Clean up directory structure (#426)

* Remove unused circular-buffer crate
* Move transports into subdirectory
* Move misc into subdirectory
* Move stores into subdirectory
* Move multiplexers
* Move protocols
* Move libp2p top layer
* Fix Test: skip doctest if secio isn't enabled
This commit is contained in:
Benjamin Kampmann
2018-08-29 11:24:44 +02:00
committed by GitHub
parent f5ce93c730
commit 2ea49718f3
131 changed files with 146 additions and 1023 deletions

View File

@ -0,0 +1,21 @@
[package]
name = "libp2p-floodsub"
version = "0.1.0"
authors = ["Parity Technologies <admin@parity.io>"]
license = "MIT"
[dependencies]
bs58 = "0.2.0"
byteorder = "1.2.1"
bytes = "0.4"
fnv = "1.0"
futures = "0.1"
libp2p-core = { path = "../../core" }
log = "0.4.1"
multiaddr = { path = "../../misc/multiaddr" }
parking_lot = "0.6"
protobuf = "2.0.2"
smallvec = "0.6.0"
tokio-codec = "0.1"
tokio-io = "0.1"
unsigned-varint = { version = "0.1", features = ["codec"] }

View File

@ -0,0 +1,13 @@
#!/bin/sh
# This script regenerates the `src/rpc_proto.rs` file from `rpc.proto`.
docker run --rm -v `pwd`:/usr/code:z -w /usr/code rust /bin/bash -c " \
apt-get update; \
apt-get install -y protobuf-compiler; \
cargo install --version 2.0.2 protobuf-codegen; \
protoc --rust_out . rpc.proto"
sudo chown $USER:$USER *.rs
mv -f rpc.rs ./src/rpc_proto.rs

View File

@ -0,0 +1,47 @@
package floodsub.pb;
message RPC {
repeated SubOpts subscriptions = 1;
repeated Message publish = 2;
message SubOpts {
optional bool subscribe = 1; // subscribe or unsubcribe
optional string topicid = 2;
}
}
message Message {
optional bytes from = 1;
optional bytes data = 2;
optional bytes seqno = 3;
repeated string topicIDs = 4;
}
// topicID = hash(topicDescriptor); (not the topic.name)
message TopicDescriptor {
optional string name = 1;
optional AuthOpts auth = 2;
optional EncOpts enc = 3;
message AuthOpts {
optional AuthMode mode = 1;
repeated bytes keys = 2; // root keys to trust
enum AuthMode {
NONE = 0; // no authentication, anyone can publish
KEY = 1; // only messages signed by keys in the topic descriptor are accepted
WOT = 2; // web of trust, certificates can allow publisher set to grow
}
}
message EncOpts {
optional EncMode mode = 1;
repeated bytes keyHashes = 2; // the hashes of the shared keys used (salted)
enum EncMode {
NONE = 0; // no encryption, anyone can read
SHAREDKEY = 1; // messages are encrypted with shared key
WOT = 2; // web of trust, certificates can allow publisher set to grow
}
}
}

