new() -> Result<Tcp, IoError> {
Ok(Tcp {
event_loop: Core::new()?,
})
}
pub fn new() -> Result<Tcp, IoError> {
Ok(Tcp { event_loop: Core::new()? })
}
}
impl Transport for Tcp {
/// The raw connection.
type RawConn = TcpStream;
/// The raw connection.
type RawConn = TcpStream;
/// The listener produces incoming connections.
type Listener = Box<Stream<Item=Self::RawConn, Error=IoError>>;
/// The listener produces incoming connections.
type Listener = Box<Stream<Item = Self::RawConn, Error = IoError>>;
/// A future which indicates currently dialing to a peer.
type Dial = TcpStreamNew;
/// A future which indicates currently dialing to a peer.
type Dial = TcpStreamNew;
/// Listen on the given multi-addr.
/// Returns the address back if it isn't supported.
fn listen_on(&mut self, addr: Multiaddr) -> Result<Self::Listener, Multiaddr> {
if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
Ok(Box::new(futures::future::result(TcpListener::bind(&socket_addr, &self.event_loop.handle())).map(|listener| {
// Pull out a stream of sockets for incoming connections
listener.incoming().map(|x| x.0)
}).flatten_stream()))
} else {
Err(addr)
}
}
/// Listen on the given multi-addr.
/// Returns the address back if it isn't supported.
fn listen_on(&mut self, addr: Multiaddr) -> Result<Self::Listener, Multiaddr> {
if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
Ok(Box::new(
futures::future::result(
TcpListener::bind(&socket_addr, &self.event_loop.handle()),
).map(|listener| {
// Pull out a stream of sockets for incoming connections
listener.incoming().map(|x| x.0)
})
.flatten_stream(),
))
} else {
Err(addr)
}
}
/// Dial to the given multi-addr.
/// Returns either a future which may resolve to a connection,
/// or gives back the multiaddress.
fn dial(&mut self, addr: Multiaddr) -> Result<Self::Dial, Multiaddr> {
if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
Ok(TcpStream::connect(&socket_addr, &self.event_loop.handle()))
} else {
Err(addr)
}
}
/// Dial to the given multi-addr.
/// Returns either a future which may resolve to a connection,
/// or gives back the multiaddress.
fn dial(&mut self, addr: Multiaddr) -> Result<Self::Dial, Multiaddr> {
if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
Ok(TcpStream::connect(&socket_addr, &self.event_loop.handle()))
} else {
Err(addr)
}
}
}
// This type of logic should probably be moved into the multiaddr package
fn multiaddr_to_socketaddr(addr: &Multiaddr) -> Result<SocketAddr, &Multiaddr> {
let protocols = addr.protocol();
match (protocols[0], protocols[1]) {
(Protocol::IP4, Protocol::TCP) => {
let bs = addr.as_slice();
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(bs[1], bs[2], bs[3], bs[4])),
(bs[6] as u16) << 8 | bs[7] as u16
))
},
(Protocol::IP6, Protocol::TCP) => {
let bs = addr.as_slice();
if let Ok(Some(s)) = Protocol::IP6.bytes_to_string(&bs[1..17]) {
if let Ok(ipv6addr) = s.parse() {
return Ok(SocketAddr::new(IpAddr::V6(ipv6addr), (bs[18] as u16) << 8 | bs[19] as u16))
}
}
Err(addr)
},
_ => Err(addr),
}
fn multiaddr_to_socketaddr(addr: &Multiaddr) -> Result<SocketAddr, &Multiaddr> {
let protocols = addr.protocol();
// TODO: This is nonconforming (since a multiaddr could specify TCP first) but we can't fix that
// until multiaddrs-rs is improved.
