rust-libp2p/core/src/peer_id.rs
Pierre Krieger b964cacfa4
Finish PeerId inlining change (#1413)
* Add peer id inlining for small public keys

* Apply @twittner suggestions

* Make PeerId compare equal accross hashes

* Fix mDNS

* Remove useless functions

* Add property test

Co-authored-by: Age Manning <Age@AgeManning.com>
2020-01-29 11:33:19 +01:00

340 lines
12 KiB
Rust

// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use crate::PublicKey;
use bs58;
use thiserror::Error;
use multihash;
use std::{convert::TryFrom, fmt, hash, str::FromStr};
/// Public keys with byte-lengths smaller than `MAX_INLINE_KEY_LENGTH` will be
/// automatically used as the peer id using an identity multihash.
const MAX_INLINE_KEY_LENGTH: usize = 42;
/// Identifier of a peer of the network.
///
/// The data is a multihash of the public key of the peer.
// TODO: maybe keep things in decoded version?
#[derive(Clone, Eq)]
pub struct PeerId {
multihash: multihash::Multihash,
}
impl fmt::Debug for PeerId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("PeerId")
.field(&self.to_base58())
.finish()
}
}
impl fmt::Display for PeerId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.to_base58().fmt(f)
}
}
impl PeerId {
/// Builds a `PeerId` from a public key.
pub fn from_public_key(key: PublicKey) -> PeerId {
let key_enc = key.into_protobuf_encoding();
// Note: before 0.12, this was incorrectly implemented and `SHA2256` was always used.
// Starting from version 0.13, rust-libp2p accepts both hashed and non-hashed keys as
// input (see `from_bytes`). Starting from version 0.16, rust-libp2p will switch to
// not hashing the key (a.k.a. the correct behaviour).
// In other words, rust-libp2p 0.13 is compatible with all versions of rust-libp2p.
// Rust-libp2p 0.12 and below is **NOT** compatible with rust-libp2p 0.16 and above.
let hash_algorithm = if key_enc.len() <= MAX_INLINE_KEY_LENGTH {
multihash::Hash::Identity
} else {
multihash::Hash::SHA2256
};
let multihash = multihash::encode(hash_algorithm, &key_enc)
.expect("identity and sha2-256 are always supported by known public key types");
PeerId { multihash }
}
/// Checks whether `data` is a valid `PeerId`. If so, returns the `PeerId`. If not, returns
/// back the data as an error.
pub fn from_bytes(data: Vec<u8>) -> Result<PeerId, Vec<u8>> {
match multihash::Multihash::from_bytes(data) {
Ok(multihash) => {
if multihash.algorithm() == multihash::Hash::SHA2256
|| multihash.algorithm() == multihash::Hash::Identity
{
Ok(PeerId { multihash })
} else {
Err(multihash.into_bytes())
}
}
Err(err) => Err(err.data),
}
}
/// Turns a `Multihash` into a `PeerId`. If the multihash doesn't use the correct algorithm,
/// returns back the data as an error.
pub fn from_multihash(data: multihash::Multihash) -> Result<PeerId, multihash::Multihash> {
if data.algorithm() == multihash::Hash::SHA2256 || data.algorithm() == multihash::Hash::Identity {
Ok(PeerId { multihash: data })
} else {
Err(data)
}
}
/// Generates a random peer ID from a cryptographically secure PRNG.
///
/// This is useful for randomly walking on a DHT, or for testing purposes.
pub fn random() -> PeerId {
PeerId {
multihash: multihash::Multihash::random(multihash::Hash::SHA2256)
}
}
/// Returns a raw bytes representation of this `PeerId`.
///
