// Copyright 2018 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #![recursion_limit = "256"] #![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))] use heck::ToUpperCamelCase; use proc_macro::TokenStream; use quote::quote; use syn::parse::Parse; use syn::{parse_macro_input, Data, DataStruct, DeriveInput}; /// Generates a delegating `NetworkBehaviour` implementation for the struct this is used for. See /// the trait documentation for better description. #[proc_macro_derive(NetworkBehaviour, attributes(behaviour))] pub fn hello_macro_derive(input: TokenStream) -> TokenStream { let ast = parse_macro_input!(input as DeriveInput); build(&ast) } /// The actual implementation. fn build(ast: &DeriveInput) -> TokenStream { match ast.data { Data::Struct(ref s) => build_struct(ast, s), Data::Enum(_) => unimplemented!("Deriving NetworkBehaviour is not implemented for enums"), Data::Union(_) => unimplemented!("Deriving NetworkBehaviour is not implemented for unions"), } } /// The version for structs fn build_struct(ast: &DeriveInput, data_struct: &DataStruct) -> TokenStream { let name = &ast.ident; let (_, ty_generics, where_clause) = ast.generics.split_for_impl(); let prelude_path = parse_attribute_value_by_key::(ast, "prelude") .unwrap_or_else(|| syn::parse_quote! { ::libp2p::swarm::derive_prelude }); let multiaddr = quote! { #prelude_path::Multiaddr }; let trait_to_impl = quote! { #prelude_path::NetworkBehaviour }; let either_ident = quote! { #prelude_path::Either }; let network_behaviour_action = quote! { #prelude_path::NetworkBehaviourAction }; let into_connection_handler = quote! { #prelude_path::IntoConnectionHandler }; let connection_handler = quote! { #prelude_path::ConnectionHandler }; let into_proto_select_ident = quote! { #prelude_path::IntoConnectionHandlerSelect }; let peer_id = quote! { #prelude_path::PeerId }; let connection_id = quote! { #prelude_path::ConnectionId }; let poll_parameters = quote! { #prelude_path::PollParameters }; let from_swarm = quote! { #prelude_path::FromSwarm }; let connection_established = quote! { #prelude_path::ConnectionEstablished }; let address_change = quote! { #prelude_path::AddressChange }; let connection_closed = quote! { #prelude_path::ConnectionClosed }; let dial_failure = quote! { #prelude_path::DialFailure }; let listen_failure = quote! { #prelude_path::ListenFailure }; let new_listener = quote! { #prelude_path::NewListener }; let new_listen_addr = quote! { #prelude_path::NewListenAddr }; let expired_listen_addr = quote! { #prelude_path::ExpiredListenAddr }; let new_external_addr = quote! { #prelude_path::NewExternalAddr }; let expired_external_addr = quote! { #prelude_path::ExpiredExternalAddr }; let listener_error = quote! { #prelude_path::ListenerError }; let listener_closed = quote! { #prelude_path::ListenerClosed }; // Build the generics. let impl_generics = { let tp = ast.generics.type_params(); let lf = ast.generics.lifetimes(); let cst = ast.generics.const_params(); quote! {<#(#lf,)* #(#tp,)* #(#cst,)*>} }; let (out_event_name, out_event_definition, out_event_from_clauses) = { // If we find a `#[behaviour(out_event = "Foo")]` attribute on the // struct, we set `Foo` as the out event. If not, the `OutEvent` is // generated. let user_provided_out_event_name = parse_attribute_value_by_key::(ast, "out_event"); match user_provided_out_event_name { // User provided `OutEvent`. Some(name) => { let definition = None; let from_clauses = data_struct .fields .iter() .map(|field| { let ty = &field.ty; quote! {#name: From< <#ty as #trait_to_impl>::OutEvent >} }) .collect::>(); (name, definition, from_clauses) } // User did not provide `OutEvent`. Generate it. None => { let name: syn::Type = syn::parse_str(&(ast.ident.to_string() + "Event")).unwrap(); let definition = { let fields = data_struct .fields .iter() .map(|field| { let variant: syn::Variant = syn::parse_str( &field .ident .clone() .expect( "Fields of NetworkBehaviour implementation to be named.", ) .to_string() .to_upper_camel_case(), ) .unwrap(); let ty = &field.ty; quote! {#variant(<#ty as #trait_to_impl>::OutEvent)} }) .collect::>(); let visibility = &ast.vis; Some(quote! { #[derive(::std::fmt::Debug)] #visibility enum #name #impl_generics #where_clause { #(#fields),* } }) }; let from_clauses = vec![]; (name, definition, from_clauses) } } }; // Build the `where ...