Thomas Eizinger 4b41f5a994
refactor(core)!: remove EitherOutput (#3341)
The trick with this one is to use `futures::Either` everywhere where we may wrap something that implements any of the `futures` traits. This includes the output of `EitherFuture` itself. We also need to implement `StreamMuxer` on `future::Either` because `StreamMuxer`s may be the the `Output` of `InboundUpgrade`.
2023-01-23 12:31:30 +00:00

820 lines
32 KiB
Rust

// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#![recursion_limit = "256"]
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]
use heck::ToUpperCamelCase;
use proc_macro::TokenStream;
use quote::quote;
use syn::parse::Parse;
use syn::{parse_macro_input, Data, DataStruct, DeriveInput};
/// Generates a delegating `NetworkBehaviour` implementation for the struct this is used for. See
/// the trait documentation for better description.
#[proc_macro_derive(NetworkBehaviour, attributes(behaviour))]
pub fn hello_macro_derive(input: TokenStream) -> TokenStream {
let ast = parse_macro_input!(input as DeriveInput);
build(&ast)
}
/// The actual implementation.
fn build(ast: &DeriveInput) -> TokenStream {
match ast.data {
Data::Struct(ref s) => build_struct(ast, s),
Data::Enum(_) => unimplemented!("Deriving NetworkBehaviour is not implemented for enums"),
Data::Union(_) => unimplemented!("Deriving NetworkBehaviour is not implemented for unions"),
}
}
/// The version for structs
fn build_struct(ast: &DeriveInput, data_struct: &DataStruct) -> TokenStream {
let name = &ast.ident;
let (_, ty_generics, where_clause) = ast.generics.split_for_impl();
let prelude_path = parse_attribute_value_by_key::<syn::Path>(ast, "prelude")
.unwrap_or_else(|| syn::parse_quote! { ::libp2p::swarm::derive_prelude });
let multiaddr = quote! { #prelude_path::Multiaddr };
let trait_to_impl = quote! { #prelude_path::NetworkBehaviour };
let either_ident = quote! { #prelude_path::Either };
let network_behaviour_action = quote! { #prelude_path::NetworkBehaviourAction };
let into_connection_handler = quote! { #prelude_path::IntoConnectionHandler };
let connection_handler = quote! { #prelude_path::ConnectionHandler };
let into_proto_select_ident = quote! { #prelude_path::IntoConnectionHandlerSelect };
let peer_id = quote! { #prelude_path::PeerId };
let connection_id = quote! { #prelude_path::ConnectionId };
let poll_parameters = quote! { #prelude_path::PollParameters };
let from_swarm = quote! { #prelude_path::FromSwarm };
let connection_established = quote! { #prelude_path::ConnectionEstablished };
let address_change = quote! { #prelude_path::AddressChange };
let connection_closed = quote! { #prelude_path::ConnectionClosed };
let dial_failure = quote! { #prelude_path::DialFailure };
let listen_failure = quote! { #prelude_path::ListenFailure };
let new_listener = quote! { #prelude_path::NewListener };
let new_listen_addr = quote! { #prelude_path::NewListenAddr };
let expired_listen_addr = quote! { #prelude_path::ExpiredListenAddr };
let new_external_addr = quote! { #prelude_path::NewExternalAddr };
let expired_external_addr = quote! { #prelude_path::ExpiredExternalAddr };
let listener_error = quote! { #prelude_path::ListenerError };
let listener_closed = quote! { #prelude_path::ListenerClosed };
// Build the generics.
let impl_generics = {
let tp = ast.generics.type_params();
let lf = ast.generics.lifetimes();
let cst = ast.generics.const_params();
quote! {<#(#lf,)* #(#tp,)* #(#cst,)*>}
};
let (out_event_name, out_event_definition, out_event_from_clauses) = {
// If we find a `#[behaviour(out_event = "Foo")]` attribute on the
// struct, we set `Foo` as the out event. If not, the `OutEvent` is
// generated.
let user_provided_out_event_name =
parse_attribute_value_by_key::<syn::Type>(ast, "out_event");
match user_provided_out_event_name {
// User provided `OutEvent`.
Some(name) => {
let definition = None;
let from_clauses = data_struct
.fields
.iter()
.map(|field| {
let ty = &field.ty;
quote! {#name: From< <#ty as #trait_to_impl>::OutEvent >}
})
.collect::<Vec<_>>();
(name, definition, from_clauses)
}
// User did not provide `OutEvent`. Generate it.