/// Note that this is not the same as the public key of the peer.
pub fn into_bytes(self) -> Vec<u8> {
self.multihash.into_bytes()
}
/// Returns a raw bytes representation of this `PeerId`.
///
/// Note that this is not the same as the public key of the peer.
pub fn as_bytes(&self) -> &[u8] {
self.multihash.as_bytes()
}
/// Returns a base-58 encoded string of this `PeerId`.
pub fn to_base58(&self) -> String {
bs58::encode(self.multihash.as_bytes()).into_string()
}
/// Checks whether the public key passed as parameter matches the public key of this `PeerId`.
///
/// Returns `None` if this `PeerId`s hash algorithm is not supported when encoding the
/// given public key, otherwise `Some` boolean as the result of an equality check.
pub fn is_public_key(&self, public_key: &PublicKey) -> Option<bool> {
let alg = self.multihash.algorithm();
let enc = public_key.clone().into_protobuf_encoding();
match multihash::encode(alg, &enc) {
Ok(h) => Some(h == self.multihash),
Err(multihash::EncodeError::UnsupportedType) => None,
Err(multihash::EncodeError::UnsupportedInputLength) => None,
}
}
}
impl hash::Hash for PeerId {
fn hash<H>(&self, state: &mut H)
where
H: hash::Hasher
{
match self.multihash.algorithm() {
multihash::Hash::Identity => {
let sha256 = multihash::encode(multihash::Hash::SHA2256, self.multihash.digest())
.expect("encoding a SHA2256 multihash never fails; qed");
hash::Hash::hash(sha256.digest(), state)
},
multihash::Hash::SHA2256 => {
hash::Hash::hash(self.multihash.digest(), state)
},
_ => unreachable!("PeerId can only be built from Identity or SHA2256; qed")
}
}
}
impl From<PublicKey> for PeerId {
#[inline]
fn from(key: PublicKey) -> PeerId {
PeerId::from_public_key(key)
}
}
impl TryFrom<Vec<u8>> for PeerId {
type Error = Vec<u8>;
fn try_from(value: Vec<u8>) -> Result<Self, Self::Error> {
PeerId::from_bytes(value)
}
}
impl TryFrom<multihash::Multihash> for PeerId {
type Error = multihash::Multihash;
fn try_from(value: multihash::Multihash) -> Result<Self, Self::Error> {
PeerId::from_multihash(value)
}
}
impl PartialEq<PeerId> for PeerId {
fn eq(&self, other: &PeerId) -> bool {
match (self.multihash.algorithm(), other.multihash.algorithm()) {
(multihash::Hash::SHA2256, multihash::Hash::SHA2256) => {
self.multihash.digest() == other.multihash.digest()
},
(multihash::Hash::Identity, multihash::Hash::Identity) => {
self.multihash.digest() == other.multihash.digest()
},
(multihash::Hash::SHA2256, multihash::Hash::Identity) => {
multihash::encode(multihash::Hash::SHA2256, other.multihash.digest())
.map(|mh| mh == self.multihash)
.unwrap_or(false)
},
(multihash::Hash::Identity, multihash::Hash::SHA2256) => {
multihash::encode(multihash::Hash::SHA2256, self.multihash.digest())
.map(|mh| mh == other.multihash)
.unwrap_or(false)
},
_ => false
}
}
}
// TODO: The semantics of that function aren't very precise. It is possible for two `PeerId`s to
// compare equal while their bytes representation are not. Right now, this `AsRef`
// implementation is only used to define precedence over two `PeerId`s in case of a
// simultaneous connection between two nodes. Since the simultaneous connection system
// is planned to be removed (https://github.com/libp2p/rust-libp2p/issues/912), we went for
// we keeping that function with the intent of removing it as soon as possible.
impl AsRef<[u8]> for PeerId {