` clause of the trait implementation. let where_clause = { let additional = data_struct .fields .iter() .map(|field| { let ty = &field.ty; quote! {#ty: #trait_to_impl} }) .chain(out_event_from_clauses) .collect::>(); if let Some(where_clause) = where_clause { if where_clause.predicates.trailing_punct() { Some(quote! {#where_clause #(#additional),* }) } else { Some(quote! {#where_clause, #(#additional),*}) } } else { Some(quote! {where #(#additional),*}) } }; // Build the list of statements to put in the body of `addresses_of_peer()`. let addresses_of_peer_stmts = { data_struct .fields .iter() .enumerate() .map(move |(field_n, field)| match field.ident { Some(ref i) => quote! { out.extend(self.#i.addresses_of_peer(peer_id)); }, None => quote! { out.extend(self.#field_n.addresses_of_peer(peer_id)); }, }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::ConnectionEstablished` variant. let on_connection_established_stmts = { data_struct .fields .iter() .enumerate() .map(|(field_n, field)| match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::ConnectionEstablished(#connection_established { peer_id, connection_id, endpoint, failed_addresses, other_established, })); }, None => quote! { self.#field_n.on_swarm_event(#from_swarm::ConnectionEstablished(#connection_established { peer_id, connection_id, endpoint, failed_addresses, other_established, })); }, }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::AddressChange variant`. let on_address_change_stmts = { data_struct .fields .iter() .enumerate() .map(|(field_n, field)| match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::AddressChange(#address_change { peer_id, connection_id, old, new, })); }, None => quote! { self.#field_n.on_swarm_event(#from_swarm::AddressChange(#address_change { peer_id, connection_id, old, new, })); }, }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::ConnectionClosed` variant. let on_connection_closed_stmts = { data_struct .fields .iter() .enumerate() // The outmost handler belongs to the last behaviour. .rev() .enumerate() .map(|(enum_n, (field_n, field))| { let handler = if field_n == 0 { // Given that the iterator is reversed, this is the innermost handler only. quote! { let handler = handlers } } else { quote! { let (handlers, handler) = handlers.into_inner() } }; let inject = match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::ConnectionClosed(#connection_closed { peer_id, connection_id, endpoint, handler, remaining_established, })); }, None => quote! { self.#enum_n.on_swarm_event(#from_swarm::ConnectionClosed(#connection_closed { peer_id, connection_id, endpoint, handler, remaining_established, })); }, }; quote! { #handler; #inject; } }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::DialFailure` variant. let on_dial_failure_stmts = { data_struct .fields .iter() .enumerate() // The outmost handler belongs to the last behaviour. .rev() .enumerate() .map(|(enum_n, (field_n, field))| { let handler = if field_n == 0 { // Given that the iterator is reversed, this is the innermost handler only. quote! { let handler = handlers } } else { quote! { let (handlers, handler) = handlers.into_inner() } }; let inject = match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::DialFailure(#dial_failure { peer_id, handler, error, })); }, None => quote! { self.