None => {
let name: syn::Type = syn::parse_str(&(ast.ident.to_string() + "Event")).unwrap();
let definition = {
let fields = data_struct
.fields
.iter()
.map(|field| {
let variant: syn::Variant = syn::parse_str(
&field
.ident
.clone()
.expect(
"Fields of NetworkBehaviour implementation to be named.",
)
.to_string()
.to_upper_camel_case(),
)
.unwrap();
let ty = &field.ty;
quote! {#variant(<#ty as #trait_to_impl>::OutEvent)}
})
.collect::<Vec<_>>();
let visibility = &ast.vis;
Some(quote! {
#[derive(::std::fmt::Debug)]
#visibility enum #name #impl_generics
#where_clause
{
#(#fields),*
}
})
};
let from_clauses = vec![];
(name, definition, from_clauses)
}
}
};
// Build the `where ...` clause of the trait implementation.
let where_clause = {
let additional = data_struct
.fields
.iter()
.map(|field| {
let ty = &field.ty;
quote! {#ty: #trait_to_impl}
})
.chain(out_event_from_clauses)
.collect::<Vec<_>>();
if let Some(where_clause) = where_clause {
if where_clause.predicates.trailing_punct() {
Some(quote! {#where_clause #(#additional),* })
} else {
Some(quote! {#where_clause, #(#additional),*})
}
} else {
Some(quote! {where #(#additional),*})
}
};
// Build the list of statements to put in the body of `addresses_of_peer()`.
let addresses_of_peer_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(move |(field_n, field)| match field.ident {
Some(ref i) => quote! { out.extend(self.#i.addresses_of_peer(peer_id)); },
None => quote! { out.extend(self.#field_n.addresses_of_peer(peer_id)); },
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::ConnectionEstablished` variant.
let on_connection_established_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(|(field_n, field)| match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::ConnectionEstablished(#connection_established {
peer_id,
connection_id,
endpoint,
failed_addresses,
other_established,
}));
},
None => quote! {
self.#field_n.on_swarm_event(#from_swarm::ConnectionEstablished(#connection_established {
peer_id,
connection_id,
endpoint,
failed_addresses,
other_established,
}));
},
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::AddressChange variant`.
let on_address_change_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(|(field_n, field)| match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::AddressChange(#address_change {
peer_id,
connection_id,
old,
new,
}));
},
None => quote! {
self.#field_n.on_swarm_event(#from_swarm::AddressChange(#address_change {
peer_id,
connection_id,
old,
new,
}));
},
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::ConnectionClosed` variant.
let on_connection_closed_stmts = {
data_struct
.fields
.iter()
.enumerate()
// The outmost handler belongs to the last behaviour.
.rev()
.enumerate()
.map(|(enum_n, (field_n, field))| {
let handler = if field_n == 0 {
// Given that the iterator is reversed, this is the innermost handler only.
quote! { let handler = handlers }
} else {
quote! {
let (handlers, handler) = handlers.into_inner()
}
};
let inject = match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::ConnectionClosed(#connection_closed {
peer_id,
connection_id,
endpoint,
handler,
remaining_established,
}));
},
None => quote! {
self.#enum_n.on_swarm_event(#from_swarm::ConnectionClosed(#connection_closed {
peer_id,
connection_id,
endpoint,
handler,
remaining_established,
}));
},
};
quote! {
#handler;
#inject;
}
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::DialFailure` variant.
let on_dial_failure_stmts = {
data_struct
.fields
.iter()
.enumerate()
// The outmost handler belongs to the last behaviour.
.rev()
.enumerate()
.map(|(enum_n, (field_n, field))| {
let handler = if field_n == 0 {
// Given that the iterator is reversed, this is the innermost handler only.
quote! { let handler = handlers }
} else {
quote! {
let (handlers, handler) = handlers.into_inner()
}
};
let inject = match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::DialFailure(#dial_failure {
peer_id,
handler,
error,
}));
},
None => quote! {
self.#enum_n.on_swarm_event(#from_swarm::DialFailure(#dial_failure {
peer_id,
handler,
error,
}));
},
};
quote! {
#handler;
#inject;
}
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::ListenFailure` variant.
