291 lines
10 KiB
Rust
Raw Normal View History

2017-11-02 11:58:02 +01:00
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// TODO: use this once stable ; for now we just copy-paste the content of the README.md
//#![doc(include = "../README.md")]
2017-11-02 11:58:02 +01:00
//! Implementation of the libp2p `Transport` trait for TCP/IP.
//!
//! Uses [the *tokio* library](https://tokio.rs).
//!
//! # Usage
//!
//! Create [a tokio `Core`](https://docs.rs/tokio-core/0.1/tokio_core/reactor/struct.Core.html),
//! then grab a handle by calling the `handle()` method on it, then create a `TcpConfig` and pass
//! the handle.
//!
//! Example:
//!
//! ```
//! extern crate libp2p_tcp_transport;
//! extern crate tokio_core;
//!
//! use libp2p_tcp_transport::TcpConfig;
//! use tokio_core::reactor::Core;
//!
//! # fn main() {
//! let mut core = Core::new().unwrap();
//! let tcp = TcpConfig::new(core.handle());
//! # }
//! ```
//!
//! The `TcpConfig` structs implements the `Transport` trait of the `swarm` library. See the
//! documentation of `swarm` and of libp2p in general to learn how to use the `Transport` trait.
2017-11-02 11:58:02 +01:00
extern crate libp2p_swarm as swarm;
2017-09-18 16:52:51 +02:00
extern crate tokio_core;
extern crate tokio_io;
extern crate multiaddr;
extern crate futures;
use std::io::Error as IoError;
use std::net::SocketAddr;
2017-11-02 11:58:02 +01:00
use tokio_core::reactor::Handle;
2017-09-19 12:24:51 +02:00
use tokio_core::net::{TcpStream, TcpListener, TcpStreamNew};
use futures::future::{self, Future, FutureResult, IntoFuture};
2017-09-18 16:52:51 +02:00
use futures::stream::Stream;
use multiaddr::{Multiaddr, AddrComponent, ToMultiaddr};
2017-11-02 11:58:02 +01:00
use swarm::Transport;
2017-09-18 16:52:51 +02:00
/// Represents the configuration for a TCP/IP transport capability for libp2p.
2017-11-02 11:58:02 +01:00
///
/// Each connection created by this config is tied to a tokio reactor. The TCP sockets created by
/// libp2p will need to be progressed by running the futures and streams obtained by libp2p
/// through the tokio reactor.
2017-11-02 11:58:02 +01:00
#[derive(Debug, Clone)]
pub struct TcpConfig {
2017-11-02 11:58:02 +01:00
event_loop: Handle,
}
impl TcpConfig {
/// Creates a new configuration object for TCP/IP. The `Handle` is a tokio reactor the
/// connections will be created with.
#[inline]
pub fn new(handle: Handle) -> TcpConfig {
TcpConfig { event_loop: handle }
}
}
2017-09-18 16:52:51 +02:00
impl Transport for TcpConfig {
type RawConn = TcpStream;
type Listener = Box<Stream<Item = (Self::ListenerUpgrade, Multiaddr), Error = IoError>>;
type ListenerUpgrade = FutureResult<Self::RawConn, IoError>;
type Dial = TcpStreamNew;
/// Listen on the given multi-addr.
/// Returns the address back if it isn't supported.
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
let listener = TcpListener::bind(&socket_addr, &self.event_loop);
// We need to build the `Multiaddr` to return from this function. If an error happened,
// just return the original multiaddr.
let new_addr = match listener {
Ok(ref l) => if let Ok(new_s_addr) = l.local_addr() {
new_s_addr.to_multiaddr().expect("multiaddr generated from socket addr is \
always valid")
} else {
addr
}
Err(_) => addr,
};
let future = future::result(listener).map(|listener| {
// Pull out a stream of sockets for incoming connections
2017-11-28 12:20:28 +01:00
listener.incoming().map(|(sock, addr)| {
let addr = addr.to_multiaddr()
.expect("generating a multiaddr from a socket addr never fails");
(Ok(sock).into_future(), addr)
2017-11-28 12:20:28 +01:00
})
})
.flatten_stream();
Ok((Box::new(future), new_addr))
} else {
2017-11-02 11:58:02 +01:00
Err((self, addr))
}
}
/// Dial to the given multi-addr.
/// Returns either a future which may resolve to a connection,
/// or gives back the multiaddress.