#enum_n.on_swarm_event(#from_swarm::DialFailure(#dial_failure { peer_id, handler, error, })); }, }; quote! { #handler; #inject; } }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::ListenFailure` variant. let on_listen_failure_stmts = { data_struct.fields.iter().enumerate().rev().enumerate().map( |(enum_n, (field_n, field))| { let handler = if field_n == 0 { quote! { let handler = handlers } } else { quote! { let (handlers, handler) = handlers.into_inner() } }; let inject = match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::ListenFailure(#listen_failure { local_addr, send_back_addr, handler, })); }, None => quote! { self.#enum_n.on_swarm_event(#from_swarm::ListenFailure(#listen_failure { local_addr, send_back_addr, handler, })); }, }; quote! { #handler; #inject; } }, ) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::NewListener` variant. let on_new_listener_stmts = { data_struct .fields .iter() .enumerate() .map(|(field_n, field)| match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::NewListener(#new_listener { listener_id, })); }, None => quote! { self.#field_n.on_swarm_event(#from_swarm::NewListener(#new_listener { listener_id, })); }, }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::NewListenAddr` variant. let on_new_listen_addr_stmts = { data_struct .fields .iter() .enumerate() .map(|(field_n, field)| match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::NewListenAddr(#new_listen_addr { listener_id, addr, })); }, None => quote! { self.#field_n.on_swarm_event(#from_swarm::NewListenAddr(#new_listen_addr { listener_id, addr, })); }, }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::ExpiredListenAddr` variant. let on_expired_listen_addr_stmts = { data_struct .fields .iter() .enumerate() .map(|(field_n, field)| match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::ExpiredListenAddr(#expired_listen_addr { listener_id, addr, })); }, None => quote! { self.#field_n.on_swarm_event(#from_swarm::ExpiredListenAddr(#expired_listen_addr { listener_id, addr, })); }, }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::NewExternalAddr` variant. let on_new_external_addr_stmts = { data_struct .fields .iter() .enumerate() .map(|(field_n, field)| match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::NewExternalAddr(#new_external_addr { addr, })); }, None => quote! { self.#field_n.on_swarm_event(#from_swarm::NewExternalAddr(#new_external_addr { addr, })); }, }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::ExpiredExternalAddr` variant. let on_expired_external_addr_stmts = { data_struct .fields .iter() .enumerate() .map(|(field_n, field)| match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::ExpiredExternalAddr(#expired_external_addr { addr, })); }, None => quote! { self.#field_n.on_swarm_event(#from_swarm::ExpiredExternalAddr(#expired_external_addr { addr, })); }, }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::ListenerError` variant. let on_listener_error_stmts = { data_struct .fields .iter() .enumerate() .map(|(field_n, field)| match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::ListenerError(#listener_error { listener_id, err, })); }, None => quote! { self.#field_n.on_swarm_event(#from_swarm::ListenerError(#listener_error { listener_id, err, })); }, }) }; // Build the list of statements to put in the body of `on_swarm_event()` // for the `FromSwarm::ListenerClosed` variant. let on_listener_closed_stmts = { data_struct .fields .iter() .enumerate() .map(|(field_n, field)| match field.ident { Some(ref i) => quote! { self.#i.on_swarm_event(#from_swarm::ListenerClosed(#listener_closed { listener_id, reason, })); }, None => quote! { self.#field_n.on_swarm_event(#from_swarm::ListenerClosed(#listener_closed { listener_id, reason, })); }, }) }; // Build the list of variants to put in the body of `on_connection_handler_event()`. // // The event type is a construction of nested `#either_ident`s of the events of the children. // We call `on_connection_handler_event` on the corresponding child. let on_node_event_stmts = data_struct .fields .iter() .enumerate() .enumerate() .map(|(enum_n, (field_n, field))| { let mut elem = if enum_n != 0 { quote! { #either_ident::Right(ev) } } else { quote! { ev } }; for _ in 0..data_struct.fields.len() - 1 - enum_n { elem = quote! { #either_ident::Left(#elem) }; } Some(match field.ident { Some(ref i) => quote! { #elem => { #trait_to_impl::on_connection_handler_event(&mut self.