let on_listen_failure_stmts =
{
data_struct.fields.iter().enumerate().rev().enumerate().map(
|(enum_n, (field_n, field))| {
let handler = if field_n == 0 {
quote! { let handler = handlers }
} else {
quote! {
let (handlers, handler) = handlers.into_inner()
}
};
let inject = match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::ListenFailure(#listen_failure {
local_addr,
send_back_addr,
handler,
}));
},
None => quote! {
self.#enum_n.on_swarm_event(#from_swarm::ListenFailure(#listen_failure {
local_addr,
send_back_addr,
handler,
}));
},
};
quote! {
#handler;
#inject;
}
},
)
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::NewListener` variant.
let on_new_listener_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(|(field_n, field)| match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::NewListener(#new_listener {
listener_id,
}));
},
None => quote! {
self.#field_n.on_swarm_event(#from_swarm::NewListener(#new_listener {
listener_id,
}));
},
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::NewListenAddr` variant.
let on_new_listen_addr_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(|(field_n, field)| match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::NewListenAddr(#new_listen_addr {
listener_id,
addr,
}));
},
None => quote! {
self.#field_n.on_swarm_event(#from_swarm::NewListenAddr(#new_listen_addr {
listener_id,
addr,
}));
},
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::ExpiredListenAddr` variant.
let on_expired_listen_addr_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(|(field_n, field)| match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::ExpiredListenAddr(#expired_listen_addr {
listener_id,
addr,
}));
},
None => quote! {
self.#field_n.on_swarm_event(#from_swarm::ExpiredListenAddr(#expired_listen_addr {
listener_id,
addr,
}));
},
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::NewExternalAddr` variant.
let on_new_external_addr_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(|(field_n, field)| match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::NewExternalAddr(#new_external_addr {
addr,
}));
},
None => quote! {
self.#field_n.on_swarm_event(#from_swarm::NewExternalAddr(#new_external_addr {
addr,
}));
},
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::ExpiredExternalAddr` variant.
let on_expired_external_addr_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(|(field_n, field)| match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::ExpiredExternalAddr(#expired_external_addr {
addr,
}));
},
None => quote! {
self.#field_n.on_swarm_event(#from_swarm::ExpiredExternalAddr(#expired_external_addr {
addr,
}));
},
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::ListenerError` variant.
let on_listener_error_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(|(field_n, field)| match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::ListenerError(#listener_error {
listener_id,
err,
}));
},
None => quote! {
self.#field_n.on_swarm_event(#from_swarm::ListenerError(#listener_error {
listener_id,
err,
}));
},
})
};
// Build the list of statements to put in the body of `on_swarm_event()`
// for the `FromSwarm::ListenerClosed` variant.
let on_listener_closed_stmts = {
data_struct
.fields
.iter()
.enumerate()
.map(|(field_n, field)| match field.ident {
Some(ref i) => quote! {
self.#i.on_swarm_event(#from_swarm::ListenerClosed(#listener_closed {
listener_id,
reason,
}));
},
None => quote! {
self.#field_n.on_swarm_event(#from_swarm::ListenerClosed(#listener_closed {
listener_id,
reason,
}));
},
})
};
// Build the list of variants to put in the body of `on_connection_handler_event()`.
//
// The event type is a construction of nested `#either_ident`s of the events of the children.
// We call `on_connection_handler_event` on the corresponding child.
let on_node_event_stmts =
data_struct
.fields
.iter()
.enumerate()
.enumerate()
.map(|(enum_n, (field_n, field))| {
let mut elem = if enum_n != 0 {
quote! { #either_ident::Right(ev) }
} else {
quote! { ev }
};
for _ in 0..data_struct.fields.len() - 1 - enum_n {
elem = quote! { #either_ident::Left(#elem) };
}
Some(match field.ident {
Some(ref i) => quote! { #elem => {
#trait_to_impl::on_connection_handler_event(&mut self.#i, peer_id, connection_id, ev) }},
None => quote! { #elem => {
#trait_to_impl::on_connection_handler_event(&mut self.#field_n, peer_id, connection_id, ev) }},
})
});
// The [`ConnectionHandler`] associated type.
let connection_handler_ty = {
let mut ph_ty = None;
for field in data_struct.fields.iter() {
let ty = &field.ty;
let field_info = quote! { <#ty as #trait_to_impl>::ConnectionHandler };
match ph_ty {
Some(ev) => ph_ty = Some(quote! { #into_proto_select_ident<#ev, #field_info> }),
ref mut ev @ None => *ev = Some(field_info),
}
}
// ph_ty = Some(quote! )
ph_ty.unwrap_or(quote! {()}) // TODO: `!` instead
};
// The content of `new_handler()`.
