Improved module structure. Removed unnecessary files

This commit is contained in:
Syrus Akbary 2018-10-14 22:10:53 +02:00
parent e16dcfe232
commit 59e9c7fe29
9 changed files with 708 additions and 1695 deletions

View File

@ -1,181 +0,0 @@
//! A `Compilation` contains the compiled function bodies for a WebAssembly
//! module.
use cranelift_codegen::binemit;
use cranelift_codegen::ir;
use cranelift_codegen::ir::ExternalName;
use cranelift_codegen::isa;
use cranelift_codegen::Context;
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_wasm::{DefinedFuncIndex, FuncIndex, FuncTranslator};
use region::protect;
use region::Protection;
use super::environ::{get_func_name, ModuleTranslation};
pub fn protect_codebuf(code_buf: &Vec<u8>) -> Result<(), String> {
match unsafe {
protect(
code_buf.as_ptr(),
code_buf.len(),
Protection::ReadWriteExecute,
)
} {
Err(err) => {
return Err(format!(
"failed to give executable permission to code: {}",
err
))
},
Ok(()) => Ok(()),
}
}
/// The result of compiling a WebAssemby module's functions.
#[derive(Debug)]
pub struct LazyFunction {
}
#[derive(Debug)]
pub struct Compilation {
/// Compiled machine code for the function bodies.
pub lazy_functions: PrimaryMap<DefinedFuncIndex, LazyFunction>,
pub functions: PrimaryMap<DefinedFuncIndex, Vec<u8>>,
}
impl Compilation {
/// Allocates the compilation result with the given function bodies.
pub fn new(functions: PrimaryMap<DefinedFuncIndex, Vec<u8>>, lazy_functions: PrimaryMap<DefinedFuncIndex, LazyFunction>) -> Self {
Self { lazy_functions, functions }
}
}
/// Implementation of a relocation sink that just saves all the information for later
pub struct RelocSink {
/// Relocations recorded for the function.
pub func_relocs: Vec<Relocation>,
}
impl binemit::RelocSink for RelocSink {
fn reloc_ebb(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_ebb_offset: binemit::CodeOffset,
) {
// This should use the `offsets` field of `ir::Function`.
panic!("ebb headers not yet implemented");
}
fn reloc_external(
&mut self,
offset: binemit::CodeOffset,
reloc: binemit::Reloc,
name: &ExternalName,
addend: binemit::Addend,
) {
// let reloc_target = if let ExternalName::User { namespace, index } = *name {
// debug_assert!(namespace == 0);
// RelocationTarget::UserFunc(FuncIndex::new(index as usize))
// } else if *name == ExternalName::testcase("grow_memory") {
// RelocationTarget::GrowMemory
// } else if *name == ExternalName::testcase("current_memory") {
// RelocationTarget::CurrentMemory
// } else {
// panic!("unrecognized external name")
// };
// self.func_relocs.push(Relocation {
// reloc,
// reloc_target,
// offset,
// addend,
// });
}
fn reloc_jt(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_jt: ir::JumpTable,
) {
panic!("jump tables not yet implemented");
}
}
impl RelocSink {
fn new() -> Self {
Self {
func_relocs: Vec::new(),
}
}
}
/// A record of a relocation to perform.
#[derive(Debug, Clone)]
pub struct Relocation {
/// The relocation code.
pub reloc: binemit::Reloc,
/// Relocation target.
pub reloc_target: RelocationTarget,
/// The offset where to apply the relocation.
pub offset: binemit::CodeOffset,
/// The addend to add to the relocation value.
pub addend: binemit::Addend,
}
/// Destination function. Can be either user function or some special one, like grow_memory.
#[derive(Debug, Copy, Clone)]
pub enum RelocationTarget {
/// The user function index.
UserFunc(FuncIndex),
/// Function for growing the default memory by the specified amount of pages.
GrowMemory,
/// Function for query current size of the default linear memory.
CurrentMemory,
}
/// Relocations to apply to function bodies.
pub type Relocations = PrimaryMap<DefinedFuncIndex, Vec<Relocation>>;
/// Compile the module, producing a compilation result with associated
/// relocations.
pub fn compile_module<'data, 'module>(
translation: &ModuleTranslation<'data, 'module>,
isa: &isa::TargetIsa,
) -> Result<(Compilation, Relocations), String> {
println!("compile_module::1");
let mut functions = PrimaryMap::new();
let mut relocations = PrimaryMap::new();
let mut lazy_functions = PrimaryMap::new();
println!("compile_module::2");
for (i, input) in translation.lazy.function_body_inputs.iter() {
// println!("compile_module::{:?}::3", i);
let func_index = translation.module.func_index(i);
let mut context = Context::new();
// println!("compile_module::{:?}::4", i);
context.func.name = get_func_name(func_index);
context.func.signature =
translation.module.signatures[translation.module.functions[func_index]].clone();
let mut trans = FuncTranslator::new();
// println!("compile_module::{:?}::5", i);
trans
.translate(input, &mut context.func, &mut translation.func_env())
.map_err(|e| e.to_string())?;
// println!("compile_module::{:?}::6", i);
let mut code_buf: Vec<u8> = Vec::new();
let mut reloc_sink = RelocSink::new();
let mut trap_sink = binemit::NullTrapSink {};
// println!("compile_module::{:?}::7", i);
context
.compile_and_emit(isa, &mut code_buf, &mut reloc_sink, &mut trap_sink)
.map_err(|e| e.to_string())?;
protect_codebuf(&code_buf)?;
// println!("compile_module::{:?}::8", i);
functions.push(code_buf);
relocations.push(reloc_sink.func_relocs);
}
Ok((Compilation::new(functions, lazy_functions), relocations))
}