View File

@ -0,0 +1,661 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
extern crate bs58;
extern crate byteorder;
extern crate bytes;
extern crate fnv;
extern crate futures;
extern crate libp2p_core;
#[macro_use]
extern crate log;
extern crate multiaddr;
extern crate parking_lot;
extern crate protobuf;
extern crate smallvec;
extern crate tokio_codec;
extern crate tokio_io;
extern crate unsigned_varint;
mod rpc_proto;
mod topic;
pub use self::topic::{Topic, TopicBuilder, TopicHash};
use byteorder::{BigEndian, WriteBytesExt};
use bytes::{Bytes, BytesMut};
use fnv::{FnvHashMap, FnvHashSet, FnvHasher};
use futures::sync::mpsc;
use futures::{future, Future, Poll, Sink, Stream};
use libp2p_core::{ConnectionUpgrade, Endpoint, PeerId};
use log::Level;
use multiaddr::{AddrComponent, Multiaddr};
use parking_lot::{Mutex, RwLock, RwLockUpgradableReadGuard};
use protobuf::Message as ProtobufMessage;
use smallvec::SmallVec;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use tokio_codec::Framed;
use tokio_io::{AsyncRead, AsyncWrite};
use unsigned_varint::codec;
/// Implementation of the `ConnectionUpgrade` for the floodsub protocol.
#[derive(Debug, Clone)]
pub struct FloodSubUpgrade {
inner: Arc<Inner>,
}
impl FloodSubUpgrade {
/// Builds a new `FloodSubUpgrade`. Also returns a `FloodSubReceiver` that will stream incoming
/// messages for the floodsub system.
pub fn new(my_id: PeerId) -> (FloodSubUpgrade, FloodSubReceiver) {
let (output_tx, output_rx) = mpsc::unbounded();
let inner = Arc::new(Inner {
peer_id: my_id.into_bytes(),
output_tx: output_tx,
remote_connections: RwLock::new(FnvHashMap::default()),
subscribed_topics: RwLock::new(Vec::new()),
seq_no: AtomicUsize::new(0),
received: Mutex::new(FnvHashSet::default()),
});
let upgrade = FloodSubUpgrade { inner: inner };
let receiver = FloodSubReceiver { inner: output_rx };
(upgrade, receiver)
}
}
impl<C, Maf> ConnectionUpgrade<C, Maf> for FloodSubUpgrade
where
C: AsyncRead + AsyncWrite + 'static,
Maf: Future<Item = Multiaddr, Error = IoError> + 'static,
{
type NamesIter = iter::Once<(Bytes, Self::UpgradeIdentifier)>;
type UpgradeIdentifier = ();
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once(("/floodsub/1.0.0".into(), ()))
}
type Output = FloodSubFuture;
type MultiaddrFuture = future::FutureResult<Multiaddr, IoError>;
type Future = Box<Future<Item = (Self::Output, Self::MultiaddrFuture), Error = IoError>>;
#[inline]
fn upgrade(
self,
socket: C,
_: Self::UpgradeIdentifier,
_: Endpoint,
remote_addr: Maf,
) -> Self::Future {
debug!("Upgrading connection as floodsub");
let future = remote_addr.and_then(move |remote_addr| {
// Whenever a new node connects, we send to it a message containing the topics we are
// already subscribed to.
let init_msg: Vec<u8> = {
let subscribed_topics = self.inner.subscribed_topics.read();
let mut proto = rpc_proto::RPC::new();
for topic in subscribed_topics.iter() {
let mut subscription = rpc_proto::RPC_SubOpts::new();
subscription.set_subscribe(true);
subscription.set_topicid(topic.hash().clone().into_string());
proto.mut_subscriptions().push(subscription);
}
proto
.write_to_bytes()
.expect("programmer error: the protobuf message should always be valid")
};
// Split the socket into writing and reading parts.
let (floodsub_sink, floodsub_stream) = Framed::new(socket, codec::UviBytes::default())
.sink_map_err(|err| IoError::new(IoErrorKind::InvalidData, err))
.map_err(|err| IoError::new(IoErrorKind::InvalidData, err))
.split();
// Build the channel that will be used to communicate outgoing message to this remote.
let (input_tx, input_rx) = mpsc::unbounded();
input_tx
.unbounded_send(init_msg.into())
.expect("newly-created channel should always be open");
self.inner.remote_connections.write().insert(
remote_addr.clone(),
RemoteInfo {
sender: input_tx,
subscribed_topics: RwLock::new(FnvHashSet::default()),
},
);
// Combine the socket read and the outgoing messages input, so that we can wake up when
// either happens.
let messages = input_rx
.map(|m| (m, MessageSource::FromChannel))
.map_err(|_| unreachable!("channel streams should never produce an error"))
.select(floodsub_stream.map(|m| (m, MessageSource::FromSocket)));
#[derive(Debug)]
enum MessageSource {
FromSocket,
FromChannel,
}
let inner = self.inner.clone();
let remote_addr_ret = future::ok(remote_addr.clone());
let future = future::loop_fn(
(floodsub_sink, messages),
move |(floodsub_sink, messages)| {
let inner = inner.clone();
let remote_addr = remote_addr.clone();
messages
.into_future()
.map_err(|(err, _)| err)
.and_then(move |(input, rest)| {
match input {
Some((bytes, MessageSource::FromSocket)) => {
// Received a packet from the remote.
let fut = match handle_packet_received(bytes, inner, &remote_addr) {
Ok(()) => {
future::ok(future::Loop::Continue((floodsub_sink, rest)))
}
Err(err) => future::err(err),
};
Box::new(fut) as Box<_>
}
Some((bytes, MessageSource::FromChannel)) => {
// Received a packet from the channel.
// Need to send a message to remote.
trace!("Effectively sending message to remote");
let future = floodsub_sink.send(bytes).map(|floodsub_sink| {
future::Loop::Continue((floodsub_sink, rest))
});
Box::new(future) as Box<_>
}
None => {
// Both the connection stream and `rx` are empty, so we break
// the loop.
trace!("Pubsub future clean finish");
// TODO: what if multiple connections?
inner.remote_connections.write().remove(&remote_addr);
let future = future::ok(future::Loop::Break(()));
Box::new(future) as Box<Future<Item = _, Error = _>>
}
}
})
},
);
future::ok((FloodSubFuture {
inner: Box::new(future) as Box<_>,
}, remote_addr_ret))
});
Box::new(future) as Box<_>
}
}
/// Allows one to control the behaviour of the floodsub system.
#[derive(Clone)]
pub struct FloodSubController {
inner: Arc<Inner>,
}
struct Inner {
// Our local peer ID multihash, to pass as the source.
peer_id: Vec<u8>,
// Channel where to send the messages that should be dispatched to the user.
output_tx: mpsc::UnboundedSender<Message>,
// Active connections with a remote.
remote_connections: RwLock<FnvHashMap<Multiaddr, RemoteInfo>>,
// List of topics we're subscribed to. Necessary in order to filter out messages that we
// erroneously receive.
subscribed_topics: RwLock<Vec<Topic>>,
// Sequence number for the messages we send.
seq_no: AtomicUsize,
// We keep track of the messages we received (in the format `(remote ID, seq_no)`) so that we
// don't dispatch the same message twice if we receive it twice on the network.
// TODO: the `HashSet` will keep growing indefinitely :-/
received: Mutex<FnvHashSet<u64>>,
}
struct RemoteInfo {
// Sender to send data over the socket to that host.
sender: mpsc::UnboundedSender<BytesMut>,
// Topics the remote is registered to.
subscribed_topics: RwLock<FnvHashSet<TopicHash>>,
}
impl fmt::Debug for Inner {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Inner")
.field("peer_id", &self.peer_id)
.field(
"num_remote_connections",
&self.remote_connections.read().len(),
)
.field("subscribed_topics", &*self.subscribed_topics.read())
.field("seq_no", &self.seq_no)
.field("received", &self.received)
.finish()
}
}
impl FloodSubController {
/// Builds a new controller for floodsub.
#[inline]
pub fn new(upgrade: &FloodSubUpgrade) -> Self {
FloodSubController {
inner: upgrade.inner.clone(),
}
}
/// Subscribe to a topic. When a node on the network sends a message for that topic, we will
/// likely receive it.
///
/// It is not guaranteed that we receive every single message published on the network.
#[inline]
pub fn subscribe(&self, topic: &Topic) {
// This function exists for convenience.
self.subscribe_many(iter::once(topic));
}
/// Same as `subscribe`, but subscribes to multiple topics at once.
///
/// Since this results in a single packet sent to the remotes, it is preferable to use this
/// method when subscribing to multiple topics at once rather than call `subscribe` multiple
/// times.
#[inline]
pub fn subscribe_many<'a, I>(&self, topics: I)
where
I: IntoIterator<Item = &'a Topic>,
I::IntoIter: Clone,
{
// This function exists for convenience.
self.sub_unsub_multi(topics.into_iter().map::<_, fn(_) -> _>(|t| (t, true)))
}
/// Unsubscribe from a topic. We will no longer receive any message for this topic.
///
/// If a message was sent to us before we are able to notify that we don't want messages
/// anymore, then the message will be filtered out locally.
#[inline]
pub fn unsubscribe(&self, topic: &Topic) {
// This function exists for convenience.
self.unsubscribe_many(iter::once(topic));
}
/// Same as `unsubscribe` but unsubscribes from multiple topics at once.
///
/// Since this results in a single packet sent to the remotes, it is preferable to use this
/// method when ybsubscribing from multiple topics at once rather than call `unsubscribe`
/// multiple times.
#[inline]
pub fn unsubscribe_many<'a, I>(&self, topics: I)
where
I: IntoIterator<Item = &'a Topic>,
I::IntoIter: Clone,
{
// This function exists for convenience.
self.sub_unsub_multi(topics.into_iter().map::<_, fn(_) -> _>(|t| (t, false)));
}
// Inner implementation. The iterator should produce a boolean that is true if we subscribe and
// false if we unsubscribe.
fn sub_unsub_multi<'a, I>(&self, topics: I)
where
I: IntoIterator<Item = (&'a Topic, bool)>,
I::IntoIter: Clone,
{
let mut proto = rpc_proto::RPC::new();
let topics = topics.into_iter();
if log_enabled!(Level::Debug) {
debug!("Queuing sub/unsub message ; sub = {:?} ; unsub = {:?}",
topics.clone().filter(|t| t.1)
.map(|t| t.0.hash().clone().into_string())
.collect::<Vec<_>>(),
topics.clone().filter(|t| !t.1)
.map(|t| t.0.hash().clone().into_string())
.collect::<Vec<_>>());
}
let mut subscribed_topics = self.inner.subscribed_topics.write();
for (topic, subscribe) in topics {