// Example output: `self.field1.select(self.field2.select(self.field3))`.
let new_handler = {
let mut out_handler = None;
for (field_n, field) in data_struct.fields.iter().enumerate() {
let field_name = match field.ident {
Some(ref i) => quote! { self.#i },
None => quote! { self.#field_n },
};
let builder = quote! {
#field_name.new_handler()
};
match out_handler {
Some(h) => {
out_handler = Some(quote! { #into_connection_handler::select(#h, #builder) })
}
ref mut h @ None => *h = Some(builder),
}
}
out_handler.unwrap_or(quote! {()}) // TODO: See test `empty`.
};
// List of statements to put in `poll()`.
//
// We poll each child one by one and wrap around the output.
let poll_stmts = data_struct.fields.iter().enumerate().map(|(field_n, field)| {
let field = field
.ident
.clone()
.expect("Fields of NetworkBehaviour implementation to be named.");
let mut wrapped_event = if field_n != 0 {
quote!{ #either_ident::Right(event) }
} else {
quote!{ event }
};
for _ in 0 .. data_struct.fields.len() - 1 - field_n {
wrapped_event = quote!{ #either_ident::Left(#wrapped_event) };
}
// `Dial` provides a handler of the specific behaviour triggering the
// event. Though in order for the final handler to be able to handle
// protocols of all behaviours, the provided handler needs to be
// combined with handlers of all other behaviours.
let provided_handler_and_new_handlers = {
let mut out_handler = None;
for (f_n, f) in data_struct.fields.iter().enumerate() {
let f_name = match f.ident {
Some(ref i) => quote! { self.#i },
None => quote! { self.#f_n },
};
let builder = if field_n == f_n {
// The behaviour that triggered the event. Thus, instead of
// creating a new handler, use the provided handler.
quote! { provided_handler }
} else {
quote! { #f_name.new_handler() }
};
match out_handler {
Some(h) => {
out_handler = Some(quote! { #into_connection_handler::select(#h, #builder) })
}
ref mut h @ None => *h = Some(builder),
}
}
out_handler.unwrap_or(quote! {()}) // TODO: See test `empty`.
};
let generate_event_match_arm = {
// If the `NetworkBehaviour`'s `OutEvent` is generated by the derive macro, wrap the sub
// `NetworkBehaviour` `OutEvent` in the variant of the generated `OutEvent`. If the
// `NetworkBehaviour`'s `OutEvent` is provided by the user, use the corresponding `From`
// implementation.
let into_out_event = if out_event_definition.is_some() {
let event_variant: syn::Variant = syn::parse_str(
&field
.to_string()
.to_upper_camel_case()
).unwrap();
quote! { #out_event_name::#event_variant(event) }
} else {
quote! { event.into() }
};
quote! {
std::task::Poll::Ready(#network_behaviour_action::GenerateEvent(event)) => {
return std::task::Poll::Ready(#network_behaviour_action::GenerateEvent(#into_out_event))
}
}
};
Some(quote!{
loop {
match #trait_to_impl::poll(&mut self.#field, cx, poll_params) {
#generate_event_match_arm
std::task::Poll::Ready(#network_behaviour_action::Dial { opts, handler: provided_handler }) => {
return std::task::Poll::Ready(#network_behaviour_action::Dial { opts, handler: #provided_handler_and_new_handlers });
}
std::task::Poll::Ready(#network_behaviour_action::NotifyHandler { peer_id, handler, event }) => {
return std::task::Poll::Ready(#network_behaviour_action::NotifyHandler {
peer_id,
handler,
event: #wrapped_event,
});
}
std::task::Poll::Ready(#network_behaviour_action::ReportObservedAddr { address, score }) => {
return std::task::Poll::Ready(#network_behaviour_action::ReportObservedAddr { address, score });
}
std::task::Poll::Ready(#network_behaviour_action::CloseConnection { peer_id, connection }) => {
return std::task::Poll::Ready(#network_behaviour_action::CloseConnection { peer_id, connection });
}
std::task::Poll::Pending => break,
}
}
})
});
let out_event_reference = if out_event_definition.is_some() {
quote! { #out_event_name #ty_generics }
} else {
quote! { #out_event_name }
};
// Now the magic happens.