2017-11-02 11:58:02 +01:00
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
2017-11-02 11:58:02 +01:00
Ok(TcpStream::connect(&socket_addr, &self.event_loop))
} else {
2017-11-02 11:58:02 +01:00
Err((self, addr))
}
}
2017-09-18 16:52:51 +02:00
}
// This type of logic should probably be moved into the multiaddr package
fn multiaddr_to_socketaddr(addr: &Multiaddr) -> Result<SocketAddr, ()> {
let protocols: Vec<_> = addr.iter().collect();
if protocols.len() != 2 {
return Err(());
}
match (&protocols[0], &protocols[1]) {
(&AddrComponent::IP4(ref ip), &AddrComponent::TCP(port)) => {
Ok(SocketAddr::new(ip.clone().into(), port))
}
(&AddrComponent::IP6(ref ip), &AddrComponent::TCP(port)) => {
Ok(SocketAddr::new(ip.clone().into(), port))
}
_ => Err(()),
}
2017-09-18 16:52:51 +02:00
}
2017-09-30 15:55:57 +02:00
#[cfg(test)]
mod tests {
use super::{TcpConfig, multiaddr_to_socketaddr};
use std;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
2017-11-02 11:58:02 +01:00
use tokio_core::reactor::Core;
use tokio_io;
use futures::Future;
use futures::stream::Stream;
use multiaddr::Multiaddr;
2017-11-02 11:58:02 +01:00
use swarm::Transport;
#[test]
fn multiaddr_to_tcp_conversion() {
use std::net::Ipv6Addr;
assert!(multiaddr_to_socketaddr(&"/ip4/127.0.0.1/udp/1234".parse::<Multiaddr>().unwrap()).is_err());
2017-11-16 23:59:38 +08:00
assert_eq!(
multiaddr_to_socketaddr(&"/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(&"/ip4/255.255.255.255/tcp/8080".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)),
8080,
))
);
assert_eq!(
multiaddr_to_socketaddr(&"/ip6/::1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(&"/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080"
.parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(
65535,
65535,
65535,
65535,
65535,
65535,
65535,
65535,
)),
8080,
))
);
}
#[test]
fn communicating_between_dialer_and_listener() {
use std::io::Write;
std::thread::spawn(move || {
2017-11-02 11:58:02 +01:00
let mut core = Core::new().unwrap();
let addr = "/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap();
let tcp = TcpConfig::new(core.handle());
2017-11-02 11:58:02 +01:00
let handle = core.handle();
let listener = tcp.listen_on(addr).unwrap().0.for_each(|(sock, _)| {
sock.and_then(|sock| {
// Define what to do with the socket that just connected to us
// Which in this case is read 3 bytes
let handle_conn = tokio_io::io::read_exact(sock, [0; 3])
.map(|(_, buf)| assert_eq!(buf, [1, 2, 3]))
.map_err(|err| panic!("IO error {:?}", err));
// Spawn the future as a concurrent task
handle.spawn(handle_conn);
Ok(())
})
});
2017-11-02 11:58:02 +01:00
core.run(listener).unwrap();
});
std::thread::sleep(std::time::Duration::from_millis(100));
let addr = "/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap();
2017-11-02 11:58:02 +01:00
let mut core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
// Obtain a future socket through dialing
let socket = tcp.dial(addr.clone()).unwrap();
// Define what to do with the socket once it's obtained
let action = socket.then(|sock| match sock {
Ok(mut s) => {
let written = s.write(&[0x1, 0x2, 0x3]).unwrap();
Ok(written)
}
Err(x) => Err(x),
});
// Execute the future in our event loop
2017-11-02 11:58:02 +01:00
core.run(action).unwrap();
std::thread::sleep(std::time::Duration::from_millis(100));
}
#[test]
2018-01-02 16:00:08 +01:00
fn replace_port_0_in_returned_multiaddr_ipv4() {
let core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
let addr = "/ip4/127.0.0.1/tcp/0".parse::<Multiaddr>().unwrap();
assert!(addr.to_string().contains("tcp/0"));
let (_, new_addr) = tcp.listen_on(addr).unwrap();
assert!(!new_addr.to_string().contains("tcp/0"));
}
2018-01-02 16:00:08 +01:00
#[test]
fn replace_port_0_in_returned_multiaddr_ipv6() {
let core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
let addr: Multiaddr = "/ip6/::1/tcp/0".parse().unwrap();
2018-01-02 16:00:08 +01:00
assert!(addr.to_string().contains("tcp/0"));
let (_, new_addr) = tcp.listen_on(addr).unwrap();
assert!(!new_addr.to_string().contains("tcp/0"));
}
#[test]
fn larger_addr_denied() {
let core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
let addr = "/ip4/127.0.0.1/tcp/12345/tcp/12345".parse::<Multiaddr>().unwrap();
assert!(tcp.listen_on(addr).is_err());
}
2017-09-18 16:52:51 +02:00
}