View File

@ -1,698 +0,0 @@
//! "" implementations of `ModuleEnvironment` and `FuncEnvironment` for testing
//! wasm translation.
use cranelift_codegen::cursor::FuncCursor;
use cranelift_codegen::ir::immediates::{Imm64, Offset32};
use cranelift_codegen::ir::types::*;
use cranelift_codegen::ir::{self, InstBuilder, FuncRef, ExtFuncData, ExternalName, Signature, AbiParam,
ArgumentPurpose, ArgumentLoc, ArgumentExtension, Function};
use cranelift_codegen::settings;
use cranelift_entity::{EntityRef, PrimaryMap};
use super::errors::ErrorKind;
use std::string::String;
use std::vec::Vec;
use target_lexicon::{Triple, PointerWidth};
use cranelift_wasm::{
FuncTranslator,
FuncEnvironment as FuncEnvironmentTrait, GlobalVariable, ModuleEnvironment, ReturnMode, WasmResult,
DefinedFuncIndex, FuncIndex, Global, GlobalIndex, Memory, MemoryIndex, SignatureIndex, Table,
TableIndex, translate_module
};
// use alloc::vec::Vec;
// use alloc::string::String;
/// Compute a `ir::ExternalName` for a given wasm function index.
fn get_func_name(func_index: FuncIndex) -> ir::ExternalName {
ir::ExternalName::user(0, func_index.index() as u32)
}
/// A collection of names under which a given entity is exported.
pub struct Exportable<T> {
/// A wasm entity.
pub entity: T,
/// Names under which the entity is exported.
pub export_names: Vec<String>,
}
impl<T> Exportable<T> {
pub fn new(entity: T) -> Self {
Self {
entity,
export_names: Vec::new(),
}
}
}
/// The main state belonging to a `Module`. This is split out from
/// `Module` to allow it to be borrowed separately from the
/// `FuncTranslator` field.
pub struct ModuleInfo {
/// Target description.
pub triple: Triple,
/// Compilation setting flags.
pub flags: settings::Flags,
pub main_memory_base: Option<ir::GlobalValue>,
/// The Cranelift global holding the base address of the memories vector.
pub memory_base: Option<ir::GlobalValue>,
/// Signatures as provided by `declare_signature`.
pub signatures: Vec<ir::Signature>,
/// Module and field names of imported functions as provided by `declare_func_import`.
pub imported_funcs: Vec<(String, String)>,
/// Functions, imported and local.
pub functions: PrimaryMap<FuncIndex, Exportable<SignatureIndex>>,
/// Function bodies.
pub function_bodies: PrimaryMap<DefinedFuncIndex, ir::Function>,
/// Tables as provided by `declare_table`.
pub tables: Vec<Exportable<Table>>,
/// WebAssembly table initializers.
// Should be Vec<TableElements>
// instead of Vec<Exportable<TableElements>> ??
pub table_elements: Vec<TableElements>,
/// The base of tables.
pub tables_base: Option<ir::GlobalValue>,
/// Memories as provided by `declare_memory`.
pub memories: Vec<Exportable<Memory>>,
/// The Cranelift global holding the base address of the globals vector.
pub globals_base: Option<ir::GlobalValue>,
/// Globals as provided by `declare_global`.
pub globals: Vec<Exportable<Global>>,
/// The start function.
pub start_func: Option<FuncIndex>,
pub data_initializers: Vec<DataInitializer>,
}
impl ModuleInfo {
/// Allocates the data structures with the given flags.
pub fn with_triple_flags(triple: Triple, flags: settings::Flags) -> Self {
Self {
triple,
flags,
signatures: Vec::new(),
imported_funcs: Vec::new(),
functions: PrimaryMap::new(),
function_bodies: PrimaryMap::new(),
tables: Vec::new(),
memories: Vec::new(),
globals: Vec::new(),
globals_base: None,
table_elements: Vec::new(),
tables_base: None,
start_func: None,
data_initializers: Vec::new(),
main_memory_base: None,
memory_base: None,
}
}
}
/// A data initializer for linear memory.
#[derive(Debug)]
pub struct DataInitializer {
/// The index of the memory to initialize.
pub memory_index: MemoryIndex,
/// Optionally a globalvalue base to initialize at.
pub base: Option<GlobalIndex>,
/// A constant offset to initialize at.
pub offset: usize,
/// The initialization data.
pub data: Vec<u8>,
}
/// Possible values for a WebAssembly table element.
#[derive(Clone, Debug)]
pub enum TableElement {
/// A element that, if called, produces a trap.
Trap(),
/// A function.
Function(FuncIndex),
}
/// A WebAssembly table initializer.
#[derive(Clone, Debug)]
pub struct TableElements {
/// The index of a table to initialize.
pub table_index: TableIndex,
/// Optionally, a global variable giving a base index.
pub base: Option<GlobalIndex>,
/// The offset to add to the base.
pub offset: usize,
/// The values to write into the table elements.
pub elements: Vec<FuncIndex>,
}
/// This `ModuleEnvironment` implementation is a "naïve" one, doing essentially nothing and
/// emitting placeholders when forced to. Don't try to execute code translated for this
/// environment, essentially here for translation debug purposes.
pub struct Module {
/// Module information.
pub info: ModuleInfo,
/// Function translation.
trans: FuncTranslator,
/// Vector of wasm bytecode size for each function.
pub func_bytecode_sizes: Vec<usize>,
/// How to return from functions.
return_mode: ReturnMode,
}
impl Module {
/// Allocates the data structures with default flags.
// pub fn with_triple(triple: Triple) -> Self {
// Self::with_triple_flags(
// triple,
// settings::Flags::new(settings::builder()),
// ReturnMode::NormalReturns,
// )
// }
/// Allocates the data structures with the given triple.
// pub fn with_triple_flags(
// triple: Triple,
// flags: settings::Flags,
// return_mode: ReturnMode,
// ) -> Self {
// Self {
// info: ModuleInfo::with_triple_flags(triple, flags),
// trans: FuncTranslator::new(),
// func_bytecode_sizes: Vec::new(),
// return_mode,
// }
// }
pub fn from_bytes(buffer_source: Vec<u8>, triple: Triple, flags: Option<settings::Flags>) -> Result<Self, ErrorKind> {
let return_mode = ReturnMode::NormalReturns;
let flags = flags.unwrap_or_else(|| {
settings::Flags::new(settings::builder())
});
let mut module = Self {
info: ModuleInfo::with_triple_flags(triple, flags),
trans: FuncTranslator::new(),
func_bytecode_sizes: Vec::new(),
return_mode,
};
// We iterate through the source bytes, generating the compiled module
translate_module(&buffer_source, &mut module).map_err(|e| ErrorKind::CompileError(e.to_string()))?;
Ok(module)
}
/// Return a `FuncEnvironment` for translating functions within this
/// `Module`.
pub fn func_env(&self) -> FuncEnvironment {
FuncEnvironment::new(&self.info, self.return_mode)
}
fn native_pointer(&self) -> ir::Type {
self.func_env().pointer_type()
}
}
/// The `FuncEnvironment` implementation for use by the `Module`.
pub struct FuncEnvironment<'environment> {
pub mod_info: &'environment ModuleInfo,
return_mode: ReturnMode,
}
impl<'environment> FuncEnvironment<'environment> {
pub fn new(mod_info: &'environment ModuleInfo, return_mode: ReturnMode) -> Self {
Self {
mod_info,
return_mode,
}
}
fn get_real_call_args(func: &Function, call_args: &[ir::Value]) -> Vec<ir::Value> {
let mut real_call_args = Vec::with_capacity(call_args.len() + 1);
real_call_args.extend_from_slice(call_args);
real_call_args.push(func.special_param(ArgumentPurpose::VMContext).unwrap());
real_call_args
}
// Create a signature for `sigidx` amended with a `vmctx` argument after the standard wasm
// arguments.
fn vmctx_sig(&self, sigidx: SignatureIndex) -> ir::Signature {
let mut sig = self.mod_info.signatures[sigidx].clone();
sig.params.push(ir::AbiParam::special(
self.pointer_type(),
ir::ArgumentPurpose::VMContext,
));
sig
}
fn ptr_size(&self) -> usize {
if self.triple().pointer_width().unwrap() == PointerWidth::U64 {
8
} else {
4
}
}
}
impl<'environment> FuncEnvironmentTrait for FuncEnvironment<'environment> {
fn triple(&self) -> &Triple {
&self.mod_info.triple
}
fn flags(&self) -> &settings::Flags {
&self.mod_info.flags
}
fn make_global(&mut self, func: &mut ir::Function, index: GlobalIndex) -> GlobalVariable {
// Just create a dummy `vmctx` global.
let offset = ((index * 8) as i64 + 8).into();
let vmctx = func.create_global_value(ir::GlobalValueData::VMContext {});
let iadd = func.create_global_value(ir::GlobalValueData::IAddImm {
base: vmctx,
offset,
global_type: self.pointer_type(),
});
GlobalVariable::Memory {
gv: iadd,
ty: self.mod_info.globals[index].entity.ty,
}
}
fn make_heap(&mut self, func: &mut ir::Function, _index: MemoryIndex) -> ir::Heap {
// OLD
// Create a static heap whose base address is stored at `vmctx+0`.
let addr = func.create_global_value(ir::GlobalValueData::VMContext);
let gv = func.create_global_value(ir::GlobalValueData::Load {
base: addr,
offset: Offset32::new(0),
global_type: self.pointer_type(),
});
func.create_heap(ir::HeapData {
base: gv,
min_size: 0.into(),
guard_size: 0x8000_0000.into(),
style: ir::HeapStyle::Static {
bound: 0x1_0000_0000.into(),
},
index_type: I32,
})
// use memory::WasmMemory;
// if index == 0 {
// let heap_base = self.main_memory_base.unwrap_or_else(|| {
// let new_base = func.create_global_value(ir::GlobalValueData::VMContext {
// offset: 0.into(),
// });
// self.main_memory_base = Some(new_base);
// new_base
// });
// func.create_heap(ir::HeapData {
// base: heap_base,
// min_size: 0.into(),
// guard_size: (WasmMemory::DEFAULT_GUARD_SIZE as i64).into(),
// style: ir::HeapStyle::Static {
// bound: (WasmMemory::DEFAULT_HEAP_SIZE as i64).into(),
// },
// })
// } else {
// let memory_base = self.memory_base.unwrap_or_else(|| {
// let memories_offset = self.ptr_size() as i32 * -2;
// let new_base = func.create_global_value(ir::GlobalValueData::VMContext {
// offset: memories_offset.into(),
// });