let final_quote = quote! {
#out_event_definition
impl #impl_generics #trait_to_impl for #name #ty_generics
#where_clause
{
type ConnectionHandler = #connection_handler_ty;
type OutEvent = #out_event_reference;
fn new_handler(&mut self) -> Self::ConnectionHandler {
use #into_connection_handler;
#new_handler
}
fn addresses_of_peer(&mut self, peer_id: &#peer_id) -> Vec<#multiaddr> {
let mut out = Vec::new();
#(#addresses_of_peer_stmts);*
out
}
fn on_connection_handler_event(
&mut self,
peer_id: #peer_id,
connection_id: #connection_id,
event: <<Self::ConnectionHandler as #into_connection_handler>::Handler as #connection_handler>::OutEvent
) {
match event {
#(#on_node_event_stmts),*
}
}
fn poll(&mut self, cx: &mut std::task::Context, poll_params: &mut impl #poll_parameters) -> std::task::Poll<#network_behaviour_action<Self::OutEvent, Self::ConnectionHandler>> {
use #prelude_path::futures::*;
#(#poll_stmts)*
std::task::Poll::Pending
}
fn on_swarm_event(&mut self, event: #from_swarm<Self::ConnectionHandler>) {
match event {
#from_swarm::ConnectionEstablished(
#connection_established { peer_id, connection_id, endpoint, failed_addresses, other_established })
=> { #(#on_connection_established_stmts)* }
#from_swarm::AddressChange(
#address_change { peer_id, connection_id, old, new })
=> { #(#on_address_change_stmts)* }
#from_swarm::ConnectionClosed(
#connection_closed { peer_id, connection_id, endpoint, handler: handlers, remaining_established })
=> { #(#on_connection_closed_stmts)* }
#from_swarm::DialFailure(
#dial_failure { peer_id, handler: handlers, error })
=> { #(#on_dial_failure_stmts)* }
#from_swarm::ListenFailure(
#listen_failure { local_addr, send_back_addr, handler: handlers })
=> { #(#on_listen_failure_stmts)* }
#from_swarm::NewListener(
#new_listener { listener_id })
=> { #(#on_new_listener_stmts)* }
#from_swarm::NewListenAddr(
#new_listen_addr { listener_id, addr })
=> { #(#on_new_listen_addr_stmts)* }
#from_swarm::ExpiredListenAddr(
#expired_listen_addr { listener_id, addr })
=> { #(#on_expired_listen_addr_stmts)* }
#from_swarm::NewExternalAddr(
#new_external_addr { addr })
=> { #(#on_new_external_addr_stmts)* }
#from_swarm::ExpiredExternalAddr(
#expired_external_addr { addr })
=> { #(#on_expired_external_addr_stmts)* }
#from_swarm::ListenerError(
#listener_error { listener_id, err })
=> { #(#on_listener_error_stmts)* }
#from_swarm::ListenerClosed(
#listener_closed { listener_id, reason })
=> { #(#on_listener_closed_stmts)* }
_ => {}
}
}
}
};
final_quote.into()
}
/// Parses the `value` of a key=value pair in the `#[behaviour]` attribute into the requested type.
///
/// Only `String` values are supported, e.g. `#[behaviour(foo="bar")]`.
fn parse_attribute_value_by_key<T>(ast: &DeriveInput, key: &str) -> Option<T>
where
T: Parse,
{
ast.attrs
.iter()
.filter_map(get_meta_items)
.flatten()
.filter_map(|meta_item| {
if let syn::NestedMeta::Meta(syn::Meta::NameValue(ref m)) = meta_item {
if m.path.is_ident(key) {
if let syn::Lit::Str(ref s) = m.lit {
return Some(syn::parse_str(&s.value()).unwrap());
}
}
}
None
})
.next()
}
fn get_meta_items(attr: &syn::Attribute) -> Option<Vec<syn::NestedMeta>> {
if attr.path.segments.len() == 1 && attr.path.segments[0].ident == "behaviour" {
match attr.parse_meta() {
Ok(syn::Meta::List(ref meta)) => Some(meta.nested.iter().cloned().collect()),
Ok(_) => None,
Err(e) => {
eprintln!("error parsing attribute metadata: {e}");
None
}
}
} else {
None
}
}