let mut subscription = rpc_proto::RPC_SubOpts::new();
subscription.set_subscribe(subscribe);
subscription.set_topicid(topic.hash().clone().into_string());
proto.mut_subscriptions().push(subscription);
if subscribe {
subscribed_topics.push(topic.clone());
} else {
subscribed_topics.retain(|t| t.hash() != topic.hash())
}
}
self.broadcast(proto, |_| true);
}
/// Publishes a message on the network for the specified topic
#[inline]
pub fn publish(&self, topic: &Topic, data: Vec<u8>) {
// This function exists for convenience.
self.publish_many(iter::once(topic), data)
}
/// Publishes a message on the network for the specified topics.
///
/// Since this results in a single packet sent to the remotes, it is preferable to use this
/// method when publishing multiple messages at once rather than call `publish` multiple
/// times.
pub fn publish_many<'a, I>(&self, topics: I, data: Vec<u8>)
where
I: IntoIterator<Item = &'a Topic>,
{
let topics = topics.into_iter().collect::<Vec<_>>();
debug!("Queueing publish message ; topics = {:?} ; data_len = {:?}",
topics.iter().map(|t| t.hash().clone().into_string()).collect::<Vec<_>>(),
data.len());
// Build the `Vec<u8>` containing our sequence number for this message.
let seq_no_bytes = {
let mut seqno_bytes = Vec::new();
let seqn = self.inner.seq_no.fetch_add(1, Ordering::Relaxed);
seqno_bytes
.write_u64::<BigEndian>(seqn as u64)
.expect("writing to a Vec never fails");
seqno_bytes
};
// TODO: should handle encryption/authentication of the message
let mut msg = rpc_proto::Message::new();
msg.set_data(data);
msg.set_from(self.inner.peer_id.clone());
msg.set_seqno(seq_no_bytes.clone());
msg.set_topicIDs(
topics
.iter()
.map(|t| t.hash().clone().into_string())
.collect(),
);
let mut proto = rpc_proto::RPC::new();
proto.mut_publish().push(msg);
// Insert into `received` so that we ignore the message if a remote sends it back to us.
self.inner
.received
.lock()
.insert(hash((self.inner.peer_id.clone(), seq_no_bytes)));
self.broadcast(proto, |r_top| {
topics.iter().any(|t| r_top.iter().any(|to| to == t.hash()))
});
}
// Internal function that dispatches an `RPC` protobuf struct to all the connected remotes
// for which `filter` returns true.
fn broadcast<F>(&self, message: rpc_proto::RPC, mut filter: F)
where
F: FnMut(&FnvHashSet<TopicHash>) -> bool,
{
let bytes = message
.write_to_bytes()
.expect("protobuf message is always valid");
let remote_connections = self.inner.remote_connections.upgradable_read();
// Number of remotes we dispatched to, for logging purposes.
let mut num_dispatched = 0;
// Will store the addresses of remotes which we failed to send a message to and which
// must be removed from the active connections.
// We use a smallvec of 6 elements because it is unlikely that we lost connection to more
// than 6 elements at once.
let mut failed_to_send: SmallVec<[_; 6]> = SmallVec::new();
for (remote_addr, remote) in remote_connections.iter() {
if !filter(&remote.subscribed_topics.read()) {
continue;
}
num_dispatched += 1;
match remote.sender.unbounded_send(bytes.clone().into()) {
Ok(_) => (),
Err(_) => {
trace!("Failed to dispatch message to {} because channel was closed",
remote_addr);
failed_to_send.push(remote_addr.clone());
}
}
}
// Remove the remotes which we failed to send a message to.
if !failed_to_send.is_empty() {
// If we fail to upgrade the read lock to a write lock, just ignore `failed_to_send`.
if let Ok(mut remote_connections) = RwLockUpgradableReadGuard::try_upgrade(remote_connections) {
for failed_to_send in failed_to_send {
remote_connections.remove(&failed_to_send);
}
}
}
debug!("Message queued for {} remotes", num_dispatched);
}
}
/// Implementation of `Stream` that provides messages for the subscribed topics you subscribed to.
pub struct FloodSubReceiver {
inner: mpsc::UnboundedReceiver<Message>,
}
impl Stream for FloodSubReceiver {
type Item = Message;
type Error = IoError;
#[inline]
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
self.inner
.poll()
.map_err(|_| unreachable!("UnboundedReceiver cannot err"))
}
}
impl fmt::Debug for FloodSubReceiver {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("FloodSubReceiver").finish()
}
}
/// A message received by the floodsub system.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Message {
/// Remote that sent the message.
pub source: Multiaddr,
/// Content of the message. Its meaning is out of scope of this library.
pub data: Vec<u8>,
/// List of topics of this message.
///
/// Each message can belong to multiple topics at once.
pub topics: Vec<TopicHash>,
}
/// Implementation of `Future` that must be driven to completion in order for floodsub to work.
pub struct FloodSubFuture {
inner: Box<Future<Item = (), Error = IoError>>,
}
impl Future for FloodSubFuture {
type Item = ();
type Error = IoError;
#[inline]
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
self.inner.poll()
}
}
impl fmt::Debug for FloodSubFuture {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("FloodSubFuture").finish()
}
}
// Handles when a packet is received on a connection.
//
// - `bytes` contains the raw data.
// - `remote_addr` is the address of the sender.
fn handle_packet_received(
bytes: BytesMut,
inner: Arc<Inner>,
remote_addr: &Multiaddr,
) -> Result<(), IoError> {
trace!("Received packet from {}", remote_addr);
// Parsing attempt.
let mut input = match protobuf::parse_from_bytes::<rpc_proto::RPC>(&bytes) {
Ok(msg) => msg,
Err(err) => {
debug!("Failed to parse protobuf message ; err = {:?}", err);
return Err(err.into());
}
};
// Update the topics the remote is subscribed to.
if !input.get_subscriptions().is_empty() {
let remote_connec = inner.remote_connections.write();
// TODO: what if multiple entries?
let remote = &remote_connec[remote_addr];
let mut topics = remote.subscribed_topics.write();
for subscription in input.mut_subscriptions().iter_mut() {
let topic = TopicHash::from_raw(subscription.take_topicid());
let subscribe = subscription.get_subscribe();
if subscribe {
trace!("Remote {} subscribed to {:?}", remote_addr, topic); topics.insert(topic);
} else {
trace!("Remote {} unsubscribed from {:?}", remote_addr, topic);
topics.remove(&topic);
}
}
}
// Handle the messages coming from the remote.
for publish in input.mut_publish().iter_mut() {
let from = publish.take_from();
// We maintain a list of the messages that have already been
// processed so that we don't process the same message twice.
// Each message is identified by the `(from, seqno)` tuple.
if !inner
.received
.lock()
.insert(hash((from.clone(), publish.take_seqno())))
{
trace!("Skipping message because we had already received it ; payload = {} bytes",
publish.get_data().len());
continue;
}
let peer_id = match PeerId::from_bytes(bytes.to_vec()) {
Ok(id) => id,
Err(err) => {
trace!("Parsing PeerId failed: {:?}. Skipping.", err);
continue
}
};
let from: Multiaddr = AddrComponent::P2P(peer_id.into()).into();
let topics = publish
.take_topicIDs()
.into_iter()
.map(|h| TopicHash::from_raw(h))
.collect::<Vec<_>>();
trace!("Processing message for topics {:?} ; payload = {} bytes",
topics,
publish.get_data().len());
// TODO: should check encryption/authentication of the message
// Broadcast the message to all the other remotes.
{
let remote_connections = inner.remote_connections.read();
for (addr, info) in remote_connections.iter() {
let st = info.subscribed_topics.read();
if !topics.iter().any(|t| st.contains(t)) {
continue;
}
// TODO: don't send back to the remote that just sent it
trace!("Broadcasting received message to {}", addr);
let _ = info.sender.unbounded_send(bytes.clone());
}
}
// Send the message locally if relevant.
let dispatch_locally = {
let subscribed_topics = inner.subscribed_topics.read();
topics
.iter()
.any(|t| subscribed_topics.iter().any(|topic| topic.hash() == t))
};
if dispatch_locally {
// Ignore if channel is closed.
trace!("Dispatching message locally");
let _ = inner.output_tx.unbounded_send(Message {
source: from,
data: publish.take_data(),
topics: topics,
});
} else {
trace!("Message not dispatched locally as we are not subscribed to any of the topics");
}
}
Ok(())
}
// Shortcut function that hashes a value.
#[inline]
fn hash<V: Hash>(value: V) -> u64 {
let mut h = FnvHasher::default();
value.hash(&mut h);
h.finish()
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,92 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use bs58;
use protobuf::Message;
use rpc_proto;
/// Represents the hash of a topic.
///
/// Instead of a using the topic as a whole, the API of floodsub uses a hash of the topic. You only
/// have to build the hash once, then use it everywhere.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct TopicHash {
hash: String,
}
impl TopicHash {
/// Builds a new `TopicHash` from the given hash.
#[inline]
pub fn from_raw(hash: String) -> TopicHash {
TopicHash { hash: hash }
}
#[inline]
pub fn into_string(self) -> String {
self.hash
}
}
/// Built topic.
#[derive(Debug, Clone)]
pub struct Topic {
descriptor: rpc_proto::TopicDescriptor,
hash: TopicHash,
}
impl Topic {
/// Returns the hash of the topic.
#[inline]
pub fn hash(&self) -> &TopicHash {
&self.hash
}
}
/// Builder for a `TopicHash`.
#[derive(Debug, Clone)]
pub struct TopicBuilder {
builder: rpc_proto::TopicDescriptor,
}
impl TopicBuilder {
pub fn new<S>(name: S) -> TopicBuilder
where
S: Into<String>,
{
let mut builder = rpc_proto::TopicDescriptor::new();
builder.set_name(name.into());
TopicBuilder { builder: builder }
}
/// Turns the builder into an actual `Topic`.
pub fn build(self) -> Topic {
let bytes = self.builder
.write_to_bytes()
.expect("protobuf message is always valid");
let hash = TopicHash {
hash: bs58::encode(&bytes).into_string(),
};
Topic {
descriptor: self.builder,
hash: hash,
}
}
}