// self.memory_base = Some(new_base);
// new_base
// });
// let memory_offset = (index - 1) * self.ptr_size();
// let heap_base = func.create_global_value(ir::GlobalValueData::Deref {
// base: memory_base,
// offset: (memory_offset as i32).into(),
// });
// func.create_heap(ir::HeapData {
// base: heap_base,
// min_size: 0.into(),
// guard_size: (WasmMemory::DEFAULT_GUARD_SIZE as i64).into(),
// style: ir::HeapStyle::Static {
// bound: (WasmMemory::DEFAULT_HEAP_SIZE as i64).into(),
// },
// })
// }
}
fn make_table(&mut self, func: &mut ir::Function, table_index: TableIndex) -> ir::Table {
// OLD
// Create a table whose base address is stored at `vmctx+0`.
// let vmctx = func.create_global_value(ir::GlobalValueData::VMContext);
// let base_gv = func.create_global_value(ir::GlobalValueData::Load {
// base: vmctx,
// offset: Offset32::new(0),
// global_type: self.pointer_type(),
// });
// let bound_gv = func.create_global_value(ir::GlobalValueData::Load {
// base: vmctx,
// offset: Offset32::new(0),
// global_type: I32,
// });
// func.create_table(ir::TableData {
// base_gv,
// min_size: Imm64::new(0),
// bound_gv,
// element_size: Imm64::new(i64::from(self.pointer_bytes()) * 2),
// index_type: I32,
// })
let ptr_size = self.ptr_size();
let base = self.mod_info.tables_base.unwrap_or_else(|| {
let tables_offset = self.ptr_size() as i32 * -1;
let new_base = func.create_global_value(ir::GlobalValueData::VMContext { });
// {
// offset: tables_offset.into(),
// });
// self.mod_info.globals_base = Some(new_base);
new_base
});
let table_data_offset = (table_index as usize * ptr_size * 2) as i32;
let new_table_addr_addr = func.create_global_value(ir::GlobalValueData::Load {
base,
offset: table_data_offset.into(),
global_type: self.pointer_type(), // Might be I32
});
let new_table_addr = func.create_global_value(ir::GlobalValueData::Load {
base: new_table_addr_addr,
offset: 0.into(),
global_type: self.pointer_type(), // Might be I32
});
let new_table_bounds_addr = func.create_global_value(ir::GlobalValueData::Load {
base,
offset: (table_data_offset + ptr_size as i32).into(),
global_type: self.pointer_type(), // Might be I32
});
let new_table_bounds = func.create_global_value(ir::GlobalValueData::Load {
base: new_table_bounds_addr,
offset: 0.into(),
global_type: I32, // Might be self.pointer_type()
});
let table = func.create_table(ir::TableData {
base_gv: new_table_addr,
min_size: Imm64::new(0),
// min_size: (self.mod_info.tables[table_index].size as i64).into(),
bound_gv: new_table_bounds,
element_size: (ptr_size as i64).into(),
index_type: I32
});
table
}
fn make_indirect_sig(&mut self, func: &mut ir::Function, index: SignatureIndex) -> ir::SigRef {
// A real implementation would probably change the calling convention and add `vmctx` and
// signature index arguments.
// func.import_signature(self.module.signatures[index].clone())
func.import_signature(self.vmctx_sig(index))
}
fn make_direct_func(&mut self, func: &mut ir::Function, index: FuncIndex) -> ir::FuncRef {
let sigidx = self.mod_info.functions[index].entity;
// A real implementation would probably add a `vmctx` argument.
// And maybe attempt some signature de-duplication.
let signature = func.import_signature(self.vmctx_sig(sigidx));
let name = get_func_name(index);
func.import_function(ir::ExtFuncData {
name,
signature,
colocated: false,
})
}
fn translate_call_indirect(
&mut self,
mut pos: FuncCursor,
_table_index: TableIndex,
_table: ir::Table,
_sig_index: SignatureIndex,
sig_ref: ir::SigRef,
callee: ir::Value,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
// Pass the current function's vmctx parameter on to the callee.
let vmctx = pos
.func
.special_param(ir::ArgumentPurpose::VMContext)
.expect("Missing vmctx parameter");
// The `callee` value is an index into a table of function pointers.
// Apparently, that table is stored at absolute address 0 in this dummy environment.
// TODO: Generate bounds checking code.
let ptr = self.pointer_type();
let callee_offset = if ptr == I32 {
pos.ins().imul_imm(callee, 4)
} else {
let ext = pos.ins().uextend(I64, callee);
pos.ins().imul_imm(ext, 4)
};
let mut mflags = ir::MemFlags::new();
mflags.set_notrap();
mflags.set_aligned();
let func_ptr = pos.ins().load(ptr, mflags, callee_offset, 0);
// Build a value list for the indirect call instruction containing the callee, call_args,
// and the vmctx parameter.
let mut args = ir::ValueList::default();
args.push(func_ptr, &mut pos.func.dfg.value_lists);
args.extend(call_args.iter().cloned(), &mut pos.func.dfg.value_lists);
args.push(vmctx, &mut pos.func.dfg.value_lists);
Ok(pos
.ins()
.CallIndirect(ir::Opcode::CallIndirect, INVALID, sig_ref, args)
.0)
}
fn translate_call(
&mut self,
mut pos: FuncCursor,
_callee_index: FuncIndex,
callee: ir::FuncRef,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
// Pass the current function's vmctx parameter on to the callee.
let vmctx = pos
.func
.special_param(ir::ArgumentPurpose::VMContext)
.expect("Missing vmctx parameter");
// Build a value list for the call instruction containing the call_args and the vmctx
// parameter.
let mut args = ir::ValueList::default();
args.extend(call_args.iter().cloned(), &mut pos.func.dfg.value_lists);
args.push(vmctx, &mut pos.func.dfg.value_lists);
Ok(pos.ins().Call(ir::Opcode::Call, INVALID, callee, args).0)
}
fn translate_memory_grow(
&mut self,
mut pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
_val: ir::Value,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn translate_memory_size(
&mut self,
mut pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn return_mode(&self) -> ReturnMode {
self.return_mode
}
}
impl<'data> ModuleEnvironment<'data> for Module {
fn flags(&self) -> &settings::Flags {
&self.info.flags
}
fn get_func_name(&self, func_index: FuncIndex) -> ir::ExternalName {
get_func_name(func_index)
}
fn declare_signature(&mut self, sig: &ir::Signature) {
// OLD
// self.info.signatures.push(sig.clone());
// NEW
let mut sig = sig.clone();
sig.params.push(AbiParam {
value_type: self.native_pointer(),
purpose: ArgumentPurpose::VMContext,
extension: ArgumentExtension::None,
location: ArgumentLoc::Unassigned,
});
// TODO: Deduplicate signatures.
self.info.signatures.push(sig);
}
fn get_signature(&self, sig_index: SignatureIndex) -> &ir::Signature {
&self.info.signatures[sig_index]
}
fn declare_func_import(
&mut self,
sig_index: SignatureIndex,
module: &'data str,
field: &'data str,
) {
assert_eq!(
self.info.functions.len(),
self.info.imported_funcs.len(),
"Imported functions must be declared first"
);
self.info.functions.push(Exportable::new(sig_index));
self.info
.imported_funcs
.push((String::from(module), String::from(field)));
}
fn get_num_func_imports(&self) -> usize {
self.info.imported_funcs.len()
}
fn declare_func_type(&mut self, sig_index: SignatureIndex) {
self.info.functions.push(Exportable::new(sig_index));
}
fn get_func_type(&self, func_index: FuncIndex) -> SignatureIndex {
self.info.functions[func_index].entity
}
fn declare_global(&mut self, global: Global) {
self.info.globals.push(Exportable::new(global));
}
fn get_global(&self, global_index: GlobalIndex) -> &Global {
&self.info.globals[global_index].entity
}
fn declare_table(&mut self, table: Table) {
self.info.tables.push(Exportable::new(table));
}
fn declare_table_elements(
&mut self,
table_index: TableIndex,
base: Option<GlobalIndex>,
offset: usize,
elements: Vec<FuncIndex>,
) {
// NEW
debug_assert!(base.is_none(), "global-value offsets not supported yet");
self.info.table_elements.push(TableElements {
table_index,
base,
offset,
elements,
});
}
fn declare_memory(&mut self, memory: Memory) {
self.info.memories.push(Exportable::new(memory));
}
fn declare_data_initialization(
&mut self,
memory_index: MemoryIndex,
base: Option<GlobalIndex>,
offset: usize,
data: &'data [u8],
) {
debug_assert!(base.is_none(), "global-value offsets not supported yet");
self.info.data_initializers.push(DataInitializer {
memory_index,
base,
offset,
data: data.to_vec(),
});
}
fn declare_func_export(&mut self, func_index: FuncIndex, name: &'data str) {
self.info.functions[func_index]
.export_names
.push(String::from(name));
}
fn declare_table_export(&mut self, table_index: TableIndex, name: &'data str) {
self.info.tables[table_index]
.export_names
.push(String::from(name));
}
fn declare_memory_export(&mut self, memory_index: MemoryIndex, name: &'data str) {
self.info.memories[memory_index]
.export_names
.push(String::from(name));
}
fn declare_global_export(&mut self, global_index: GlobalIndex, name: &'data str) {
self.info.globals[global_index]
.export_names
.push(String::from(name));
}
fn declare_start_func(&mut self, func_index: FuncIndex) {
debug_assert!(self.info.start_func.is_none());
self.info.start_func = Some(func_index);
}
fn define_function_body(&mut self, body_bytes: &'data [u8]) -> WasmResult<()> {
let func = {
let mut func_environ = FuncEnvironment::new(&self.info, self.return_mode);
let func_index =
FuncIndex::new(self.get_num_func_imports() + self.info.function_bodies.len());
let name = get_func_name(func_index);
let sig = func_environ.vmctx_sig(self.get_func_type(func_index));
let mut func = ir::Function::with_name_signature(name, sig);
self.trans
.translate(body_bytes, &mut func, &mut func_environ)?;
func
};
self.func_bytecode_sizes.push(body_bytes.len());
self.info.function_bodies.push(func);
Ok(())
}
}