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
impl From<PeerId> for multihash::Multihash {
fn from(peer_id: PeerId) -> Self {
peer_id.multihash
}
}
#[derive(Debug, Error)]
pub enum ParseError {
#[error("base-58 decode error: {0}")]
B58(#[from] bs58::decode::Error),
#[error("decoding multihash failed")]
MultiHash,
}
impl FromStr for PeerId {
type Err = ParseError;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
let bytes = bs58::decode(s).into_vec()?;
PeerId::from_bytes(bytes).map_err(|_| ParseError::MultiHash)
}
}
#[cfg(test)]
mod tests {
use crate::{PeerId, identity};
use std::{convert::TryFrom as _, hash::{self, Hasher as _}};
#[test]
fn peer_id_is_public_key() {
let key = identity::Keypair::generate_ed25519().public();
let peer_id = key.clone().into_peer_id();
assert_eq!(peer_id.is_public_key(&key), Some(true));
}
#[test]
fn peer_id_into_bytes_then_from_bytes() {
let peer_id = identity::Keypair::generate_ed25519().public().into_peer_id();
let second = PeerId::from_bytes(peer_id.clone().into_bytes()).unwrap();
assert_eq!(peer_id, second);
}
#[test]
fn peer_id_to_base58_then_back() {
let peer_id = identity::Keypair::generate_ed25519().public().into_peer_id();
let second: PeerId = peer_id.to_base58().parse().unwrap();
assert_eq!(peer_id, second);
}
#[test]
fn random_peer_id_is_valid() {
for _ in 0 .. 5000 {
let peer_id = PeerId::random();
assert_eq!(peer_id, PeerId::from_bytes(peer_id.clone().into_bytes()).unwrap());
}
}
#[test]
fn peer_id_identity_equal_to_sha2256() {
let random_bytes = (0..64).map(|_| rand::random::<u8>()).collect::<Vec<u8>>();
let mh1 = multihash::encode(multihash::Hash::SHA2256, &random_bytes).unwrap();
let mh2 = multihash::encode(multihash::Hash::Identity, &random_bytes).unwrap();
let peer_id1 = PeerId::try_from(mh1).unwrap();
let peer_id2 = PeerId::try_from(mh2).unwrap();
assert_eq!(peer_id1, peer_id2);
assert_eq!(peer_id2, peer_id1);
}
#[test]
fn peer_id_identity_hashes_equal_to_sha2256() {
let random_bytes = (0..64).map(|_| rand::random::<u8>()).collect::<Vec<u8>>();
let mh1 = multihash::encode(multihash::Hash::SHA2256, &random_bytes).unwrap();
let mh2 = multihash::encode(multihash::Hash::Identity, &random_bytes).unwrap();
let peer_id1 = PeerId::try_from(mh1).unwrap();
let peer_id2 = PeerId::try_from(mh2).unwrap();
let mut hasher1 = fnv::FnvHasher::with_key(0);
hash::Hash::hash(&peer_id1, &mut hasher1);
let mut hasher2 = fnv::FnvHasher::with_key(0);
hash::Hash::hash(&peer_id2, &mut hasher2);
assert_eq!(hasher1.finish(), hasher2.finish());
}
#[test]
fn peer_id_equal_across_algorithms() {
use multihash::Hash;
use quickcheck::{Arbitrary, Gen};
#[derive(Debug, Clone, PartialEq, Eq)]
struct HashAlgo(Hash);
impl Arbitrary for HashAlgo {
fn arbitrary<G: Gen>(g: &mut G) -> Self {
match g.next_u32() % 4 { // make Hash::Identity more likely
0 => HashAlgo(Hash::SHA2256),
_ => HashAlgo(Hash::Identity)
}
}
}
fn property(data: Vec<u8>, algo1: HashAlgo, algo2: HashAlgo) -> bool {
let a = PeerId::try_from(multihash::encode(algo1.0, &data).unwrap()).unwrap();
let b = PeerId::try_from(multihash::encode(algo2.0, &data).unwrap()).unwrap();
if algo1 == algo2 || algo1.0 == Hash::Identity || algo2.0 == Hash::Identity {
a == b
} else {
a != b
}
}
quickcheck::quickcheck(property as fn(Vec<u8>, HashAlgo, HashAlgo) -> bool)
}
}