View File

@ -0,0 +1,23 @@
[package]
name = "libp2p-identify"
version = "0.1.0"
authors = ["Parity Technologies <admin@parity.io>"]
license = "MIT"
[dependencies]
bytes = "0.4"
fnv = "1"
futures = "0.1"
libp2p-peerstore = { path = "../../stores/peerstore" }
libp2p-core = { path = "../../core" }
log = "0.4.1"
multiaddr = { path = "../../misc/multiaddr" }
parking_lot = "0.6"
protobuf = "2.0.2"
tokio-codec = "0.1"
tokio-io = "0.1.0"
unsigned-varint = { version = "0.1", features = ["codec"] }
[dev-dependencies]
libp2p-tcp-transport = { path = "../../transports/tcp" }
tokio-current-thread = "0.1"

View File

@ -0,0 +1,13 @@
#!/bin/sh
# This script regenerates the `src/structs_proto.rs` file from `structs.proto`.
sudo docker run --rm -v `pwd`:/usr/code:z -w /usr/code rust /bin/bash -c " \
apt-get update; \
apt-get install -y protobuf-compiler; \
cargo install --version 2.0.2 protobuf-codegen; \
protoc --rust_out . structs.proto"
sudo chown $USER:$USER *.rs
mv -f structs.rs ./src/structs_proto.rs