View File

@ -1,499 +0,0 @@
use cranelift_codegen::cursor::FuncCursor;
use cranelift_codegen::ir;
use cranelift_codegen::ir::immediates::{Imm64, Offset32};
use cranelift_codegen::ir::types::*;
use cranelift_codegen::ir::{
AbiParam, ArgumentPurpose, ExtFuncData, ExternalName, FuncRef, Function, InstBuilder, Signature,
};
use cranelift_codegen::isa;
use cranelift_codegen::settings;
use cranelift_entity::EntityRef;
use cranelift_wasm::{
self, translate_module, FuncIndex, Global, GlobalIndex, GlobalVariable, Memory, MemoryIndex,
SignatureIndex, Table, TableIndex, WasmResult, ReturnMode
};
use target_lexicon::Triple;
use super::module::{DataInitializer, Export, LazyContents, Module, TableElements};
/// Compute a `ir::ExternalName` for a given wasm function index.
pub fn get_func_name(func_index: FuncIndex) -> ir::ExternalName {
debug_assert!(FuncIndex::new(func_index.index() as u32 as usize) == func_index);
ir::ExternalName::user(0, func_index.index() as u32)
}
/// Object containing the standalone environment information. To be passed after creation as
/// argument to `compile_module`.
pub struct ModuleEnvironment<'data, 'module> {
/// Compilation setting flags.
pub isa: &'module isa::TargetIsa,
/// Module information.
pub module: &'module mut Module,
/// References to information to be decoded later.
pub lazy: LazyContents<'data>,
}
impl<'data, 'module> ModuleEnvironment<'data, 'module> {
/// Allocates the enironment data structures with the given isa.
pub fn new(isa: &'module isa::TargetIsa, module: &'module mut Module) -> Self {
Self {
isa,
module,
lazy: LazyContents::new(),
}
}
fn func_env(&self) -> FuncEnvironment {
FuncEnvironment::new(self.isa, &self.module)
}
fn pointer_type(&self) -> ir::Type {
use cranelift_wasm::FuncEnvironment;
self.func_env().pointer_type()
}
/// Translate the given wasm module data using this environment. This consumes the
/// `ModuleEnvironment` with its mutable reference to the `Module` and produces a
/// `ModuleTranslation` with an immutable reference to the `Module` (which has
/// become fully populated).
pub fn translate(mut self, data: &'data [u8]) -> WasmResult<ModuleTranslation<'data, 'module>> {
// print!("translate::1");
translate_module(data, &mut self)?;
// print!("translate::2");
Ok(ModuleTranslation {
isa: self.isa,
module: self.module,
lazy: self.lazy,
})
}
}
/// The FuncEnvironment implementation for use by the `ModuleEnvironment`.
pub struct FuncEnvironment<'module_environment> {
/// Compilation setting flags.
isa: &'module_environment isa::TargetIsa,
/// The module-level environment which this function-level environment belongs to.
pub module: &'module_environment Module,
/// The Cranelift global holding the base address of the memories vector.
pub memories_base: Option<ir::GlobalValue>,
/// The Cranelift global holding the base address of the globals vector.
pub globals_base: Option<ir::GlobalValue>,
/// The external function declaration for implementing wasm's `current_memory`.
pub current_memory_extfunc: Option<FuncRef>,
/// The external function declaration for implementing wasm's `grow_memory`.
pub grow_memory_extfunc: Option<FuncRef>,
}
impl<'module_environment> FuncEnvironment<'module_environment> {
pub fn new(
isa: &'module_environment isa::TargetIsa,
module: &'module_environment Module,
) -> Self {
Self {
isa,
module,
memories_base: None,
globals_base: None,
current_memory_extfunc: None,
grow_memory_extfunc: None,
}
}
/// Transform the call argument list in preparation for making a call.
fn get_real_call_args(func: &Function, call_args: &[ir::Value]) -> Vec<ir::Value> {
let mut real_call_args = Vec::with_capacity(call_args.len() + 1);
real_call_args.extend_from_slice(call_args);
real_call_args.push(func.special_param(ArgumentPurpose::VMContext).unwrap());
real_call_args
}
fn pointer_bytes(&self) -> usize {
usize::from(self.isa.pointer_bytes())
}
}
/// This trait is useful for `translate_module` because it tells how to translate
/// enironment-dependent wasm instructions. These functions should not be called by the user.
impl<'data, 'module> cranelift_wasm::ModuleEnvironment<'data>
for ModuleEnvironment<'data, 'module>
{
fn get_func_name(&self, func_index: FuncIndex) -> ir::ExternalName {
get_func_name(func_index)
}
fn flags(&self) -> &settings::Flags {
self.isa.flags()
}
fn declare_signature(&mut self, sig: &ir::Signature) {
let mut sig = sig.clone();
sig.params.push(AbiParam::special(
self.pointer_type(),
ArgumentPurpose::VMContext,
));
// TODO: Deduplicate signatures.
self.module.signatures.push(sig);
}
fn get_signature(&self, sig_index: SignatureIndex) -> &ir::Signature {
&self.module.signatures[sig_index]
}
fn declare_func_import(&mut self, sig_index: SignatureIndex, module: &str, field: &str) {
debug_assert_eq!(
self.module.functions.len(),
self.module.imported_funcs.len(),
"Imported functions must be declared first"
);
self.module.functions.push(sig_index);
self.module
.imported_funcs
.push((String::from(module), String::from(field)));
}
fn get_num_func_imports(&self) -> usize {
self.module.imported_funcs.len()
}
fn declare_func_type(&mut self, sig_index: SignatureIndex) {
self.module.functions.push(sig_index);
}
fn get_func_type(&self, func_index: FuncIndex) -> SignatureIndex {
self.module.functions[func_index]
}
fn declare_global(&mut self, global: Global) {
self.module.globals.push(global);
}
fn get_global(&self, global_index: GlobalIndex) -> &Global {
&self.module.globals[global_index]
}
fn declare_table(&mut self, table: Table) {
self.module.tables.push(table);
}
fn declare_table_elements(
&mut self,
table_index: TableIndex,
base: Option<GlobalIndex>,
offset: usize,
elements: Vec<FuncIndex>,
) {
// debug_assert!(base.is_none(), "global-value offsets not supported yet");
self.module.table_elements.push(TableElements {
table_index,
base,
offset,
elements,
});
}
fn declare_memory(&mut self, memory: Memory) {
self.module.memories.push(memory);
}
fn declare_data_initialization(
&mut self,
memory_index: MemoryIndex,
base: Option<GlobalIndex>,
offset: usize,
data: &'data [u8],
) {
// debug_assert!(base.is_none(), "global-value offsets not supported yet");
self.lazy.data_initializers.push(DataInitializer {
memory_index,
base,
offset,
data,
});
}
fn declare_func_export(&mut self, func_index: FuncIndex, name: &str) {
self.module
.exports
.insert(String::from(name), Export::Function(func_index));
}
fn declare_table_export(&mut self, table_index: TableIndex, name: &str) {
self.module
.exports
.insert(String::from(name), Export::Table(table_index));
}
fn declare_memory_export(&mut self, memory_index: MemoryIndex, name: &str) {
self.module
.exports
.insert(String::from(name), Export::Memory(memory_index));
}
fn declare_global_export(&mut self, global_index: GlobalIndex, name: &str) {
self.module
.exports
.insert(String::from(name), Export::Global(global_index));
}
fn declare_start_func(&mut self, func_index: FuncIndex) {
debug_assert!(self.module.start_func.is_none());
self.module.start_func = Some(func_index);
}
fn define_function_body(&mut self, body_bytes: &'data [u8]) -> WasmResult<()> {
self.lazy.function_body_inputs.push(body_bytes);
Ok(())
}
}
impl<'module_environment> cranelift_wasm::FuncEnvironment for FuncEnvironment<'module_environment> {
fn flags(&self) -> &settings::Flags {
&self.isa.flags()
}
fn triple(&self) -> &Triple {
self.isa.triple()
}
fn make_global(&mut self, func: &mut ir::Function, index: GlobalIndex) -> GlobalVariable {
let pointer_bytes = self.pointer_bytes();
let globals_base = self.globals_base.unwrap_or_else(|| {
let new_base = func.create_global_value(ir::GlobalValueData::VMContext {
offset: Offset32::new(0),
});
self.globals_base = Some(new_base);
new_base
});
let offset = index * pointer_bytes;
let offset32 = offset as i32;
debug_assert_eq!(offset32 as usize, offset);
let gv = func.create_global_value(ir::GlobalValueData::Deref {
base: globals_base,
offset: Offset32::new(offset32),
memory_type: self.pointer_type(),
});
GlobalVariable::Memory {
gv,
ty: self.module.globals[index].ty,
}
}
fn make_heap(&mut self, func: &mut ir::Function, index: MemoryIndex) -> ir::Heap {
let pointer_bytes = self.pointer_bytes();
let memories_base = self.memories_base.unwrap_or_else(|| {
let new_base = func.create_global_value(ir::GlobalValueData::VMContext {
offset: Offset32::new(pointer_bytes as i32),
});
self.globals_base = Some(new_base);
new_base
});
let offset = index * pointer_bytes;
let offset32 = offset as i32;
debug_assert_eq!(offset32 as usize, offset);
let heap_base_addr = func.create_global_value(ir::GlobalValueData::Deref {
base: memories_base,
offset: Offset32::new(offset32),
memory_type: self.pointer_type(),
});
let heap_base = func.create_global_value(ir::GlobalValueData::Deref {
base: heap_base_addr,
offset: Offset32::new(0),
memory_type: self.pointer_type(),
});
func.create_heap(ir::HeapData {
base: heap_base,
min_size: 0.into(),
guard_size: 0x8000_0000.into(),
style: ir::HeapStyle::Static {
bound: 0x1_0000_0000.into(),
},
index_type: I32,
})
}
fn make_table(&mut self, func: &mut ir::Function, _index: TableIndex) -> ir::Table {
let pointer_bytes = self.pointer_bytes();
let base_gv_addr = func.create_global_value(ir::GlobalValueData::VMContext {
offset: Offset32::new(pointer_bytes as i32 * 2),
});
let base_gv = func.create_global_value(ir::GlobalValueData::Deref {
base: base_gv_addr,
offset: 0.into(),
memory_type: self.pointer_type(),
});
let bound_gv_addr = func.create_global_value(ir::GlobalValueData::VMContext {
offset: Offset32::new(pointer_bytes as i32 * 3),
});
let bound_gv = func.create_global_value(ir::GlobalValueData::Deref {
base: bound_gv_addr,
offset: 0.into(),
memory_type: I32,
});
func.create_table(ir::TableData {
base_gv,
min_size: Imm64::new(0),
bound_gv,
element_size: Imm64::new(i64::from(self.pointer_bytes() as i64)),
index_type: I32,
})
}
fn make_indirect_sig(&mut self, func: &mut ir::Function, index: SignatureIndex) -> ir::SigRef {
func.import_signature(self.module.signatures[index].clone())
}
fn make_direct_func(&mut self, func: &mut ir::Function, index: FuncIndex) -> ir::FuncRef {
let sigidx = self.module.functions[index];
let signature = func.import_signature(self.module.signatures[sigidx].clone());
let name = get_func_name(index);
// We currently allocate all code segments independently, so nothing
// is colocated.
let colocated = false;
func.import_function(ir::ExtFuncData {
name,
signature,
colocated,
})
}
fn translate_call_indirect(
&mut self,
mut pos: FuncCursor,
table_index: TableIndex,
table: ir::Table,
_sig_index: SignatureIndex,
sig_ref: ir::SigRef,
callee: ir::Value,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
// TODO: Cranelift's call_indirect doesn't implement signature checking,
// so we need to implement it ourselves.
debug_assert_eq!(table_index, 0, "non-default tables not supported yet");
let table_entry_addr = pos.ins().table_addr(I64, table, callee, 0);
// Dereference table_entry_addr to get the function address.
let mut mem_flags = ir::MemFlags::new();
mem_flags.set_notrap();
mem_flags.set_aligned();
let func_addr = pos
.ins()
.load(self.pointer_type(), mem_flags, table_entry_addr, 0);
let real_call_args = FuncEnvironment::get_real_call_args(pos.func, call_args);
Ok(pos.ins().call_indirect(sig_ref, func_addr, &real_call_args))
}
fn translate_call(
&mut self,
mut pos: FuncCursor,
_callee_index: FuncIndex,
callee: ir::FuncRef,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
let real_call_args = FuncEnvironment::get_real_call_args(pos.func, call_args);
Ok(pos.ins().call(callee, &real_call_args))
}
fn translate_memory_grow(
&mut self,
mut pos: FuncCursor,
index: MemoryIndex,
_heap: ir::Heap,
val: ir::Value,
) -> WasmResult<ir::Value> {
let grow_mem_func = self.grow_memory_extfunc.unwrap_or_else(|| {
let sig_ref = pos.func.import_signature(Signature {
call_conv: self.isa.flags().call_conv(),
params: vec![
AbiParam::new(I32),
AbiParam::new(I32),
AbiParam::special(self.pointer_type(), ArgumentPurpose::VMContext),
],
returns: vec![AbiParam::new(I32)],
});
// We currently allocate all code segments independently, so nothing
// is colocated.
let colocated = false;
// FIXME: Use a real ExternalName system.
pos.func.import_function(ExtFuncData {
name: ExternalName::testcase("grow_memory"),
signature: sig_ref,
colocated,
})
});
self.grow_memory_extfunc = Some(grow_mem_func);
let memory_index = pos.ins().iconst(I32, index as i64);
let vmctx = pos.func.special_param(ArgumentPurpose::VMContext).unwrap();
let call_inst = pos.ins().call(grow_mem_func, &[val, memory_index, vmctx]);
Ok(*pos.func.dfg.inst_results(call_inst).first().unwrap())
}
fn translate_memory_size(
&mut self,
mut pos: FuncCursor,
index: MemoryIndex,
_heap: ir::Heap,
) -> WasmResult<ir::Value> {
let cur_mem_func = self.current_memory_extfunc.unwrap_or_else(|| {
let sig_ref = pos.func.import_signature(Signature {
call_conv: self.isa.flags().call_conv(),
params: vec![
AbiParam::new(I32),
AbiParam::special(self.pointer_type(), ArgumentPurpose::VMContext),
],
returns: vec![AbiParam::new(I32)],
});
// We currently allocate all code segments independently, so nothing
// is colocated.
let colocated = false;
// FIXME: Use a real ExternalName system.
pos.func.import_function(ExtFuncData {
name: ExternalName::testcase("current_memory"),
signature: sig_ref,
colocated,
})
});
self.current_memory_extfunc = Some(cur_mem_func);
let memory_index = pos.ins().iconst(I32, index as i64);
let vmctx = pos.func.special_param(ArgumentPurpose::VMContext).unwrap();
let call_inst = pos.ins().call(cur_mem_func, &[memory_index, vmctx]);
Ok(*pos.func.dfg.inst_results(call_inst).first().unwrap())
}
fn return_mode(&self) -> ReturnMode {
// self.return_mode
ReturnMode::NormalReturns
}
}
/// The result of translating via `ModuleEnvironment`.
pub struct ModuleTranslation<'data, 'module> {
/// Compilation setting flags.
pub isa: &'module isa::TargetIsa,
/// Module information.
pub module: &'module Module,
/// Pointers into the raw data buffer.
pub lazy: LazyContents<'data>,
}
/// Convenience functions for the user to be called after execution for debug purposes.
impl<'data, 'module> ModuleTranslation<'data, 'module> {
/// Return a new `FuncEnvironment` for translation a function.
pub fn func_env(&self) -> FuncEnvironment {
FuncEnvironment::new(self.isa, &self.module)
}
}

