Finish PeerId inlining change (#1413)

* Add peer id inlining for small public keys

* Apply @twittner suggestions

* Make PeerId compare equal accross hashes

* Fix mDNS

* Remove useless functions

* Add property test

Co-authored-by: Age Manning <Age@AgeManning.com>
This commit is contained in:
Pierre Krieger 2020-01-29 11:33:19 +01:00 committed by GitHub
parent f5e7461cec
commit b964cacfa4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 128 additions and 52 deletions

View File

@ -22,19 +22,17 @@ use crate::PublicKey;
use bs58; use bs58;
use thiserror::Error; use thiserror::Error;
use multihash; use multihash;
use std::{convert::TryFrom, fmt, str::FromStr}; use std::{convert::TryFrom, fmt, hash, str::FromStr};
/// Public keys with byte-lengths smaller than `MAX_INLINE_KEY_LENGTH` will be /// Public keys with byte-lengths smaller than `MAX_INLINE_KEY_LENGTH` will be
/// automatically used as the peer id using an identity multihash. /// automatically used as the peer id using an identity multihash.
// const MAX_INLINE_KEY_LENGTH: usize = 42;
// Note: see `from_public_key` for how this value will be used in the future.
const _MAX_INLINE_KEY_LENGTH: usize = 42;
/// Identifier of a peer of the network. /// Identifier of a peer of the network.
/// ///
/// The data is a multihash of the public key of the peer. /// The data is a multihash of the public key of the peer.
// TODO: maybe keep things in decoded version? // TODO: maybe keep things in decoded version?
#[derive(Clone, PartialEq, Eq, Hash)] #[derive(Clone, Eq)]
pub struct PeerId { pub struct PeerId {
multihash: multihash::Multihash, multihash: multihash::Multihash,
} }
@ -55,24 +53,21 @@ impl fmt::Display for PeerId {
impl PeerId { impl PeerId {
/// Builds a `PeerId` from a public key. /// Builds a `PeerId` from a public key.
#[inline]
pub fn from_public_key(key: PublicKey) -> PeerId { pub fn from_public_key(key: PublicKey) -> PeerId {
let key_enc = key.into_protobuf_encoding(); let key_enc = key.into_protobuf_encoding();
// Note: the correct behaviour, according to the libp2p specifications, is the // Note: before 0.12, this was incorrectly implemented and `SHA2256` was always used.
// commented-out code, which consists it transmitting small keys un-hashed. However, this // Starting from version 0.13, rust-libp2p accepts both hashed and non-hashed keys as
// version and all previous versions of rust-libp2p always hash the key. Starting from // input (see `from_bytes`). Starting from version 0.16, rust-libp2p will switch to
// version 0.13, rust-libp2p accepts both hashed and non-hashed keys as input // not hashing the key (a.k.a. the correct behaviour).
// (see `from_bytes`). Starting from version 0.14, rust-libp2p will switch to not hashing
// the key (a.k.a. the correct behaviour).
// In other words, rust-libp2p 0.13 is compatible with all versions of rust-libp2p. // In other words, rust-libp2p 0.13 is compatible with all versions of rust-libp2p.
// Rust-libp2p 0.12 and below is **NOT** compatible with rust-libp2p 0.14 and above. // Rust-libp2p 0.12 and below is **NOT** compatible with rust-libp2p 0.16 and above.
/*let hash_algorithm = if key_enc.len() <= MAX_INLINE_KEY_LENGTH { let hash_algorithm = if key_enc.len() <= MAX_INLINE_KEY_LENGTH {
multihash::Hash::Identity multihash::Hash::Identity
} else { } else {
multihash::Hash::SHA2256 multihash::Hash::SHA2256
};*/ };
let hash_algorithm = multihash::Hash::SHA2256;
let multihash = multihash::encode(hash_algorithm, &key_enc) let multihash = multihash::encode(hash_algorithm, &key_enc)
.expect("identity and sha2-256 are always supported by known public key types"); .expect("identity and sha2-256 are always supported by known public key types");
PeerId { multihash } PeerId { multihash }
@ -80,7 +75,6 @@ impl PeerId {
/// Checks whether `data` is a valid `PeerId`. If so, returns the `PeerId`. If not, returns /// Checks whether `data` is a valid `PeerId`. If so, returns the `PeerId`. If not, returns
/// back the data as an error. /// back the data as an error.
#[inline]
pub fn from_bytes(data: Vec<u8>) -> Result<PeerId, Vec<u8>> { pub fn from_bytes(data: Vec<u8>) -> Result<PeerId, Vec<u8>> {
