472 lines
16 KiB
Rust
Raw Normal View History

2017-11-02 11:58:02 +01:00
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
2017-11-02 11:58:02 +01:00
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
2017-11-02 11:58:02 +01:00
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
2017-11-02 11:58:02 +01:00
// DEALINGS IN THE SOFTWARE.
//! Implementation of the libp2p `Transport` trait for TCP/IP.
//!
//! Uses [the *tokio* library](https://tokio.rs).
//!
//! # Usage
//!
//! Example:
//!
//! ```
//! extern crate libp2p_tcp_transport;
//! use libp2p_tcp_transport::TcpConfig;
//!
//! # fn main() {
2018-07-16 12:15:27 +02:00
//! let tcp = TcpConfig::new();
//! # }
//! ```
//!
//! The `TcpConfig` structs implements the `Transport` trait of the `swarm` library. See the
//! documentation of `swarm` and of libp2p in general to learn how to use the `Transport` trait.
2017-11-02 11:58:02 +01:00
extern crate futures;
extern crate libp2p_core as swarm;
2018-03-15 16:08:49 +01:00
#[macro_use]
extern crate log;
extern crate multiaddr;
extern crate tk_listen;
extern crate tokio_io;
2018-07-16 12:15:27 +02:00
extern crate tokio_tcp;
#[cfg(test)]
extern crate tokio_current_thread;
2017-09-18 16:52:51 +02:00
use futures::{future, future::FutureResult, prelude::*, Async, Poll};
use multiaddr::{AddrComponent, Multiaddr, ToMultiaddr};
use std::fmt;
use std::io::{Error as IoError, Read, Write};
use std::iter;
use std::net::SocketAddr;
use std::time::Duration;
2017-11-02 11:58:02 +01:00
use swarm::Transport;
use tk_listen::{ListenExt, SleepOnError};
use tokio_io::{AsyncRead, AsyncWrite};
use tokio_tcp::{ConnectFuture, Incoming, TcpListener, TcpStream};
2017-09-18 16:52:51 +02:00
/// Represents the configuration for a TCP/IP transport capability for libp2p.
2017-11-02 11:58:02 +01:00
///
2018-07-16 12:15:27 +02:00
/// The TCP sockets created by libp2p will need to be progressed by running the futures and streams
/// obtained by libp2p through the tokio reactor.
#[derive(Debug, Clone, Default)]
pub struct TcpConfig {
sleep_on_error: Duration,
}
impl TcpConfig {
2018-07-16 12:15:27 +02:00
/// Creates a new configuration object for TCP/IP.
#[inline]
2018-07-16 12:15:27 +02:00
pub fn new() -> TcpConfig {
TcpConfig {
sleep_on_error: Duration::from_millis(100),
}
}
}
2017-09-18 16:52:51 +02:00
impl Transport for TcpConfig {
type Output = TcpTransStream;
type Listener = TcpListenStream;
type ListenerUpgrade = FutureResult<(Self::Output, Self::MultiaddrFuture), IoError>;
type MultiaddrFuture = FutureResult<Multiaddr, IoError>;
type Dial = TcpDialFut;
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
2018-07-16 12:15:27 +02:00
let listener = TcpListener::bind(&socket_addr);
// We need to build the `Multiaddr` to return from this function. If an error happened,
// just return the original multiaddr.
let new_addr = match listener {
Ok(ref l) => if let Ok(new_s_addr) = l.local_addr() {
new_s_addr.to_multiaddr().expect(
"multiaddr generated from socket addr is \
always valid",
)
} else {
addr
},
Err(_) => addr,
};
debug!("Now listening on {}", new_addr);
let sleep_on_error = self.sleep_on_error;
let inner = listener
.map_err(Some)
.map(move |l| l.incoming().sleep_on_error(sleep_on_error));
Ok((TcpListenStream { inner }, new_addr))
} else {
2017-11-02 11:58:02 +01:00
Err((self, addr))
}
}
2017-11-02 11:58:02 +01:00
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
// As an optimization, we check that the address is not of the form `0.0.0.0`.
// If so, we instantly refuse dialing instead of going through the kernel.
if socket_addr.port() != 0 && !socket_addr.ip().is_unspecified() {
debug!("Dialing {}", addr);
Ok(TcpDialFut {
inner: TcpStream::connect(&socket_addr),
addr: Some(addr),
})
} else {
debug!("Instantly refusing dialing {}, as it is invalid", addr);
Err((self, addr))
}
} else {
2017-11-02 11:58:02 +01:00
Err((self, addr))
}
}
fn nat_traversal(&self, server: &Multiaddr, observed: &Multiaddr) -> Option<Multiaddr> {
// Check that `server` only has two components and retreive them.
let mut server_protocols_iter = server.iter();
let server_proto1 = server_protocols_iter.next()?;
let server_proto2 = server_protocols_iter.next()?;
if server_protocols_iter.next().is_some() {
return None;
}
// Check that `observed` only has two components and retreive them.