View File

@ -1,19 +1,19 @@
// WebAssembly.CompileError(message, fileName, lineNumber)
// webassembly::CompileError(message, fileName, lineNumber)
// The WebAssembly.CompileError() constructor creates a new WebAssembly
// The webassembly::CompileError() constructor creates a new WebAssembly
// CompileError object, which indicates an error during WebAssembly
// decoding or validation
// WebAssembly.LinkError(message, fileName, lineNumber)
// webassembly::LinkError(message, fileName, lineNumber)
// The WebAssembly.LinkError() constructor creates a new WebAssembly
// The webassembly::LinkError() constructor creates a new WebAssembly
// LinkError object, which indicates an error during module instantiation
// (besides traps from the start function).
// new WebAssembly.RuntimeError(message, fileName, lineNumber)
// new webassembly::RuntimeError(message, fileName, lineNumber)
// The WebAssembly.RuntimeError() constructor creates a new WebAssembly
// The webassembly::RuntimeError() constructor creates a new WebAssembly
// RuntimeError object — the type that is thrown whenever WebAssembly
// specifies a trap.

View File

@ -1,210 +0,0 @@
use cranelift_codegen::binemit::Reloc;
use cranelift_codegen::isa::TargetIsa;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{DefinedFuncIndex, MemoryIndex};
use std::mem::transmute;
use std::ptr::{self, write_unaligned};
use super::compilation::{
compile_module, Compilation, Relocation, RelocationTarget,
};
use super::memory::LinearMemory;
use super::module::{Module, Export};
use super::instance::Instance;
use super::environ::ModuleTranslation;
/// Executes a module that has been translated with the `wasmtime-environ` environment
/// implementation.
pub fn compile_and_link_module<'data, 'module>(
isa: &TargetIsa,
translation: &ModuleTranslation<'data, 'module>,
) -> Result<Compilation, String> {
println!("compile_and_link_module::1");
let (mut compilation, relocations) = compile_module(&translation, isa)?;
println!("compile_and_link_module::2");
// Apply relocations, now that we have virtual addresses for everything.
relocate(&mut compilation, &relocations, &translation.module);
println!("compile_and_link_module::3");
Ok(compilation)
}
/// Performs the relocations inside the function bytecode, provided the necessary metadata
fn relocate(
compilation: &mut Compilation,
relocations: &PrimaryMap<DefinedFuncIndex, Vec<Relocation>>,
module: &Module,
) {
// The relocations are relative to the relocation's address plus four bytes
// TODO: Support architectures other than x64, and other reloc kinds.
for (i, function_relocs) in relocations.iter() {
for r in function_relocs {
let target_func_address: isize = match r.reloc_target {
RelocationTarget::UserFunc(index) => {
compilation.functions[module.defined_func_index(index).expect(
"relocation to imported function not supported yet",
)].as_ptr() as isize
}
RelocationTarget::GrowMemory => grow_memory as isize,
RelocationTarget::CurrentMemory => current_memory as isize,
};
let body = &mut compilation.functions[i];
match r.reloc {
Reloc::Abs8 => unsafe {
let reloc_address = body.as_mut_ptr().offset(r.offset as isize) as i64;
let reloc_addend = r.addend;
let reloc_abs = target_func_address as i64 + reloc_addend;
write_unaligned(reloc_address as *mut i64, reloc_abs);
},
Reloc::X86PCRel4 => unsafe {
let reloc_address = body.as_mut_ptr().offset(r.offset as isize) as isize;
let reloc_addend = r.addend as isize;
// TODO: Handle overflow.
let reloc_delta_i32 =
(target_func_address - reloc_address + reloc_addend) as i32;
write_unaligned(reloc_address as *mut i32, reloc_delta_i32);
},
_ => panic!("unsupported reloc kind"),
}
}
}
}
extern "C" fn grow_memory(size: u32, memory_index: u32, vmctx: *mut *mut u8) -> u32 {
unsafe {
let instance = (*vmctx.offset(4)) as *mut Instance;
(*instance)
.memory_mut(memory_index as MemoryIndex)
.grow(size)
.unwrap_or(u32::max_value())
}
}
extern "C" fn current_memory(memory_index: u32, vmctx: *mut *mut u8) -> u32 {
unsafe {
let instance = (*vmctx.offset(4)) as *mut Instance;
(*instance)
.memory_mut(memory_index as MemoryIndex)
.current_size()
}
}
/// Create the VmCtx data structure for the JIT'd code to use. This must
/// match the VmCtx layout in the environment.
pub fn make_vmctx(instance: &mut Instance, mem_base_addrs: &mut [*mut u8]) -> Vec<*mut u8> {
debug_assert!(
instance.tables.len() <= 1,
"non-default tables is not supported"
);
let (default_table_ptr, default_table_len) = instance
.tables
.get_mut(0)
.map(|table| (table.as_mut_ptr() as *mut u8, table.len()))
.unwrap_or((ptr::null_mut(), 0));
let mut vmctx = Vec::new();
vmctx.push(instance.globals.as_mut_ptr());
vmctx.push(mem_base_addrs.as_mut_ptr() as *mut u8);
vmctx.push(default_table_ptr);
vmctx.push(default_table_len as *mut u8);
vmctx.push(instance as *mut Instance as *mut u8);
vmctx
}
/// Jumps to the code region of memory and execute the start function of the module.
pub fn execute(
module: &Module,
compilation: &Compilation,
instance: &mut Instance,
) -> Result<(), String> {
// println!("execute");
let start_index = module.start_func.or_else(|| {
match module.exports.get("main") {
Some(&Export::Function(index)) => Some(index),
_ => None
}
}) ;
// else {
// // TODO: We really need to handle this error nicely
// return Err("need to have a start function".to_string());
// }
// let start_index = module
// .start_func
// .ok_or_else(|| String::from("No start function defined, aborting execution"))?;
// We have to relocate here
// TODO: Put all the function bodies into a page-aligned memory region, and
// then make them ReadExecute rather than ReadWriteExecute.
let code_buf = start_index.map(|i| {
&compilation.functions[module
.defined_func_index(i)
.expect("imported start functions not supported yet")]
});
code_buf.map(|code_buf_pt|{
// Collect all memory base addresses and Vec.
let mut mem_base_addrs = instance
.memories
.iter_mut()
.map(LinearMemory::base_addr)
.collect::<Vec<_>>();
let vmctx = make_vmctx(instance, &mut mem_base_addrs);
// Rather than writing inline assembly to jump to the code region, we use the fact that
// the Rust ABI for calling a function with no arguments and no return matches the one of
// the generated code. Thanks to this, we can transmute the code region into a first-class
// Rust function and call it.
unsafe {
let start_func = transmute::<_, fn(*const *mut u8)>(code_buf_pt.as_ptr());
start_func(vmctx.as_ptr());
}
});
// println!("{:?}", module.exports);
// println!("execute end");
Ok(())
}
// pub fn execute_fn(
// instance: &mut Instance,
// func_name: String
// ) -> Result<(), String> {
// println!("execute");
// let start_index = match instance.module.exports.get(&func_name) {
// Some(&Export::Function(index)) => index,
// _ => panic!("No func name")
// };
// let code_buf = &instance.compilation.functions[instance.module
// .defined_func_index(start_index)
// .expect("imported start functions not supported yet")];
// let mut mem_base_addrs = instance
// .memories
// .iter_mut()
// .map(LinearMemory::base_addr)
// .collect::<Vec<_>>();
// let vmctx = make_vmctx(instance, &mut mem_base_addrs);
// unsafe {
// let start_func = transmute::<_, fn(*const *mut u8)>(code_buf.as_ptr());
// start_func(vmctx.as_ptr())
// }
// Ok(())
// }