match multihash::Multihash::from_bytes(data) { match multihash::Multihash::from_bytes(data) {
Ok(multihash) => { Ok(multihash) => {
@ -98,7 +92,6 @@ impl PeerId {
/// Turns a `Multihash` into a `PeerId`. If the multihash doesn't use the correct algorithm, /// Turns a `Multihash` into a `PeerId`. If the multihash doesn't use the correct algorithm,
/// returns back the data as an error. /// returns back the data as an error.
#[inline]
pub fn from_multihash(data: multihash::Multihash) -> Result<PeerId, multihash::Multihash> { pub fn from_multihash(data: multihash::Multihash) -> Result<PeerId, multihash::Multihash> {
if data.algorithm() == multihash::Hash::SHA2256 || data.algorithm() == multihash::Hash::Identity { if data.algorithm() == multihash::Hash::SHA2256 || data.algorithm() == multihash::Hash::Identity {
Ok(PeerId { multihash: data }) Ok(PeerId { multihash: data })
@ -110,7 +103,6 @@ impl PeerId {
/// Generates a random peer ID from a cryptographically secure PRNG. /// Generates a random peer ID from a cryptographically secure PRNG.
/// ///
/// This is useful for randomly walking on a DHT, or for testing purposes. /// This is useful for randomly walking on a DHT, or for testing purposes.
#[inline]
pub fn random() -> PeerId { pub fn random() -> PeerId {
PeerId { PeerId {
multihash: multihash::Multihash::random(multihash::Hash::SHA2256) multihash: multihash::Multihash::random(multihash::Hash::SHA2256)
@ -120,7 +112,6 @@ impl PeerId {
/// Returns a raw bytes representation of this `PeerId`. /// Returns a raw bytes representation of this `PeerId`.
/// ///
/// Note that this is not the same as the public key of the peer. /// Note that this is not the same as the public key of the peer.
#[inline]
pub fn into_bytes(self) -> Vec<u8> { pub fn into_bytes(self) -> Vec<u8> {
self.multihash.into_bytes() self.multihash.into_bytes()
} }
@ -128,23 +119,15 @@ impl PeerId {
/// Returns a raw bytes representation of this `PeerId`. /// Returns a raw bytes representation of this `PeerId`.
/// ///
/// Note that this is not the same as the public key of the peer. /// Note that this is not the same as the public key of the peer.
#[inline]
pub fn as_bytes(&self) -> &[u8] { pub fn as_bytes(&self) -> &[u8] {
self.multihash.as_bytes() self.multihash.as_bytes()
} }
/// Returns a base-58 encoded string of this `PeerId`. /// Returns a base-58 encoded string of this `PeerId`.
#[inline]
pub fn to_base58(&self) -> String { pub fn to_base58(&self) -> String {
bs58::encode(self.multihash.as_bytes()).into_string() bs58::encode(self.multihash.as_bytes()).into_string()
} }
/// Returns the raw bytes of the hash of this `PeerId`.
#[inline]
pub fn digest(&self) -> &[u8] {
self.multihash.digest()
}
/// Checks whether the public key passed as parameter matches the public key of this `PeerId`. /// Checks whether the public key passed as parameter matches the public key of this `PeerId`.
/// ///
/// Returns `None` if this `PeerId`s hash algorithm is not supported when encoding the /// Returns `None` if this `PeerId`s hash algorithm is not supported when encoding the
@ -160,6 +143,25 @@ impl PeerId {
} }
} }
impl hash::Hash for PeerId {
fn hash<H>(&self, state: &mut H)
where
H: hash::Hasher
{
match self.multihash.algorithm() {
multihash::Hash::Identity => {
let sha256 = multihash::encode(multihash::Hash::SHA2256, self.multihash.digest())
.expect("encoding a SHA2256 multihash never fails; qed");
hash::Hash::hash(sha256.digest(), state)
},
multihash::Hash::SHA2256 => {
hash::Hash::hash(self.multihash.digest(), state)
},
_ => unreachable!("PeerId can only be built from Identity or SHA2256; qed")
}
}
}
impl From<PublicKey> for PeerId { impl From<PublicKey> for PeerId {
#[inline] #[inline]
fn from(key: PublicKey) -> PeerId { fn from(key: PublicKey) -> PeerId {
@ -183,38 +185,45 @@ impl TryFrom<multihash::Multihash> for PeerId {
} }
} }
impl PartialEq<multihash::Multihash> for PeerId { impl PartialEq<PeerId> for PeerId {
#[inline]
fn eq(&self, other: &multihash::Multihash) -> bool {
&self.multihash == other
}
}
impl PartialEq<PeerId> for multihash::Multihash {
#[inline]