View File

@ -0,0 +1,323 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use fnv::FnvHashMap;
use futures::{future, Future, Stream};
use libp2p_core::{Multiaddr, MuxedTransport, Transport};
use parking_lot::Mutex;
use protocol::{IdentifyInfo, IdentifyOutput, IdentifyProtocolConfig};
use std::collections::hash_map::Entry;
use std::error::Error;
use std::io::Error as IoError;
use std::sync::Arc;
use tokio_io::{AsyncRead, AsyncWrite};
/// Implementation of `Transport`. See [the crate root description](index.html).
pub struct IdentifyTransport<Trans> {
transport: Trans,
// Each entry is protected by an asynchronous mutex, so that if we dial the same node twice
// simultaneously, the second time will block until the first time has identified it.
cache: Arc<Mutex<FnvHashMap<Multiaddr, CacheEntry>>>,
}
impl<Trans> Clone for IdentifyTransport<Trans>
where Trans: Clone,
{
fn clone(&self) -> Self {
IdentifyTransport {
transport: self.transport.clone(),
cache: self.cache.clone(),
}
}
}
type CacheEntry = future::Shared<Box<Future<Item = IdentifyTransportOutcome, Error = IoError>>>;
impl<Trans> IdentifyTransport<Trans> {
/// Creates an `IdentifyTransport` that wraps around the given transport and peerstore.
#[inline]
pub fn new(transport: Trans) -> Self {
IdentifyTransport {
transport,
cache: Arc::new(Mutex::new(Default::default())),
}
}
}
impl<Trans> Transport for IdentifyTransport<Trans>
where
Trans: Transport + Clone + 'static, // TODO: 'static :(
Trans::Output: AsyncRead + AsyncWrite,
{
type Output = IdentifyTransportOutput<Trans::Output>;
type MultiaddrFuture = future::FutureResult<Multiaddr, IoError>;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = (Self::Output, Self::MultiaddrFuture), Error = IoError>>;
type Dial = Box<Future<Item = (Self::Output, Self::MultiaddrFuture), Error = IoError>>;
#[inline]
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
let (listener, new_addr) = match self.transport.clone().listen_on(addr.clone()) {
Ok((l, a)) => (l, a),
Err((inner, addr)) => {
let id = IdentifyTransport {
transport: inner,
cache: self.cache,
};
return Err((id, addr));
}
};
let identify_upgrade = self.transport.with_upgrade(IdentifyProtocolConfig);
let cache = self.cache.clone();
let listener = listener.map(move |connec| {
let identify_upgrade = identify_upgrade.clone();
let cache = cache.clone();
let fut = connec
.and_then(move |(connec, client_addr)| {
trace!("Incoming connection, waiting for client address");
client_addr.map(move |addr| (connec, addr))
})
.and_then(move |(connec, client_addr)| {
debug!("Incoming connection from {}", client_addr);
// Dial the address that connected to us and try upgrade with the
// identify protocol.
let info_future = cache_entry(&cache, client_addr.clone(), { let client_addr = client_addr.clone(); move || {
debug!("No cache entry for {}, dialing back in order to identify", client_addr);
future::lazy(|| { trace!("Starting identify back"); identify_upgrade
.dial(client_addr)
.unwrap_or_else(|(_, addr)| {
panic!("the multiaddr {} was determined to be valid earlier", addr)
}) })
.map(move |(identify, _)| {
let (info, observed_addr) = match identify {
IdentifyOutput::RemoteInfo { info, observed_addr } => {
(info, observed_addr)
},
_ => unreachable!(
"the identify protocol guarantees that we receive \
remote information when we dial a node"
),
};
debug!("Identified dialed back connection as pubkey {:?}", info.public_key);
IdentifyTransportOutcome {
info,
observed_addr,
}
})
.map_err(move |err| {
debug!("Failed to identify dialed back connection");
err
})
}});
let out = IdentifyTransportOutput {
socket: connec,
info: Box::new(info_future),
};
Ok((out, future::ok(client_addr)))
});
Box::new(fut) as Box<Future<Item = _, Error = _>>
});
Ok((Box::new(listener) as Box<_>, new_addr))
}
#[inline]
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
// We dial a first time the node.
let dial = match self.transport.clone().dial(addr) {
Ok(d) => d,
Err((transport, addr)) => {
let id = IdentifyTransport {
transport,
cache: self.cache,
};
return Err((id, addr));
}
};
// Once successfully dialed, we dial again to identify.
let identify_upgrade = self.transport.with_upgrade(IdentifyProtocolConfig);
let cache = self.cache.clone();
let future = dial
.and_then(move |(connec, client_addr)| {
trace!("Dialing successful, waiting for client address");
client_addr.map(move |addr| (connec, addr))
})
.and_then(move |(socket, addr)| {
trace!("Dialing successful ; client address is {}", addr);
let info_future = cache_entry(&cache, addr.clone(), { let addr = addr.clone(); move || {
trace!("No cache entry for {} ; dialing again for identification", addr);
future::lazy(|| { trace!("Starting identify back"); identify_upgrade
.dial(addr)
.unwrap_or_else(|(_, addr)| {
panic!("the multiaddr {} was determined to be valid earlier", addr)
}) })
.map(move |(identify, _)| {
let (info, observed_addr) = match identify {
IdentifyOutput::RemoteInfo { info, observed_addr } => {
(info, observed_addr)
}
_ => unreachable!(
"the identify protocol guarantees that we receive \
remote information when we dial a node"
),
};
IdentifyTransportOutcome {
info,
observed_addr,
}
})
}});
let out = IdentifyTransportOutput {
socket: socket,
info: Box::new(info_future),
};
Ok((out, future::ok(addr)))
});
Ok(Box::new(future) as Box<_>)
}
#[inline]
fn nat_traversal(&self, a: &Multiaddr, b: &Multiaddr) -> Option<Multiaddr> {
self.transport.nat_traversal(a, b)
}
}
impl<Trans> MuxedTransport for IdentifyTransport<Trans>
where
Trans: MuxedTransport + Clone + 'static,
Trans::Output: AsyncRead + AsyncWrite,
{
type Incoming = Box<Future<Item = Self::IncomingUpgrade, Error = IoError>>;
type IncomingUpgrade = Box<Future<Item = (Self::Output, Self::MultiaddrFuture), Error = IoError>>;
#[inline]
fn next_incoming(self) -> Self::Incoming {
let identify_upgrade = self.transport.clone().with_upgrade(IdentifyProtocolConfig);
let cache = self.cache.clone();
let future = self.transport.next_incoming().map(move |incoming| {
let cache = cache.clone();
let future = incoming
.and_then(move |(connec, client_addr)| {
debug!("Incoming substream ; waiting for client address");
client_addr.map(move |addr| (connec, addr))
})
.and_then(move |(connec, client_addr)| {
debug!("Incoming substream from {}", client_addr);
// Dial the address that connected to us and try upgrade with the
// identify protocol.
let info_future = cache_entry(&cache, client_addr.clone(), { let client_addr = client_addr.clone(); move || {
debug!("No cache entry from {} ; dialing back to identify", client_addr);
future::lazy(|| { trace!("Starting identify back"); identify_upgrade
.dial(client_addr)
.unwrap_or_else(|(_, client_addr)| {
panic!("the multiaddr {} was determined to be valid earlier", client_addr)
}) })
.map(move |(identify, _)| {
let (info, observed_addr) = match identify {
IdentifyOutput::RemoteInfo { info, observed_addr } => {
(info, observed_addr)
},
_ => unreachable!(
"the identify protocol guarantees that we receive \
remote information when we dial a node"
),
};
debug!("Identified incoming substream as pubkey {:?}", info.public_key);
IdentifyTransportOutcome {
info,
observed_addr,
}
})
.map_err(move |err| {
debug!("Failed to identify incoming substream");
err
})
}});
let out = IdentifyTransportOutput {
socket: connec,
info: Box::new(info_future),
};
Ok((out, future::ok(client_addr)))
});
Box::new(future) as Box<Future<Item = _, Error = _>>
});
Box::new(future) as Box<_>
}
}
/// Output of the identify transport.
pub struct IdentifyTransportOutput<S> {
/// The socket to communicate with the remote.
pub socket: S,
/// Outcome of the identification of the remote.
pub info: Box<Future<Item = IdentifyTransportOutcome, Error = IoError>>,
}
/// Outcome of the identification of the remote.
#[derive(Debug, Clone)]
pub struct IdentifyTransportOutcome {
/// Identification of the remote.
pub info: IdentifyInfo,
/// Address the remote sees for us.
pub observed_addr: Multiaddr,
}
fn cache_entry<F, Fut>(cache: &Mutex<FnvHashMap<Multiaddr, CacheEntry>>, addr: Multiaddr, if_no_entry: F)
-> impl Future<Item = IdentifyTransportOutcome, Error = IoError>
where F: FnOnce() -> Fut,
Fut: Future<Item = IdentifyTransportOutcome, Error = IoError> + 'static,
{
trace!("Looking up cache entry for {}", addr);
let mut cache = cache.lock();
match cache.entry(addr) {
Entry::Occupied(entry) => {
trace!("Cache entry found, cloning");
future::Either::A(entry.get().clone())
},
Entry::Vacant(entry) => {
trace!("No cache entry available");
let future = (Box::new(if_no_entry()) as Box<Future<Item = _, Error = _>>).shared();
entry.insert(future.clone());
future::Either::B(future)
},
}.map(|out| (*out).clone()).map_err(|err| IoError::new(err.kind(), err.description()))
}
// TODO: test that we receive back what the remote sent us