match (protocols[0], protocols[1]) {
(Protocol::IP4, Protocol::TCP) => {
let bs = addr.as_slice();
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(bs[1], bs[2], bs[3], bs[4])),
(bs[6] as u16) << 8 | bs[7] as u16,
))
}
(Protocol::IP6, Protocol::TCP) => {
let bs = addr.as_slice();
if let Ok(Some(s)) = Protocol::IP6.bytes_to_string(&bs[1..17]) {
if let Ok(ipv6addr) = s.parse() {
return Ok(SocketAddr::new(
IpAddr::V6(ipv6addr),
(bs[18] as u16) << 8 | bs[19] as u16,
));
}
}
Err(addr)
}
_ => Err(addr),
}
}
#[cfg(test)]
mod tests {
use super::{Tcp, multiaddr_to_socketaddr};
use std;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use tokio_io;
use futures::Future;
use futures::stream::Stream;
use multiaddr::Multiaddr;
use transport::Transport;
use super::{Tcp, multiaddr_to_socketaddr};
use std;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use tokio_io;
use futures::Future;
use futures::stream::Stream;
use multiaddr::Multiaddr;
use transport::Transport;
#[test]
fn multiaddr_to_tcp_conversion() {
use std::net::{Ipv6Addr};
#[test]
fn multiaddr_to_tcp_conversion() {
use std::net::Ipv6Addr;
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap()),
Ok(SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 12345))
);
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip4/255.255.255.255/tcp/8080").unwrap()),
Ok(SocketAddr::new(IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)), 8080))
);
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip6/::1/tcp/12345").unwrap()),
Ok(SocketAddr::new(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), 12345))
);
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080").unwrap()),
Ok(SocketAddr::new(IpAddr::V6(Ipv6Addr::new(65535, 65535, 65535, 65535, 65535, 65535, 65535, 65535)), 8080))
);
}
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap()),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip4/255.255.255.255/tcp/8080").unwrap()),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)),
8080,
))
);
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip6/::1/tcp/12345").unwrap()),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new(
"/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080",
).unwrap()),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(
65535,
65535,
65535,
65535,
65535,
65535,
65535,
65535,
)),
8080,
))
);
}
#[test]
fn communicating_between_dialer_and_listener() {
use std::io::Write;
#[test]
fn communicating_between_dialer_and_listener() {
use std::io::Write;
/// This thread is running the listener
/// while the main thread runs the dialer
std::thread::spawn(move || {
let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap();
let mut tcp = Tcp::new().unwrap();
let handle = tcp.event_loop.handle();
let listener = tcp.listen_on(addr).unwrap().for_each(|sock| {
// Define what to do with the socket that just connected to us
// Which in this case is read 3 bytes
let handle_conn = tokio_io::io::read_exact(sock, [0; 3]).map(|(_, buf)| {
assert_eq!(buf, [1,2,3])
}).map_err(|err| {
panic!("IO error {:?}", err)
});
std::thread::spawn(move || {
let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap();
let mut tcp = Tcp::new().unwrap();
let handle = tcp.event_loop.handle();
let listener = tcp.listen_on(addr).unwrap().for_each(|sock| {
// Define what to do with the socket that just connected to us
// Which in this case is read 3 bytes
let handle_conn = tokio_io::io::read_exact(sock, [0; 3])
.map(|(_, buf)| assert_eq!(buf, [1, 2, 3]))
.map_err(|err| panic!("IO error {:?}", err));
// Spawn the future as a concurrent task
handle.spawn(handle_conn);
// Spawn the future as a concurrent task
handle.spawn(handle_conn);
Ok(())
});
Ok(())
});
tcp.event_loop.run(listener).unwrap();
});
std::thread::sleep(std::time::Duration::from_millis(100));
let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap();
let mut tcp = Tcp::new().unwrap();
// Obtain a future socket through dialing
let socket = tcp.dial(addr.clone()).unwrap();
// Define what to do with the socket once it's obtained
let action = socket.then(|sock| {
match sock {
Ok(mut s) => {
let written = s.write(&[0x1,0x2,0x3]).unwrap();
Ok(written)
}
Err(x) => Err(x)
}
});
// Execute the future in our event loop
tcp.event_loop.run(action).unwrap();
std::thread::sleep(std::time::Duration::from_millis(100));
}
tcp.event_loop.run(listener).unwrap();
});
std::thread::sleep(std::time::Duration::from_millis(100));
let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap();
let mut tcp = Tcp::new().unwrap();
// Obtain a future socket through dialing
let socket = tcp.dial(addr.clone()).unwrap();
// Define what to do with the socket once it's obtained
let action = socket.then(|sock| match sock {
Ok(mut s) => {
let written = s.write(&[0x1, 0x2, 0x3]).unwrap();
Ok(written)
}
Err(x) => Err(x),
});
// Execute the future in our event loop
tcp.event_loop.run(action).unwrap();
std::thread::sleep(std::time::Duration::from_millis(100));
}
}

View File

@ -19,21 +19,24 @@ pub type PeerId = String;
/// A logical wire between us and a peer. We can read and write through this asynchronously.
///
/// You can have multiple `Socket`s between you and any given peer.
pub trait Socket: AsyncRead + AsyncWrite {
pub trait Socket: AsyncRead + AsyncWrite + Sized {
type Conn: Conn<Socket = Self>;
/// Get the protocol ID this socket uses.
fn protocol_id(&self) -> ProtocolId;
/// Access the underlying connection.
fn conn(&self) -> &Conn<Socket=Self>;
fn conn(&self) -> &Self::Conn;
}
/// A connection between you and a peer.
pub trait Conn {
/// The socket type this connection manages.
type Socket;
type SocketFuture: IntoFuture<Item = Self::Socket, Error = IoError>;
/// Initiate a socket between you and the peer on the given protocol.
fn make_socket(&self, proto: ProtocolId) -> Box<Future<Item=Self::Socket, Error=IoError>>;
fn make_socket(&self, proto: ProtocolId) -> Self::SocketFuture;
}
/// A transport is a stream producing incoming connections.
@ -43,10 +46,10 @@ pub trait Transport {
type RawConn: AsyncRead + AsyncWrite;
/// The listener produces incoming connections.
type Listener: Stream<Item=Self::RawConn>;
type Listener: Stream<Item = Self::RawConn>;
/// A future which indicates currently dialing to a peer.
type Dial: IntoFuture<Item=Self::RawConn, Error=IoError>;
type Dial: IntoFuture<Item = Self::RawConn, Error = IoError>;
/// Listen on the given multi-addr.
/// Returns the address back if it isn't supported.