fn eq(&self, other: &PeerId) -> bool { fn eq(&self, other: &PeerId) -> bool {
self == &other.multihash match (self.multihash.algorithm(), other.multihash.algorithm()) {
} (multihash::Hash::SHA2256, multihash::Hash::SHA2256) => {
} self.multihash.digest() == other.multihash.digest()
},
impl AsRef<multihash::Multihash> for PeerId { (multihash::Hash::Identity, multihash::Hash::Identity) => {
#[inline] self.multihash.digest() == other.multihash.digest()
fn as_ref(&self) -> &multihash::Multihash { },
&self.multihash (multihash::Hash::SHA2256, multihash::Hash::Identity) => {
multihash::encode(multihash::Hash::SHA2256, other.multihash.digest())
.map(|mh| mh == self.multihash)
.unwrap_or(false)
},
(multihash::Hash::Identity, multihash::Hash::SHA2256) => {
multihash::encode(multihash::Hash::SHA2256, self.multihash.digest())
.map(|mh| mh == other.multihash)
.unwrap_or(false)
},
_ => false
}
} }
} }
// TODO: The semantics of that function aren't very precise. It is possible for two `PeerId`s to
// compare equal while their bytes representation are not. Right now, this `AsRef`
// implementation is only used to define precedence over two `PeerId`s in case of a
// simultaneous connection between two nodes. Since the simultaneous connection system
// is planned to be removed (https://github.com/libp2p/rust-libp2p/issues/912), we went for
// we keeping that function with the intent of removing it as soon as possible.
impl AsRef<[u8]> for PeerId { impl AsRef<[u8]> for PeerId {
#[inline]
fn as_ref(&self) -> &[u8] { fn as_ref(&self) -> &[u8] {
self.as_bytes() self.as_bytes()
} }
} }
impl Into<multihash::Multihash> for PeerId { impl From<PeerId> for multihash::Multihash {
#[inline] fn from(peer_id: PeerId) -> Self {
fn into(self) -> multihash::Multihash { peer_id.multihash
self.multihash
} }
} }
@ -239,6 +248,7 @@ impl FromStr for PeerId {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use crate::{PeerId, identity}; use crate::{PeerId, identity};
use std::{convert::TryFrom as _, hash::{self, Hasher as _}};
#[test] #[test]
fn peer_id_is_public_key() { fn peer_id_is_public_key() {
@ -268,4 +278,62 @@ mod tests {
assert_eq!(peer_id, PeerId::from_bytes(peer_id.clone().into_bytes()).unwrap()); assert_eq!(peer_id, PeerId::from_bytes(peer_id.clone().into_bytes()).unwrap());
} }
} }
#[test]
fn peer_id_identity_equal_to_sha2256() {
let random_bytes = (0..64).map(|_| rand::random::<u8>()).collect::<Vec<u8>>();
let mh1 = multihash::encode(multihash::Hash::SHA2256, &random_bytes).unwrap();
let mh2 = multihash::encode(multihash::Hash::Identity, &random_bytes).unwrap();
let peer_id1 = PeerId::try_from(mh1).unwrap();
let peer_id2 = PeerId::try_from(mh2).unwrap();
assert_eq!(peer_id1, peer_id2);
assert_eq!(peer_id2, peer_id1);
}
#[test]
fn peer_id_identity_hashes_equal_to_sha2256() {
let random_bytes = (0..64).map(|_| rand::random::<u8>()).collect::<Vec<u8>>();
let mh1 = multihash::encode(multihash::Hash::SHA2256, &random_bytes).unwrap();
let mh2 = multihash::encode(multihash::Hash::Identity, &random_bytes).unwrap();
let peer_id1 = PeerId::try_from(mh1).unwrap();
let peer_id2 = PeerId::try_from(mh2).unwrap();
let mut hasher1 = fnv::FnvHasher::with_key(0);
hash::Hash::hash(&peer_id1, &mut hasher1);
let mut hasher2 = fnv::FnvHasher::with_key(0);
hash::Hash::hash(&peer_id2, &mut hasher2);
assert_eq!(hasher1.finish(), hasher2.finish());
}
#[test]
fn peer_id_equal_across_algorithms() {
use multihash::Hash;
use quickcheck::{Arbitrary, Gen};
#[derive(Debug, Clone, PartialEq, Eq)]
struct HashAlgo(Hash);
impl Arbitrary for HashAlgo {
fn arbitrary<G: Gen>(g: &mut G) -> Self {
match g.next_u32() % 4 { // make Hash::Identity more likely
0 => HashAlgo(Hash::SHA2256),
_ => HashAlgo(Hash::Identity)
}
}
}
fn property(data: Vec<u8>, algo1: HashAlgo, algo2: HashAlgo) -> bool {
let a = PeerId::try_from(multihash::encode(algo1.0, &data).unwrap()).unwrap();
let b = PeerId::try_from(multihash::encode(algo2.0, &data).unwrap()).unwrap();
if algo1 == algo2 || algo1.0 == Hash::Identity || algo2.0 == Hash::Identity {
a == b
} else {
a != b
}
}
quickcheck::quickcheck(property as fn(Vec<u8>, HashAlgo, HashAlgo) -> bool)
}
} }