View File

@ -0,0 +1,90 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Implementation of the `/ipfs/id/1.0.0` protocol. Allows a node A to query another node B which
//! information B knows about A. Also includes the addresses B is listening on.
//!
//! When two nodes connect to each other, the listening half sends a message to the dialing half,
//! indicating the information, and then the protocol stops.
//!
//! # Usage
//!
//! Both low-level and high-level usages are available.
//!
//! ## High-level usage through the `IdentifyTransport` struct
//!
//! This crate provides the `IdentifyTransport` struct, which wraps around a `Transport` and an
//! implementation of `Peerstore`. `IdentifyTransport` is itself a transport that accepts
//! multiaddresses of the form `/p2p/...` or `/ipfs/...`.
//!
//! > **Note**: All the documentation refers to `/p2p/...`, however `/ipfs/...` is also supported.
//!
//! If you dial a multiaddr of the form `/p2p/...`, then the `IdentifyTransport` will look into
//! the `Peerstore` for any known multiaddress for this peer and try to dial them using the
//! underlying transport. If you dial any other multiaddr, then it will dial this multiaddr using
//! the underlying transport, then negotiate the *identify* protocol with the remote in order to
//! obtain its ID, then add it to the peerstore, and finally dial the same multiaddr again and
//! return the connection.
//!
//! Listening doesn't support multiaddresses of the form `/p2p/...` (because that wouldn't make
//! sense). Any address passed to `listen_on` will be passed directly to the underlying transport.
//!
//! Whenever a remote connects to us, either through listening or through `next_incoming`, the
//! `IdentifyTransport` dials back the remote, upgrades the connection to the *identify* protocol
//! in order to obtain the ID of the remote, stores the information in the peerstore, and finally
//! only returns the connection. From the exterior, the multiaddress of the remote is of the form
//! `/p2p/...`. If the remote doesn't support the *identify* protocol, then the socket is closed.
//!
//! Because of the behaviour of `IdentifyProtocol`, it is recommended to build it on top of a
//! `ConnectionReuse`.
//!
//! ## Low-level usage through the `IdentifyProtocolConfig` struct
//!
//! The `IdentifyProtocolConfig` struct implements the `ConnectionUpgrade` trait. Using it will
//! negotiate the *identify* protocol.
//!
//! The output of the upgrade is a `IdentifyOutput`. If we are the dialer, then `IdentifyOutput`
//! will contain the information sent by the remote. If we are the listener, then it will contain
//! a `IdentifySender` struct that can be used to transmit back to the remote the information about
//! it.
extern crate bytes;
extern crate fnv;
extern crate futures;
extern crate libp2p_peerstore;
extern crate libp2p_core;
#[macro_use]
extern crate log;
extern crate multiaddr;
extern crate parking_lot;
extern crate protobuf;
extern crate tokio_codec;
extern crate tokio_io;
extern crate unsigned_varint;
pub use self::identify_transport::IdentifyTransportOutcome;
pub use self::peer_id_transport::{PeerIdTransport, PeerIdTransportOutput};
pub use self::protocol::{IdentifyInfo, IdentifyOutput};
pub use self::protocol::{IdentifyProtocolConfig, IdentifySender};
mod identify_transport;
mod peer_id_transport;
mod protocol;
mod structs_proto;