View File

@ -1,8 +1,14 @@
//! An 'Instance' contains all the runtime state used by execution of a wasm module
//! A webassembly::Instance object is a stateful, executable instance of a
//! webassembly::Module. Instance objects contain all the Exported
//! WebAssembly functions that allow calling into WebAssembly code.
//! The webassembly::Instance() constructor function can be called to
//! synchronously instantiate a given webassembly::Module object. However, the
//! primary way to get an Instance is through the asynchronous
//! webassembly::instantiateStreaming() function.
use cranelift_wasm::{GlobalInit, FuncIndex};
use super::env::Module;
use super::env::{DataInitializer, Exportable};
use super::module::Module;
use super::module::{DataInitializer, Exportable};
use cranelift_entity::EntityRef;
use super::memory::LinearMemory;
@ -77,6 +83,7 @@ impl Instance {
// instantiate_tables
{
// Reserve table space
tables.reserve_exact(module.info.tables.len());
for table in &module.info.tables {
let len = table.entity.size;
@ -153,6 +160,10 @@ impl Instance {
self.memories.clone()
}
pub fn invoke(&self, func_index: FuncIndex, args: Vec<i32>) {
unimplemented!()
}
// pub fn start_func(&self) -> extern fn(&VmCtx) {
// self.start_func
// }

View File

@ -10,10 +10,19 @@ const MAX_PAGES: u32 = 65536;
/// for dynamical growing.
pub struct LinearMemory {
mmap: memmap::MmapMut,
// The initial size of the WebAssembly Memory, in units of
// WebAssembly pages.
current: u32,
// The maximum size the WebAssembly Memory is allowed to grow
// to, in units of WebAssembly pages. When present, the maximum
// parameter acts as a hint to the engine to reserve memory up
// front. However, the engine may ignore or clamp this reservation
// request. In general, most WebAssembly modules shouldn't need
// to set a maximum.
maximum: Option<u32>,
}
/// It holds the raw bytes of memory accessed by a WebAssembly Instance
impl LinearMemory {
/// Create a new linear memory instance with specified initial and maximum number of pages.
///

View File

@ -6,7 +6,7 @@
pub mod errors;
// pub mod execute;
pub mod utils;
pub mod env;
pub mod module;
pub mod memory;
pub mod instance;
@ -26,7 +26,7 @@ use cranelift_codegen::settings::{self, Flags};
use cranelift_codegen::verifier;
use cranelift_wasm::{translate_module, ReturnMode};
pub use self::env::Module;
pub use self::module::Module;
pub use self::instance::Instance;
// pub use self::compilation::{compile_module, Compilation};
@ -38,10 +38,10 @@ pub use self::errors::{Error, ErrorKind};
use wasmparser;
// pub struct ResultObject {
// /// A WebAssembly.Module object representing the compiled WebAssembly module.
// /// A webassembly::Module object representing the compiled WebAssembly module.
// /// This Module can be instantiated again
// pub module: Module,
// /// A WebAssembly.Instance object that contains all the Exported WebAssembly
// /// A webassembly::Instance object that contains all the Exported WebAssembly
// /// functions.
// pub instance: Instance,
@ -51,7 +51,7 @@ use wasmparser;
pub struct ImportObject {
}
/// The WebAssembly.instantiate() function allows you to compile and
/// The webassembly::instantiate() function allows you to compile and
/// instantiate WebAssembly code
/// Params:
@ -60,14 +60,14 @@ pub struct ImportObject {
/// * `import_object`: An object containing the values to be imported
/// into the newly-created Instance, such as functions or
/// WebAssembly.Memory objects. There must be one matching property
/// webassembly::Memory objects. There must be one matching property
/// for each declared import of the compiled module or else a
/// WebAssembly.LinkError is thrown.
/// webassembly::LinkError is thrown.
/// Errors:
/// If the operation fails, the Result rejects with a
/// WebAssembly.CompileError, WebAssembly.LinkError, or
/// WebAssembly.RuntimeError, depending on the cause of the failure.
/// webassembly::CompileError, webassembly::LinkError, or
/// webassembly::RuntimeError, depending on the cause of the failure.
pub fn instantiate(buffer_source: Vec<u8>, import_object: Option<ImportObject>) -> Result<Module, ErrorKind> {
// TODO: This should be automatically validated when creating the Module
if !validate(&buffer_source) {
@ -126,10 +126,10 @@ pub fn instantiate(buffer_source: Vec<u8>, import_object: Option<ImportObject>)
// })
}
/// The WebAssembly.compile() function compiles a WebAssembly.Module
/// The webassembly::compile() function compiles a webassembly::Module
/// from WebAssembly binary code. This function is useful if it
/// is necessary to a compile a module before it can be instantiated
/// (otherwise, the WebAssembly.instantiate() function should be used).
/// (otherwise, the webassembly::instantiate() function should be used).
/// Params:
/// * `buffer_source`: A `Vec<u8>` containing the
@ -137,7 +137,7 @@ pub fn instantiate(buffer_source: Vec<u8>, import_object: Option<ImportObject>)
/// Errors:
/// If the operation fails, the Result rejects with a
/// WebAssembly.CompileError.
/// webassembly::CompileError.
pub fn compile(buffer_source: Vec<u8>) -> Result<Module, Error> {
unimplemented!();
// let isa = construct_isa();
@ -150,7 +150,7 @@ pub fn compile(buffer_source: Vec<u8>) -> Result<Module, Error> {
// Ok(module)
}
/// The WebAssembly.validate() function validates a given typed
/// The webassembly::validate() function validates a given typed
/// array of WebAssembly binary code, returning whether the bytes
/// form a valid wasm module (true) or not (false).

