Darius Clark 5b32c8a0d2
feat(transport): allow ListenerId to be user-controlled
`Transport::listen_on` is an asynchronous operation. It returns immediately but the actual process of establishing a listening socket happens as part of `Transport::poll` which will return one or more `TransportEvent`s related to a particular `listen_on` call.

Currently, `listen_on` returns a `ListenerId` which allows the user of the `Transport` interface to correlate the events with a particular `listen_on` call. This "user" is the `Swarm` runtime. Currently, a user of libp2p establishes a new listening socket by talking to the `Swarm::listen_on` interface and it is not possible to do the same thing via the `NetworkBehaviour` trait.

Within the `NetworkBehaviour` trait, we emit _commands_ to the `Swarm` like `ToSwarm::Dial`. These commands don't have a "return value" like a synchronous function does and thus, if we were to add a `ToSwarm::ListenOn` command, it could not receive the `ListenerId` from the `Transport`.

To fix this and to be consistent with our [coding guidelines](https://github.com/libp2p/rust-libp2p/blob/master/docs/coding-guidelines.md#allow-correlating-asynchronous-responses-to-their-requests) we change the interface of `Transport::listen_on` to require the user to pass in a `ListenerId`. This will allow us to construct a command in a `NetworkBehaviour` that remembers this ID which enables precise tracking of which events containing a `ListenerId` correlate which a particular `listen_on` command.

This is especially important in the context of listening on wildcard addresses like `0.0.0.0` because we end up binding to multiple network interfaces and thus emit multiple events for a single `listen_on` call.

Pull-Request: #3567.
2023-05-14 09:42:51 +00:00
2023-05-11 09:04:16 +00:00

Central repository for work on libp2p

dependency status Crates.io docs.rs docs.rs master

This repository is the central place for Rust development of the libp2p spec.

Getting started

Repository Structure

The main components of this repository are structured as follows:

  • core/: The implementation of libp2p-core with its Transport and StreamMuxer API on which almost all other crates depend.

  • transports/: Implementations of transport protocols (e.g. TCP) and protocol upgrades (e.g. for authenticated encryption, compression, ...) based on the libp2p-core Transport API .

  • muxers/: Implementations of the StreamMuxer interface of libp2p-core, e.g. (sub)stream multiplexing protocols on top of (typically TCP) connections. Multiplexing protocols are (mandatory) Transport upgrades.

  • swarm/: The implementation of libp2p-swarm building on libp2p-core with the central interfaces NetworkBehaviour and ConnectionHandler used to implement application protocols (see protocols/).

  • protocols/: Implementations of application protocols based on the libp2p-swarm APIs.

  • misc/: Utility libraries.

  • libp2p/examples/: Worked examples of built-in application protocols (see protocols/) with common Transport configurations.

Community Guidelines

The libp2p project operates under the IPFS Code of Conduct.

tl;dr

  • Be respectful.
  • We're here to help: abuse@ipfs.io
  • Abusive behavior is never tolerated.
  • Violations of this code may result in swift and permanent expulsion from the IPFS [and libp2p] community.
  • "Too long, didn't read" is not a valid excuse for not knowing what is in this document.

Maintainers

(In alphabetical order.)

Notable users

(open a pull request if you want your project to be added here)

  • COMIT - BitcoinMonero Cross-chain Atomic Swap.
  • Forest - An implementation of Filecoin written in Rust.
  • fuel-core - A Rust implementation of the Fuel protocol.
  • HotShot - Decentralized sequencer in Rust developed by Espresso Systems.
  • ipfs-embed - A small embeddable ipfs implementation used and maintained by Actyx.
  • iroh - Next-generation implementation of IPFS for Cloud & Mobile platforms.
  • Lighthouse - Ethereum consensus client in Rust.
  • Locutus - Global, observable, decentralized key-value store.
  • rust-ipfs - IPFS implementation in Rust.
  • Starcoin - A smart contract blockchain network that scales by layering.
  • Subspace - Subspace Network reference implementation
  • Substrate - Framework for blockchain innovation, used by Polkadot.
  • Ursa - Decentralized Content Delivery & Edge Compute.
Description
No description provided
Readme MIT 23 MiB
Languages
Rust 99.8%
JavaScript 0.2%