View File

@ -0,0 +1,360 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use futures::{future, stream, Future, Stream};
use identify_transport::{IdentifyTransport, IdentifyTransportOutcome};
use libp2p_core::{PeerId, MuxedTransport, Transport};
use multiaddr::{AddrComponent, Multiaddr};
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use tokio_io::{AsyncRead, AsyncWrite};
/// Implementation of `Transport`. See [the crate root description](index.html).
#[derive(Clone)]
pub struct PeerIdTransport<Trans, AddrRes> {
transport: IdentifyTransport<Trans>,
addr_resolver: AddrRes,
}
impl<Trans, AddrRes> PeerIdTransport<Trans, AddrRes> {
/// Creates an `PeerIdTransport` that wraps around the given transport and address resolver.
#[inline]
pub fn new(transport: Trans, addr_resolver: AddrRes) -> Self {
PeerIdTransport {
transport: IdentifyTransport::new(transport),
addr_resolver,
}
}
}
impl<Trans, AddrRes, AddrResOut> Transport for PeerIdTransport<Trans, AddrRes>
where
Trans: Transport + Clone + 'static, // TODO: 'static :(
Trans::Output: AsyncRead + AsyncWrite,
AddrRes: Fn(PeerId) -> AddrResOut + 'static, // TODO: 'static :(
AddrResOut: IntoIterator<Item = Multiaddr> + 'static, // TODO: 'static :(
{
type Output = PeerIdTransportOutput<Trans::Output>;
type MultiaddrFuture = Box<Future<Item = Multiaddr, Error = IoError>>;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = (Self::Output, Self::MultiaddrFuture), Error = IoError>>;
type Dial = Box<Future<Item = (Self::Output, Self::MultiaddrFuture), Error = IoError>>;
#[inline]
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
// Note that `listen_on` expects a "regular" multiaddr (eg. `/ip/.../tcp/...`),
// and not `/p2p/<foo>`.
let (listener, listened_addr) = match self.transport.listen_on(addr) {
Ok((listener, addr)) => (listener, addr),
Err((inner, addr)) => {
let id = PeerIdTransport {
transport: inner,
addr_resolver: self.addr_resolver,
};
return Err((id, addr));
}
};
let listener = listener.map(move |connec| {
let fut = connec
.and_then(move |(connec, client_addr)| {
client_addr.map(move |addr| (connec, addr))
})
.map(move |(connec, original_addr)| {
debug!("Successfully incoming connection from {}", original_addr);
let info = connec.info.shared();
let out = PeerIdTransportOutput {
socket: connec.socket,
info: Box::new(info.clone()
.map(move |info| (*info).clone())
.map_err(move |err| { let k = err.kind(); IoError::new(k, err) })),
original_addr: original_addr.clone(),
};
let real_addr = Box::new(info
.map_err(move |err| { let k = err.kind(); IoError::new(k, err) })
.map(move |info| {
let peer_id = info.info.public_key.clone().into_peer_id();
debug!("Identified {} as {:?}", original_addr, peer_id);
AddrComponent::P2P(peer_id.into()).into()
})) as Box<Future<Item = _, Error = _>>;
(out, real_addr)
});
Box::new(fut) as Box<Future<Item = _, Error = _>>
});
Ok((Box::new(listener) as Box<_>, listened_addr))
}
#[inline]
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
match multiaddr_to_peerid(addr.clone()) {
Ok(peer_id) => {
// If the multiaddress is a peer ID, try each known multiaddress (taken from the
// address resolved) one by one.
let addrs = {
let resolver = &self.addr_resolver;
resolver(peer_id.clone()).into_iter()
};
trace!("Try dialing peer ID {:?} ; loading multiaddrs from addr resolver", peer_id);
let transport = self.transport;
let future = stream::iter_ok(addrs)
// Try to dial each address through the transport.
.filter_map(move |addr| {
match transport.clone().dial(addr) {
Ok(dial) => Some(dial),
Err((_, addr)) => {
debug!("Address {} not supported by underlying transport", addr);
None
},
}
})
.and_then(move |dial| dial)
// Pick the first non-failing dial result by filtering out the ones which fail.
.then(|res| Ok(res))
.filter_map(|res| res.ok())
.into_future()
.map_err(|(err, _)| err)
.and_then(move |(connec, _)| {
match connec {
Some(connec) => Ok((connec, peer_id)),
None => {
debug!("All multiaddresses failed when dialing peer {:?}", peer_id);
Err(IoError::new(IoErrorKind::Other, "couldn't find any multiaddress for peer"))
},
}
})
.and_then(move |((connec, original_addr), peer_id)| {
original_addr.map(move |addr| (connec, addr, peer_id))
})
.and_then(move |(connec, original_addr, peer_id)| {
debug!("Successfully dialed peer {:?} through {}", peer_id, original_addr);
let out = PeerIdTransportOutput {
socket: connec.socket,
info: connec.info,
original_addr: original_addr,
};
// Replace the multiaddress with the one of the form `/p2p/...` or `/ipfs/...`.
Ok((out, Box::new(future::ok(addr)) as Box<Future<Item = _, Error = _>>))
});
Ok(Box::new(future) as Box<_>)
}
Err(addr) => {
// If the multiaddress is something else, propagate it to the underlying transport.
trace!("Propagating {} to the underlying transport", addr);
let dial = match self.transport.dial(addr) {
Ok(d) => d,
Err((inner, addr)) => {
let id = PeerIdTransport {
transport: inner,
addr_resolver: self.addr_resolver,
};
return Err((id, addr));
}
};
let future = dial
.and_then(move |(connec, original_addr)| {
original_addr.map(move |addr| (connec, addr))
})
.map(move |(connec, original_addr)| {
debug!("Successfully dialed {}", original_addr);
let info = connec.info.shared();
let out = PeerIdTransportOutput {
socket: connec.socket,
info: Box::new(info.clone()
.map(move |info| (*info).clone())
.map_err(move |err| { let k = err.kind(); IoError::new(k, err) })),
original_addr: original_addr.clone(),
};
let real_addr = Box::new(info
.map_err(move |err| { let k = err.kind(); IoError::new(k, err) })
.map(move |info| {
let peer_id = info.info.public_key.clone().into_peer_id();
debug!("Identified {} as {:?}", original_addr, peer_id);
AddrComponent::P2P(peer_id.into()).into()
})) as Box<Future<Item = _, Error = _>>;
(out, real_addr)
});
Ok(Box::new(future) as Box<_>)
}
}
}
#[inline]
fn nat_traversal(&self, a: &Multiaddr, b: &Multiaddr) -> Option<Multiaddr> {
self.transport.nat_traversal(a, b)
}
}
impl<Trans, AddrRes, AddrResOut> MuxedTransport for PeerIdTransport<Trans, AddrRes>
where
Trans: MuxedTransport + Clone + 'static,
Trans::Output: AsyncRead + AsyncWrite,
AddrRes: Fn(PeerId) -> AddrResOut + 'static, // TODO: 'static :(
AddrResOut: IntoIterator<Item = Multiaddr> + 'static, // TODO: 'static :(
{
type Incoming = Box<Future<Item = Self::IncomingUpgrade, Error = IoError>>;
type IncomingUpgrade = Box<Future<Item = (Self::Output, Self::MultiaddrFuture), Error = IoError>>;
#[inline]
fn next_incoming(self) -> Self::Incoming {
let future = self.transport.next_incoming().map(move |incoming| {
let future = incoming
.and_then(move |(connec, original_addr)| {
original_addr.map(move |addr| (connec, addr))
})
.map(move |(connec, original_addr)| {
debug!("Successful incoming substream from {}", original_addr);
let info = connec.info.shared();
let out = PeerIdTransportOutput {
socket: connec.socket,
info: Box::new(info.clone()
.map(move |info| (*info).clone())
.map_err(move |err| { let k = err.kind(); IoError::new(k, err) })),
original_addr: original_addr.clone(),
};
let real_addr = Box::new(info
.map_err(move |err| { let k = err.kind(); IoError::new(k, err) })
.map(move |info| {
let peer_id = info.info.public_key.clone().into_peer_id();
debug!("Identified {} as {:?}", original_addr, peer_id);
AddrComponent::P2P(peer_id.into()).into()
})) as Box<Future<Item = _, Error = _>>;
(out, real_addr)
});
Box::new(future) as Box<Future<Item = _, Error = _>>
});
Box::new(future) as Box<_>
}
}
/// Output of the identify transport.
pub struct PeerIdTransportOutput<S> {
/// The socket to communicate with the remote.
pub socket: S,
/// Identification of the remote.
/// This may not be known immediately, hence why we use a future.
pub info: Box<Future<Item = IdentifyTransportOutcome, Error = IoError>>,
/// Original address of the remote.
/// This layer turns the address of the remote into the `/p2p/...` form, but stores the
/// original address in this field.
pub original_addr: Multiaddr,
}
// If the multiaddress is in the form `/p2p/...`, turn it into a `PeerId`.
// Otherwise, return it as-is.
fn multiaddr_to_peerid(addr: Multiaddr) -> Result<PeerId, Multiaddr> {
let components = addr.iter().collect::<Vec<_>>();
if components.len() < 1 {
return Err(addr);
}
match components.last() {
Some(&AddrComponent::P2P(ref peer_id)) => {
match PeerId::from_multihash(peer_id.clone()) {
Ok(peer_id) => Ok(peer_id),
Err(_) => Err(addr),
}
}
_ => Err(addr),
}
}
#[cfg(test)]
mod tests {
extern crate libp2p_tcp_transport;
extern crate tokio_current_thread;
use self::libp2p_tcp_transport::TcpConfig;
use PeerIdTransport;
use futures::{Future, Stream};
use libp2p_core::{Transport, PeerId, PublicKey};
use multiaddr::{AddrComponent, Multiaddr};
use std::io::Error as IoError;
use std::iter;
#[test]
fn dial_peer_id() {
// When we dial an `/p2p/...` address, the `PeerIdTransport` should look into the
// peerstore and dial one of the known multiaddresses of the node instead.
#[derive(Debug, Clone)]
struct UnderlyingTrans {
inner: TcpConfig,
}
impl Transport for UnderlyingTrans {
type Output = <TcpConfig as Transport>::Output;
type MultiaddrFuture = <TcpConfig as Transport>::MultiaddrFuture;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = (Self::Output, Self::MultiaddrFuture), Error = IoError>>;
type Dial = <TcpConfig as Transport>::Dial;
#[inline]
fn listen_on(
self,
_: Multiaddr,
) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
unreachable!()
}
#[inline]
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
assert_eq!(
addr,
"/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap()
);
Ok(self.inner.dial(addr).unwrap_or_else(|_| panic!()))
}
#[inline]
fn nat_traversal(&self, a: &Multiaddr, b: &Multiaddr) -> Option<Multiaddr> {
self.inner.nat_traversal(a, b)
}
}
let peer_id = PeerId::from_public_key(PublicKey::Ed25519(vec![1, 2, 3, 4]));
let underlying = UnderlyingTrans {
inner: TcpConfig::new(),
};
let transport = PeerIdTransport::new(underlying, {
let peer_id = peer_id.clone();
move |addr| {
assert_eq!(addr, peer_id);
vec!["/ip4/127.0.0.1/tcp/12345".parse().unwrap()]
}
});
let future = transport
.dial(iter::once(AddrComponent::P2P(peer_id.into())).collect())
.unwrap_or_else(|_| panic!())
.then::<_, Result<(), ()>>(|_| Ok(()));
let _ = tokio_current_thread::block_on_all(future).unwrap();
}
}