View File

@ -1,15 +1,152 @@
/// A WebAssembly.Module object representing the compiled WebAssembly module.
extern crate cranelift_codegen;
extern crate cranelift_entity;
extern crate cranelift_wasm;
//! "" implementations of `ModuleEnvironment` and `FuncEnvironment` for testing
//! wasm translation.
use cranelift_codegen::ir;
use cranelift_codegen::cursor::FuncCursor;
use cranelift_codegen::ir::immediates::{Imm64, Offset32};
use cranelift_codegen::ir::types::*;
use cranelift_codegen::ir::{self, InstBuilder, FuncRef, ExtFuncData, ExternalName, Signature, AbiParam,
ArgumentPurpose, ArgumentLoc, ArgumentExtension, Function};
use cranelift_codegen::settings;
use cranelift_entity::{EntityRef, PrimaryMap};
use super::errors::ErrorKind;
use std::string::String;
use std::vec::Vec;
use target_lexicon::{Triple, PointerWidth};
use cranelift_wasm::{
FuncTranslator,
FuncEnvironment as FuncEnvironmentTrait, GlobalVariable, ModuleEnvironment, ReturnMode, WasmResult,
DefinedFuncIndex, FuncIndex, Global, GlobalIndex, Memory, MemoryIndex, SignatureIndex, Table,
TableIndex,
TableIndex, translate_module
};
use std::collections::HashMap;
use super::memory::LinearMemory;
// use alloc::vec::Vec;
// use alloc::string::String;
/// Compute a `ir::ExternalName` for a given wasm function index.
fn get_func_name(func_index: FuncIndex) -> ir::ExternalName {
ir::ExternalName::user(0, func_index.index() as u32)
}
/// A collection of names under which a given entity is exported.
pub struct Exportable<T> {
/// A wasm entity.
pub entity: T,
/// Names under which the entity is exported.
pub export_names: Vec<String>,
}
impl<T> Exportable<T> {
pub fn new(entity: T) -> Self {
Self {
entity,
export_names: Vec::new(),
}
}
}
/// The main state belonging to a `Module`. This is split out from
/// `Module` to allow it to be borrowed separately from the
/// `FuncTranslator` field.
pub struct ModuleInfo {
/// Target description.
pub triple: Triple,
/// Compilation setting flags.
pub flags: settings::Flags,
pub main_memory_base: Option<ir::GlobalValue>,
/// The Cranelift global holding the base address of the memories vector.
pub memory_base: Option<ir::GlobalValue>,
/// Signatures as provided by `declare_signature`.
pub signatures: Vec<ir::Signature>,
/// Module and field names of imported functions as provided by `declare_func_import`.
pub imported_funcs: Vec<(String, String)>,
/// Functions, imported and local.
pub functions: PrimaryMap<FuncIndex, Exportable<SignatureIndex>>,
/// Function bodies.
pub function_bodies: PrimaryMap<DefinedFuncIndex, ir::Function>,
/// Tables as provided by `declare_table`.
pub tables: Vec<Exportable<Table>>,
/// WebAssembly table initializers.
// Should be Vec<TableElements>
// instead of Vec<Exportable<TableElements>> ??
pub table_elements: Vec<TableElements>,
/// The base of tables.
pub tables_base: Option<ir::GlobalValue>,
/// Memories as provided by `declare_memory`.
pub memories: Vec<Exportable<Memory>>,
/// The Cranelift global holding the base address of the globals vector.
pub globals_base: Option<ir::GlobalValue>,
/// Globals as provided by `declare_global`.
pub globals: Vec<Exportable<Global>>,
/// The start function.
pub start_func: Option<FuncIndex>,
pub data_initializers: Vec<DataInitializer>,
}
impl ModuleInfo {
/// Allocates the data structures with the given flags.
pub fn with_triple_flags(triple: Triple, flags: settings::Flags) -> Self {
Self {
triple,
flags,
signatures: Vec::new(),
imported_funcs: Vec::new(),
functions: PrimaryMap::new(),
function_bodies: PrimaryMap::new(),
tables: Vec::new(),
memories: Vec::new(),
globals: Vec::new(),
globals_base: None,
table_elements: Vec::new(),
tables_base: None,
start_func: None,
data_initializers: Vec::new(),
main_memory_base: None,
memory_base: None,
}
}
}
/// A data initializer for linear memory.
#[derive(Debug)]
pub struct DataInitializer {
/// The index of the memory to initialize.
pub memory_index: MemoryIndex,
/// Optionally a globalvalue base to initialize at.
pub base: Option<GlobalIndex>,
/// A constant offset to initialize at.
pub offset: usize,
/// The initialization data.
pub data: Vec<u8>,
}
/// Possible values for a WebAssembly table element.
#[derive(Clone, Debug)]
pub enum TableElement {
/// A element that, if called, produces a trap.
Trap(),
/// A function.
Function(FuncIndex),
}
/// A WebAssembly table initializer.
#[derive(Clone, Debug)]
@ -24,112 +161,556 @@ pub struct TableElements {
pub elements: Vec<FuncIndex>,
}
/// An entity to export.
#[derive(Clone, Debug)]
pub enum Export {
/// Function export.
Function(FuncIndex),
/// Table export.
Table(TableIndex),
/// Memory export.
Memory(MemoryIndex),
/// Global export.
Global(GlobalIndex),
}
/// A translated WebAssembly module, excluding the function bodies and
/// memory initializers.
#[derive(Clone, Debug)]
/// This `ModuleEnvironment` implementation is a "naïve" one, doing essentially nothing and
/// emitting placeholders when forced to. Don't try to execute code translated for this
/// environment, essentially here for translation debug purposes.
pub struct Module {
/// Unprocessed signatures exactly as provided by `declare_signature()`.
pub signatures: Vec<ir::Signature>,
/// Module information.
pub info: ModuleInfo,
/// Names of imported functions.
pub imported_funcs: Vec<(String, String)>,
/// Function translation.
trans: FuncTranslator,
/// Types of functions, imported and local.
pub functions: PrimaryMap<FuncIndex, SignatureIndex>,
/// Vector of wasm bytecode size for each function.
pub func_bytecode_sizes: Vec<usize>,
/// WebAssembly tables.
pub tables: Vec<Table>,
/// WebAssembly linear memories.
pub memories: Vec<Memory>,
/// WebAssembly global variables.
pub globals: Vec<Global>,
/// Exported entities.
pub exports: HashMap<String, Export>,
/// The module "start" function, if present.
pub start_func: Option<FuncIndex>,
/// WebAssembly table initializers.
pub table_elements: Vec<TableElements>,
/// How to return from functions.
return_mode: ReturnMode,
}
impl Module {
/// Allocates the module data structures.
pub fn new() -> Self {
Self {
signatures: Vec::new(),
imported_funcs: Vec::new(),
functions: PrimaryMap::new(),
tables: Vec::new(),
memories: Vec::new(),
globals: Vec::new(),
exports: HashMap::new(),
start_func: None,
table_elements: Vec::new(),
}
/// Allocates the data structures with default flags.
// pub fn with_triple(triple: Triple) -> Self {
// Self::with_triple_flags(
// triple,
// settings::Flags::new(settings::builder()),
// ReturnMode::NormalReturns,
// )
// }
/// Allocates the data structures with the given triple.
// pub fn with_triple_flags(
// triple: Triple,
// flags: settings::Flags,
// return_mode: ReturnMode,
// ) -> Self {
// Self {
// info: ModuleInfo::with_triple_flags(triple, flags),
// trans: FuncTranslator::new(),
// func_bytecode_sizes: Vec::new(),
// return_mode,
// }
// }
pub fn from_bytes(buffer_source: Vec<u8>, triple: Triple, flags: Option<settings::Flags>) -> Result<Self, ErrorKind> {
let return_mode = ReturnMode::NormalReturns;
let flags = flags.unwrap_or_else(|| {
settings::Flags::new(settings::builder())
});
let mut module = Self {
info: ModuleInfo::with_triple_flags(triple, flags),
trans: FuncTranslator::new(),
func_bytecode_sizes: Vec::new(),
return_mode,
};
// We iterate through the source bytes, generating the compiled module
translate_module(&buffer_source, &mut module).map_err(|e| ErrorKind::CompileError(e.to_string()))?;
Ok(module)
}
/// Return a `FuncEnvironment` for translating functions within this
/// `Module`.
pub fn func_env(&self) -> FuncEnvironment {
FuncEnvironment::new(&self.info, self.return_mode)
}
fn native_pointer(&self) -> ir::Type {
self.func_env().pointer_type()
}
/// Convert a `DefinedFuncIndex` into a `FuncIndex`.
pub fn func_index(&self, defined_func: DefinedFuncIndex) -> FuncIndex {
FuncIndex::new(self.imported_funcs.len() + defined_func.index())
FuncIndex::new(self.info.imported_funcs.len() + defined_func.index())
}
/// Convert a `FuncIndex` into a `DefinedFuncIndex`. Returns None if the
/// index is an imported function.
pub fn defined_func_index(&self, func: FuncIndex) -> Option<DefinedFuncIndex> {
if func.index() < self.imported_funcs.len() {
if func.index() < self.info.imported_funcs.len() {
None
} else {
Some(DefinedFuncIndex::new(
func.index() - self.imported_funcs.len(),
func.index() - self.info.imported_funcs.len(),
))
}
}
}
/// A data initializer for linear memory.
pub struct DataInitializer<'data> {
/// The index of the memory to initialize.
pub memory_index: MemoryIndex,
/// Optionally a globalvar base to initialize at.
pub base: Option<GlobalIndex>,
/// A constant offset to initialize at.
pub offset: usize,
/// The initialization data.
pub data: &'data [u8],
/// The `FuncEnvironment` implementation for use by the `Module`.
pub struct FuncEnvironment<'environment> {
pub mod_info: &'environment ModuleInfo,
return_mode: ReturnMode,
}
/// References to the input wasm data buffer to be decoded and processed later,
/// separately from the main module translation.
pub struct LazyContents<'data> {
/// References to the function bodies.
pub function_body_inputs: PrimaryMap<DefinedFuncIndex, &'data [u8]>,
/// References to the data initializers.
pub data_initializers: Vec<DataInitializer<'data>>,
}
impl<'data> LazyContents<'data> {
pub fn new() -> Self {
impl<'environment> FuncEnvironment<'environment> {
pub fn new(mod_info: &'environment ModuleInfo, return_mode: ReturnMode) -> Self {
Self {
function_body_inputs: PrimaryMap::new(),
data_initializers: Vec::new(),
mod_info,
return_mode,
}
}
fn get_real_call_args(func: &Function, call_args: &[ir::Value]) -> Vec<ir::Value> {
let mut real_call_args = Vec::with_capacity(call_args.len() + 1);
real_call_args.extend_from_slice(call_args);
real_call_args.push(func.special_param(ArgumentPurpose::VMContext).unwrap());
real_call_args
}
// Create a signature for `sigidx` amended with a `vmctx` argument after the standard wasm
// arguments.
fn vmctx_sig(&self, sigidx: SignatureIndex) -> ir::Signature {
let mut sig = self.mod_info.signatures[sigidx].clone();
sig.params.push(ir::AbiParam::special(
self.pointer_type(),
ir::ArgumentPurpose::VMContext,
));
sig
}
fn ptr_size(&self) -> usize {
if self.triple().pointer_width().unwrap() == PointerWidth::U64 {
8
} else {
4
}
}
}
impl<'environment> FuncEnvironmentTrait for FuncEnvironment<'environment> {
fn triple(&self) -> &Triple {
&self.mod_info.triple
}
fn flags(&self) -> &settings::Flags {
&self.mod_info.flags
}
fn make_global(&mut self, func: &mut ir::Function, index: GlobalIndex) -> GlobalVariable {
// Just create a dummy `vmctx` global.
let offset = ((index * 8) as i64 + 8).into();
let vmctx = func.create_global_value(ir::GlobalValueData::VMContext {});
let iadd = func.create_global_value(ir::GlobalValueData::IAddImm {
base: vmctx,
offset,