#i, peer_id, connection_id, ev) }}, None => quote! { #elem => { #trait_to_impl::on_connection_handler_event(&mut self.#field_n, peer_id, connection_id, ev) }}, }) }); // The [`ConnectionHandler`] associated type. let connection_handler_ty = { let mut ph_ty = None; for field in data_struct.fields.iter() { let ty = &field.ty; let field_info = quote! { <#ty as #trait_to_impl>::ConnectionHandler }; match ph_ty { Some(ev) => ph_ty = Some(quote! { #into_proto_select_ident<#ev, #field_info> }), ref mut ev @ None => *ev = Some(field_info), } } // ph_ty = Some(quote! ) ph_ty.unwrap_or(quote! {()}) // TODO: `!` instead }; // The content of `new_handler()`. // Example output: `self.field1.select(self.field2.select(self.field3))`. let new_handler = { let mut out_handler = None; for (field_n, field) in data_struct.fields.iter().enumerate() { let field_name = match field.ident { Some(ref i) => quote! { self.#i }, None => quote! { self.#field_n }, }; let builder = quote! { #field_name.new_handler() }; match out_handler { Some(h) => { out_handler = Some(quote! { #into_connection_handler::select(#h, #builder) }) } ref mut h @ None => *h = Some(builder), } } out_handler.unwrap_or(quote! {()}) // TODO: See test `empty`. }; // List of statements to put in `poll()`. // // We poll each child one by one and wrap around the output. let poll_stmts = data_struct.fields.iter().enumerate().map(|(field_n, field)| { let field = field .ident .clone() .expect("Fields of NetworkBehaviour implementation to be named."); let mut wrapped_event = if field_n != 0 { quote!{ #either_ident::Right(event) } } else { quote!{ event } }; for _ in 0 .. data_struct.fields.len() - 1 - field_n { wrapped_event = quote!{ #either_ident::Left(#wrapped_event) }; } // `Dial` provides a handler of the specific behaviour triggering the // event. Though in order for the final handler to be able to handle // protocols of all behaviours, the provided handler needs to be // combined with handlers of all other behaviours. let provided_handler_and_new_handlers = { let mut out_handler = None; for (f_n, f) in data_struct.fields.iter().enumerate() { let f_name = match f.ident { Some(ref i) => quote! { self.#i }, None => quote! { self.#f_n }, }; let builder = if field_n == f_n { // The behaviour that triggered the event. Thus, instead of // creating a new handler, use the provided handler. quote! { provided_handler } } else { quote! { #f_name.new_handler() } }; match out_handler { Some(h) => { out_handler = Some(quote! { #into_connection_handler::select(#h, #builder) }) } ref mut h @ None => *h = Some(builder), } } out_handler.unwrap_or(quote! {()}) // TODO: See test `empty`. }; let generate_event_match_arm = { // If the `NetworkBehaviour`'s `OutEvent` is generated by the derive macro, wrap the sub // `NetworkBehaviour` `OutEvent` in the variant of the generated `OutEvent`. If the // `NetworkBehaviour`'s `OutEvent` is provided by the user, use the corresponding `From` // implementation. let into_out_event = if out_event_definition.is_some() { let event_variant: syn::Variant = syn::parse_str( &field .to_string() .to_upper_camel_case() ).unwrap(); quote! { #out_event_name::#event_variant(event) } } else { quote! { event.into() } }; quote! { std::task::Poll::Ready(#network_behaviour_action::GenerateEvent(event)) => { return std::task::Poll::Ready(#network_behaviour_action::GenerateEvent(#into_out_event)) } } }; Some(quote!{ loop { match #trait_to_impl::poll(&mut self.