let mut observed_protocols_iter = observed.iter();
let observed_proto1 = observed_protocols_iter.next()?;
let observed_proto2 = observed_protocols_iter.next()?;
if observed_protocols_iter.next().is_some() {
return None;
}
// Check that `server` is a valid TCP/IP address.
match (&server_proto1, &server_proto2) {
(&AddrComponent::IP4(_), &AddrComponent::TCP(_))
| (&AddrComponent::IP6(_), &AddrComponent::TCP(_)) => {}
_ => return None,
}
// Check that `observed` is a valid TCP/IP address.
match (&observed_proto1, &observed_proto2) {
(&AddrComponent::IP4(_), &AddrComponent::TCP(_))
| (&AddrComponent::IP6(_), &AddrComponent::TCP(_)) => {}
_ => return None,
}
let result = iter::once(observed_proto1.clone())
.chain(iter::once(server_proto2.clone()))
.collect();
Some(result)
}
2017-09-18 16:52:51 +02:00
}
// This type of logic should probably be moved into the multiaddr package
fn multiaddr_to_socketaddr(addr: &Multiaddr) -> Result<SocketAddr, ()> {
let mut iter = addr.iter();
let proto1 = iter.next().ok_or(())?;
let proto2 = iter.next().ok_or(())?;
if iter.next().is_some() {
return Err(());
}
match (proto1, proto2) {
(AddrComponent::IP4(ip), AddrComponent::TCP(port)) => Ok(SocketAddr::new(ip.into(), port)),
(AddrComponent::IP6(ip), AddrComponent::TCP(port)) => Ok(SocketAddr::new(ip.into(), port)),
_ => Err(()),
}
}
/// Future that dials a TCP/IP address.
#[derive(Debug)]
pub struct TcpDialFut {
inner: ConnectFuture,
/// Address we're dialing. Extracted when the `Future` finishes.
addr: Option<Multiaddr>,
}
impl Future for TcpDialFut {
type Item = (TcpTransStream, FutureResult<Multiaddr, IoError>);
type Error = IoError;
fn poll(&mut self) -> Poll<(TcpTransStream, FutureResult<Multiaddr, IoError>), IoError> {
match self.inner.poll() {
Ok(Async::Ready(stream)) => {
let addr = self
.addr
.take()
.expect("TcpDialFut polled again after finished");
let out = TcpTransStream { inner: stream };
Ok(Async::Ready((out, future::ok(addr))))
}
Ok(Async::NotReady) => Ok(Async::NotReady),
Err(err) => {
let addr = self
.addr
.as_ref()
.expect("TcpDialFut polled again after finished");
debug!("Error while dialing {:?} => {:?}", addr, err);
Err(err)
}
}
}
}
/// Stream that listens on an TCP/IP address.
pub struct TcpListenStream {
inner: Result<SleepOnError<Incoming>, Option<IoError>>,
}
impl Stream for TcpListenStream {
type Item = FutureResult<(TcpTransStream, FutureResult<Multiaddr, IoError>), IoError>;
type Error = IoError;
fn poll(
&mut self,
) -> Poll<
Option<FutureResult<(TcpTransStream, FutureResult<Multiaddr, IoError>), IoError>>,
IoError,
> {
let inner = match self.inner {
Ok(ref mut inc) => inc,
Err(ref mut err) => {
return Err(err.take().expect("poll called again after error"));
}
};
match inner.poll() {
Ok(Async::Ready(Some(sock))) => {
let addr = match sock.peer_addr() {
// TODO: remove this expect()
Ok(addr) => addr
.to_multiaddr()
.expect("generating a multiaddr from a socket addr never fails"),
Err(err) => return Ok(Async::Ready(Some(future::err(err)))),
};
debug!("Incoming connection from {}", addr);
let ret = future::ok((TcpTransStream { inner: sock }, future::ok(addr)));
Ok(Async::Ready(Some(ret)))
}
Ok(Async::Ready(None)) => Ok(Async::Ready(None)),
Ok(Async::NotReady) => Ok(Async::NotReady),
Err(()) => unreachable!("sleep_on_error never produces an error"),
}
}
}
impl fmt::Debug for TcpListenStream {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.inner {
Ok(_) => write!(f, "TcpListenStream"),
Err(None) => write!(f, "TcpListenStream(Errored)"),
Err(Some(ref err)) => write!(f, "TcpListenStream({:?})", err),
}
}
2017-09-18 16:52:51 +02:00
}
/// Wraps around a `TcpStream` and adds logging for important events.