global_type: self.pointer_type(),
});
GlobalVariable::Memory {
gv: iadd,
ty: self.mod_info.globals[index].entity.ty,
}
}
fn make_heap(&mut self, func: &mut ir::Function, _index: MemoryIndex) -> ir::Heap {
// OLD
// Create a static heap whose base address is stored at `vmctx+0`.
let addr = func.create_global_value(ir::GlobalValueData::VMContext);
let gv = func.create_global_value(ir::GlobalValueData::Load {
base: addr,
offset: Offset32::new(0),
global_type: self.pointer_type(),
});
func.create_heap(ir::HeapData {
base: gv,
min_size: 0.into(),
guard_size: 0x8000_0000.into(),
style: ir::HeapStyle::Static {
bound: 0x1_0000_0000.into(),
},
index_type: I32,
})
// use memory::WasmMemory;
// if index == 0 {
// let heap_base = self.main_memory_base.unwrap_or_else(|| {
// let new_base = func.create_global_value(ir::GlobalValueData::VMContext {
// offset: 0.into(),
// });
// self.main_memory_base = Some(new_base);
// new_base
// });
// func.create_heap(ir::HeapData {
// base: heap_base,
// min_size: 0.into(),
// guard_size: (WasmMemory::DEFAULT_GUARD_SIZE as i64).into(),
// style: ir::HeapStyle::Static {
// bound: (WasmMemory::DEFAULT_HEAP_SIZE as i64).into(),
// },
// })
// } else {
// let memory_base = self.memory_base.unwrap_or_else(|| {
// let memories_offset = self.ptr_size() as i32 * -2;
// let new_base = func.create_global_value(ir::GlobalValueData::VMContext {
// offset: memories_offset.into(),
// });
// self.memory_base = Some(new_base);
// new_base
// });
// let memory_offset = (index - 1) * self.ptr_size();
// let heap_base = func.create_global_value(ir::GlobalValueData::Deref {
// base: memory_base,
// offset: (memory_offset as i32).into(),
// });
// func.create_heap(ir::HeapData {
// base: heap_base,
// min_size: 0.into(),
// guard_size: (WasmMemory::DEFAULT_GUARD_SIZE as i64).into(),
// style: ir::HeapStyle::Static {
// bound: (WasmMemory::DEFAULT_HEAP_SIZE as i64).into(),
// },
// })
// }
}
fn make_table(&mut self, func: &mut ir::Function, table_index: TableIndex) -> ir::Table {
// OLD
// Create a table whose base address is stored at `vmctx+0`.
// let vmctx = func.create_global_value(ir::GlobalValueData::VMContext);
// let base_gv = func.create_global_value(ir::GlobalValueData::Load {
// base: vmctx,
// offset: Offset32::new(0),
// global_type: self.pointer_type(),
// });
// let bound_gv = func.create_global_value(ir::GlobalValueData::Load {
// base: vmctx,
// offset: Offset32::new(0),
// global_type: I32,
// });
// func.create_table(ir::TableData {
// base_gv,
// min_size: Imm64::new(0),
// bound_gv,
// element_size: Imm64::new(i64::from(self.pointer_bytes()) * 2),
// index_type: I32,
// })
let ptr_size = self.ptr_size();
let base = self.mod_info.tables_base.unwrap_or_else(|| {
let tables_offset = self.ptr_size() as i32 * -1;
let new_base = func.create_global_value(ir::GlobalValueData::VMContext { });
// {
// offset: tables_offset.into(),
// });
// self.mod_info.globals_base = Some(new_base);
new_base
});
let table_data_offset = (table_index as usize * ptr_size * 2) as i32;
let new_table_addr_addr = func.create_global_value(ir::GlobalValueData::Load {
base,
offset: table_data_offset.into(),
global_type: self.pointer_type(), // Might be I32
});
let new_table_addr = func.create_global_value(ir::GlobalValueData::Load {
base: new_table_addr_addr,
offset: 0.into(),
global_type: self.pointer_type(), // Might be I32
});
let new_table_bounds_addr = func.create_global_value(ir::GlobalValueData::Load {
base,
offset: (table_data_offset + ptr_size as i32).into(),
global_type: self.pointer_type(), // Might be I32
});
let new_table_bounds = func.create_global_value(ir::GlobalValueData::Load {
base: new_table_bounds_addr,
offset: 0.into(),
global_type: I32, // Might be self.pointer_type()
});
let table = func.create_table(ir::TableData {
base_gv: new_table_addr,
min_size: Imm64::new(0),
// min_size: (self.mod_info.tables[table_index].size as i64).into(),
bound_gv: new_table_bounds,
element_size: (ptr_size as i64).into(),
index_type: I32
});
table
}
fn make_indirect_sig(&mut self, func: &mut ir::Function, index: SignatureIndex) -> ir::SigRef {
// A real implementation would probably change the calling convention and add `vmctx` and
// signature index arguments.
// func.import_signature(self.module.signatures[index].clone())
func.import_signature(self.vmctx_sig(index))
}
fn make_direct_func(&mut self, func: &mut ir::Function, index: FuncIndex) -> ir::FuncRef {
let sigidx = self.mod_info.functions[index].entity;
// A real implementation would probably add a `vmctx` argument.
// And maybe attempt some signature de-duplication.
let signature = func.import_signature(self.vmctx_sig(sigidx));
let name = get_func_name(index);
func.import_function(ir::ExtFuncData {
name,
signature,
colocated: false,
})
}
fn translate_call_indirect(
&mut self,
mut pos: FuncCursor,
_table_index: TableIndex,
_table: ir::Table,
_sig_index: SignatureIndex,
sig_ref: ir::SigRef,
callee: ir::Value,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
// Pass the current function's vmctx parameter on to the callee.
let vmctx = pos
.func
.special_param(ir::ArgumentPurpose::VMContext)
.expect("Missing vmctx parameter");
// The `callee` value is an index into a table of function pointers.
// Apparently, that table is stored at absolute address 0 in this dummy environment.
// TODO: Generate bounds checking code.
let ptr = self.pointer_type();
let callee_offset = if ptr == I32 {
pos.ins().imul_imm(callee, 4)
} else {
let ext = pos.ins().uextend(I64, callee);
pos.ins().imul_imm(ext, 4)
};
let mut mflags = ir::MemFlags::new();
mflags.set_notrap();
mflags.set_aligned();
let func_ptr = pos.ins().load(ptr, mflags, callee_offset, 0);
// Build a value list for the indirect call instruction containing the callee, call_args,
// and the vmctx parameter.
let mut args = ir::ValueList::default();
args.push(func_ptr, &mut pos.func.dfg.value_lists);
args.extend(call_args.iter().cloned(), &mut pos.func.dfg.value_lists);
args.push(vmctx, &mut pos.func.dfg.value_lists);
Ok(pos
.ins()
.CallIndirect(ir::Opcode::CallIndirect, INVALID, sig_ref, args)
.0)
}
fn translate_call(
&mut self,
mut pos: FuncCursor,
_callee_index: FuncIndex,
callee: ir::FuncRef,
call_args: &[ir::Value],
) -> WasmResult<ir::Inst> {
// Pass the current function's vmctx parameter on to the callee.
let vmctx = pos
.func
.special_param(ir::ArgumentPurpose::VMContext)
.expect("Missing vmctx parameter");
// Build a value list for the call instruction containing the call_args and the vmctx
// parameter.
let mut args = ir::ValueList::default();
args.extend(call_args.iter().cloned(), &mut pos.func.dfg.value_lists);
args.push(vmctx, &mut pos.func.dfg.value_lists);
Ok(pos.ins().Call(ir::Opcode::Call, INVALID, callee, args).0)
}
fn translate_memory_grow(
&mut self,
mut pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
_val: ir::Value,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn translate_memory_size(
&mut self,
mut pos: FuncCursor,
_index: MemoryIndex,
_heap: ir::Heap,
) -> WasmResult<ir::Value> {
Ok(pos.ins().iconst(I32, -1))
}
fn return_mode(&self) -> ReturnMode {
self.return_mode
}
}
impl<'data> ModuleEnvironment<'data> for Module {
fn flags(&self) -> &settings::Flags {
&self.info.flags
}
fn get_func_name(&self, func_index: FuncIndex) -> ir::ExternalName {
get_func_name(func_index)
}
fn declare_signature(&mut self, sig: &ir::Signature) {
// OLD
// self.info.signatures.push(sig.clone());
// NEW
let mut sig = sig.clone();
sig.params.push(AbiParam {
value_type: self.native_pointer(),
purpose: ArgumentPurpose::VMContext,
extension: ArgumentExtension::None,
location: ArgumentLoc::Unassigned,
});
// TODO: Deduplicate signatures.
self.info.signatures.push(sig);
}
fn get_signature(&self, sig_index: SignatureIndex) -> &ir::Signature {
&self.info.signatures[sig_index]
}
fn declare_func_import(
&mut self,
sig_index: SignatureIndex,
module: &'data str,
field: &'data str,
) {
assert_eq!(
self.info.functions.len(),
self.info.imported_funcs.len(),
"Imported functions must be declared first"
);
self.info.functions.push(Exportable::new(sig_index));
self.info
.imported_funcs
.push((String::from(module), String::from(field)));
}
fn get_num_func_imports(&self) -> usize {
self.info.imported_funcs.len()
}
fn declare_func_type(&mut self, sig_index: SignatureIndex) {
self.info.functions.push(Exportable::new(sig_index));
}
fn get_func_type(&self, func_index: FuncIndex) -> SignatureIndex {
self.info.functions[func_index].entity
}
fn declare_global(&mut self, global: Global) {
self.info.globals.push(Exportable::new(global));
}
fn get_global(&self, global_index: GlobalIndex) -> &Global {
&self.info.globals[global_index].entity
}
fn declare_table(&mut self, table: Table) {
self.info.tables.push(Exportable::new(table));
}
fn declare_table_elements(
&mut self,
table_index: TableIndex,
base: Option<GlobalIndex>,
offset: usize,
elements: Vec<FuncIndex>,
) {
// NEW
debug_assert!(base.is_none(), "global-value offsets not supported yet");
self.info.table_elements.push(TableElements {
table_index,
base,
offset,
elements,
});
}
fn declare_memory(&mut self, memory: Memory) {
self.info.memories.push(Exportable::new(memory));
}
fn declare_data_initialization(
&mut self,
memory_index: MemoryIndex,
base: Option<GlobalIndex>,
offset: usize,
data: &'data [u8],
) {
debug_assert!(base.is_none(), "global-value offsets not supported yet");
self.info.data_initializers.push(DataInitializer {
memory_index,
base,
offset,
data: data.to_vec(),
});
}
fn declare_func_export(&mut self, func_index: FuncIndex, name: &'data str) {
self.info.functions[func_index]
.export_names
.push(String::from(name));
}
fn declare_table_export(&mut self, table_index: TableIndex, name: &'data str) {
self.info.tables[table_index]
.export_names
.push(String::from(name));
}
fn declare_memory_export(&mut self, memory_index: MemoryIndex, name: &'data str) {
self.info.memories[memory_index]
.export_names
.push(String::from(name));
}
fn declare_global_export(&mut self, global_index: GlobalIndex, name: &'data str) {
self.info.globals[global_index]
.export_names
.push(String::from(name));
}
fn declare_start_func(&mut self, func_index: FuncIndex) {
debug_assert!(self.info.start_func.is_none());
self.info.start_func = Some(func_index);
}
fn define_function_body(&mut self, body_bytes: &'data [u8]) -> WasmResult<()> {
let func = {
let mut func_environ = FuncEnvironment::new(&self.info, self.return_mode);
let func_index =
FuncIndex::new(self.get_num_func_imports() + self.info.function_bodies.len());
let name = get_func_name(func_index);
let sig = func_environ.vmctx_sig(self.get_func_type(func_index));
let mut func = ir::Function::with_name_signature(name, sig);
self.trans
.translate(body_bytes, &mut func, &mut func_environ)?;
func
};
self.func_bytecode_sizes.push(body_bytes.len());
self.info.function_bodies.push(func);
Ok(())
}
}