#field, cx, poll_params) { #generate_event_match_arm std::task::Poll::Ready(#network_behaviour_action::Dial { opts, handler: provided_handler }) => { return std::task::Poll::Ready(#network_behaviour_action::Dial { opts, handler: #provided_handler_and_new_handlers }); } std::task::Poll::Ready(#network_behaviour_action::NotifyHandler { peer_id, handler, event }) => { return std::task::Poll::Ready(#network_behaviour_action::NotifyHandler { peer_id, handler, event: #wrapped_event, }); } std::task::Poll::Ready(#network_behaviour_action::ReportObservedAddr { address, score }) => { return std::task::Poll::Ready(#network_behaviour_action::ReportObservedAddr { address, score }); } std::task::Poll::Ready(#network_behaviour_action::CloseConnection { peer_id, connection }) => { return std::task::Poll::Ready(#network_behaviour_action::CloseConnection { peer_id, connection }); } std::task::Poll::Pending => break, } } }) }); let out_event_reference = if out_event_definition.is_some() { quote! { #out_event_name #ty_generics } } else { quote! { #out_event_name } }; // Now the magic happens. let final_quote = quote! { #out_event_definition impl #impl_generics #trait_to_impl for #name #ty_generics #where_clause { type ConnectionHandler = #connection_handler_ty; type OutEvent = #out_event_reference; fn new_handler(&mut self) -> Self::ConnectionHandler { use #into_connection_handler; #new_handler } fn addresses_of_peer(&mut self, peer_id: &#peer_id) -> Vec<#multiaddr> { let mut out = Vec::new(); #(#addresses_of_peer_stmts);* out } fn on_connection_handler_event( &mut self, peer_id: #peer_id, connection_id: #connection_id, event: <::Handler as #connection_handler>::OutEvent ) { match event { #(#on_node_event_stmts),* } } fn poll(&mut self, cx: &mut std::task::Context, poll_params: &mut impl #poll_parameters) -> std::task::Poll<#network_behaviour_action> { use #prelude_path::futures::*; #(#poll_stmts)* std::task::Poll::Pending } fn on_swarm_event(&mut self, event: #from_swarm) { match event { #from_swarm::ConnectionEstablished( #connection_established { peer_id, connection_id, endpoint, failed_addresses, other_established }) => { #(#on_connection_established_stmts)* } #from_swarm::AddressChange( #address_change { peer_id, connection_id, old, new }) => { #(#on_address_change_stmts)* } #from_swarm::ConnectionClosed( #connection_closed { peer_id, connection_id, endpoint, handler: handlers, remaining_established }) => { #(#on_connection_closed_stmts)* } #from_swarm::DialFailure( #dial_failure { peer_id, handler: handlers, error }) => { #(#on_dial_failure_stmts)* } #from_swarm::ListenFailure( #listen_failure { local_addr, send_back_addr, handler: handlers }) => { #(#on_listen_failure_stmts)* } #from_swarm::NewListener( #new_listener { listener_id }) => { #(#on_new_listener_stmts)* } #from_swarm::NewListenAddr( #new_listen_addr { listener_id, addr }) => { #(#on_new_listen_addr_stmts)* } #from_swarm::ExpiredListenAddr( #expired_listen_addr { listener_id, addr }) => { #(#on_expired_listen_addr_stmts)* } #from_swarm::NewExternalAddr( #new_external_addr { addr }) => { #(#on_new_external_addr_stmts)* } #from_swarm::ExpiredExternalAddr( #expired_external_addr { addr }) => { #(#on_expired_external_addr_stmts)* } #from_swarm::ListenerError( #listener_error { listener_id, err }) => { #(#on_listener_error_stmts)* } #from_swarm::ListenerClosed( #listener_closed { listener_id, reason }) => { #(#on_listener_closed_stmts)* } _ => {} } } } }; final_quote.into() } /// Parses the `value` of a key=value pair in the `#[behaviour]` attribute into the requested type. /// /// Only `String` values are supported, e.g. `#[behaviour(foo="bar")]`. fn parse_attribute_value_by_key(ast: &DeriveInput, key: &str) -> Option where T: Parse, { ast.attrs .iter() .filter_map(get_meta_items) .flatten() .filter_map(|meta_item| { if let syn::NestedMeta::Meta(syn::Meta::NameValue(ref m)) = meta_item { if m.path.is_ident(key) { if let syn::Lit::Str(ref s) = m.lit { return Some(syn::parse_str(&s.value()).unwrap()); } } } None }) .next() } fn get_meta_items(attr: &syn::Attribute) -> Option> { if attr.path.segments.len() == 1 && attr.path.segments[0].ident == "behaviour" { match attr.parse_meta() { Ok(syn::Meta::List(ref meta)) => Some(meta.nested.iter().cloned().collect()), Ok(_) => None, Err(e) => { eprintln!("error parsing attribute metadata: {e}"); None } } } else { None } }