View File

@ -24,7 +24,7 @@ use dns_parser::{Packet, RData};
use either::Either::{Left, Right}; use either::Either::{Left, Right};
use futures::{future, prelude::*}; use futures::{future, prelude::*};
use libp2p_core::{multiaddr::{Multiaddr, Protocol}, PeerId}; use libp2p_core::{multiaddr::{Multiaddr, Protocol}, PeerId};
use std::{fmt, io, net::Ipv4Addr, net::SocketAddr, str, time::{Duration, Instant}}; use std::{convert::TryFrom as _, fmt, io, net::Ipv4Addr, net::SocketAddr, str, time::{Duration, Instant}};
use wasm_timer::Interval; use wasm_timer::Interval;
use lazy_static::lazy_static; use lazy_static::lazy_static;
@ -505,7 +505,15 @@ impl MdnsPeer {
Err(_) => return None, Err(_) => return None,
}; };
match addr.pop() { match addr.pop() {
Some(Protocol::P2p(ref peer_id)) if peer_id == &my_peer_id => (), Some(Protocol::P2p(peer_id)) => {
if let Ok(peer_id) = PeerId::try_from(peer_id) {
if peer_id != my_peer_id {
return None;
}
} else {
return None;
}
},
_ => return None, _ => return None,
}; };
Some(addr) Some(addr)