#[derive(Debug)]
pub struct TcpTransStream {
inner: TcpStream,
}
impl Read for TcpTransStream {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize, IoError> {
self.inner.read(buf)
}
}
impl AsyncRead for TcpTransStream {}
impl Write for TcpTransStream {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize, IoError> {
self.inner.write(buf)
}
#[inline]
fn flush(&mut self) -> Result<(), IoError> {
self.inner.flush()
}
}
impl AsyncWrite for TcpTransStream {
#[inline]
fn shutdown(&mut self) -> Poll<(), IoError> {
AsyncWrite::shutdown(&mut self.inner)
}
}
impl Drop for TcpTransStream {
#[inline]
fn drop(&mut self) {
if let Ok(addr) = self.inner.peer_addr() {
debug!("Dropped TCP connection to {:?}", addr);
} else {
debug!("Dropped TCP connection to undeterminate peer");
}
}
}
2017-09-30 15:55:57 +02:00
#[cfg(test)]
mod tests {
use super::{multiaddr_to_socketaddr, TcpConfig};
use futures::stream::Stream;
use futures::Future;
use multiaddr::Multiaddr;
use std;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
2017-11-02 11:58:02 +01:00
use swarm::Transport;
2018-07-16 12:15:27 +02:00
use tokio_current_thread;
use tokio_io;
#[test]
fn multiaddr_to_tcp_conversion() {
use std::net::Ipv6Addr;
assert!(
multiaddr_to_socketaddr(&"/ip4/127.0.0.1/udp/1234".parse::<Multiaddr>().unwrap())
.is_err()
);
2017-11-16 23:59:38 +08:00
assert_eq!(
multiaddr_to_socketaddr(&"/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(
&"/ip4/255.255.255.255/tcp/8080"
.parse::<Multiaddr>()
.unwrap()
),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)),
8080,
))
);
assert_eq!(
multiaddr_to_socketaddr(&"/ip6/::1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(
&"/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080"
.parse::<Multiaddr>()
.unwrap()
),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(
65535, 65535, 65535, 65535, 65535, 65535, 65535, 65535,
)),
8080,
))
);
}
#[test]
fn communicating_between_dialer_and_listener() {
use std::io::Write;
std::thread::spawn(move || {
let addr = "/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap();
2018-07-16 12:15:27 +02:00
let tcp = TcpConfig::new();
let listener = tcp.listen_on(addr).unwrap().0.for_each(|sock| {
sock.and_then(|(sock, _)| {
// Define what to do with the socket that just connected to us
// Which in this case is read 3 bytes
let handle_conn = tokio_io::io::read_exact(sock, [0; 3])
.map(|(_, buf)| assert_eq!(buf, [1, 2, 3]))
.map_err(|err| panic!("IO error {:?}", err));
// Spawn the future as a concurrent task
2018-07-16 12:15:27 +02:00
tokio_current_thread::spawn(handle_conn);
Ok(())
})
});
2018-07-16 12:15:27 +02:00
tokio_current_thread::block_on_all(listener).unwrap();
});
std::thread::sleep(std::time::Duration::from_millis(100));
let addr = "/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap();
2018-07-16 12:15:27 +02:00
let tcp = TcpConfig::new();
// Obtain a future socket through dialing
let socket = tcp.dial(addr.clone()).unwrap();
// Define what to do with the socket once it's obtained
2018-07-16 12:15:27 +02:00
let action = socket.then(|sock| -> Result<(), ()> {
sock.unwrap().0.write(&[0x1, 0x2, 0x3]).unwrap();
Ok(())
});
// Execute the future in our event loop
2018-07-16 12:15:27 +02:00
tokio_current_thread::block_on_all(action).unwrap();
std::thread::sleep(std::time::Duration::from_millis(100));
}
#[test]
2018-01-02 16:00:08 +01:00
fn replace_port_0_in_returned_multiaddr_ipv4() {
2018-07-16 12:15:27 +02:00
let tcp = TcpConfig::new();
let addr = "/ip4/127.0.0.1/tcp/0".parse::<Multiaddr>().unwrap();
assert!(addr.to_string().contains("tcp/0"));
let (_, new_addr) = tcp.listen_on(addr).unwrap();
assert!(!new_addr.to_string().contains("tcp/0"));
}
2018-01-02 16:00:08 +01:00
#[test]
fn replace_port_0_in_returned_multiaddr_ipv6() {
2018-07-16 12:15:27 +02:00
let tcp = TcpConfig::new();
2018-01-02 16:00:08 +01:00
let addr: Multiaddr = "/ip6/::1/tcp/0".parse().unwrap();
2018-01-02 16:00:08 +01:00
assert!(addr.to_string().contains("tcp/0"));
let (_, new_addr) = tcp.listen_on(addr).unwrap();
assert!(!new_addr.to_string().contains("tcp/0"));
}
#[test]
fn larger_addr_denied() {
2018-07-16 12:15:27 +02:00
let tcp = TcpConfig::new();
let addr = "/ip4/127.0.0.1/tcp/12345/tcp/12345"
.parse::<Multiaddr>()
.unwrap();
assert!(tcp.listen_on(addr).is_err());
}
#[test]
fn nat_traversal() {
2018-07-16 12:15:27 +02:00
let tcp = TcpConfig::new();
let server = "/ip4/127.0.0.1/tcp/10000".parse::<Multiaddr>().unwrap();
let observed = "/ip4/80.81.82.83/tcp/25000".parse::<Multiaddr>().unwrap();
let out = tcp.nat_traversal(&server, &observed);
assert_eq!(
out.unwrap(),
"/ip4/80.81.82.83/tcp/10000".parse::<Multiaddr>().unwrap()
);
}
2017-09-18 16:52:51 +02:00
}