View File

@ -0,0 +1,311 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use bytes::{Bytes, BytesMut};
use futures::{future, Future, Sink, Stream};
use libp2p_core::{ConnectionUpgrade, Endpoint, PublicKey};
use multiaddr::Multiaddr;
use protobuf::Message as ProtobufMessage;
use protobuf::parse_from_bytes as protobuf_parse_from_bytes;
use protobuf::RepeatedField;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use structs_proto;
use tokio_codec::Framed;
use tokio_io::{AsyncRead, AsyncWrite};
use unsigned_varint::codec;
/// Configuration for an upgrade to the identity protocol.
#[derive(Debug, Clone)]
pub struct IdentifyProtocolConfig;
/// Output of the connection upgrade.
pub enum IdentifyOutput<T> {
/// We obtained information from the remote. Happens when we are the dialer.
RemoteInfo {
/// Information about the remote.
info: IdentifyInfo,
/// Address the remote sees for us.
observed_addr: Multiaddr,
},
/// We opened a connection to the remote and need to send it information. Happens when we are
/// the listener.
Sender {
/// Object used to send identify info to the client.
sender: IdentifySender<T>,
},
}
/// Object used to send back information to the client.
pub struct IdentifySender<T> {
inner: Framed<T, codec::UviBytes<Vec<u8>>>,
}
impl<'a, T> IdentifySender<T>
where
T: AsyncWrite + 'a,
{
/// Sends back information to the client. Returns a future that is signalled whenever the
/// info have been sent.
pub fn send(
self,
info: IdentifyInfo,
observed_addr: &Multiaddr,
) -> Box<Future<Item = (), Error = IoError> + 'a> {
debug!("Sending identify info to client");
trace!("Sending: {:?}", info);
let listen_addrs = info.listen_addrs
.into_iter()
.map(|addr| addr.into_bytes())
.collect();
let mut message = structs_proto::Identify::new();
message.set_agentVersion(info.agent_version);
message.set_protocolVersion(info.protocol_version);
message.set_publicKey(info.public_key.into_protobuf_encoding());
message.set_listenAddrs(listen_addrs);
message.set_observedAddr(observed_addr.to_bytes());
message.set_protocols(RepeatedField::from_vec(info.protocols));
let bytes = message
.write_to_bytes()
.expect("writing protobuf failed ; should never happen");
let future = self.inner.send(bytes).map(|_| ());
Box::new(future) as Box<_>
}
}
/// Information sent from the listener to the dialer.
#[derive(Debug, Clone)]
pub struct IdentifyInfo {
/// Public key of the node.
pub public_key: PublicKey,
/// Version of the "global" protocol, eg. `ipfs/1.0.0` or `polkadot/1.0.0`.
pub protocol_version: String,
/// Name and version of the client. Can be thought as similar to the `User-Agent` header
/// of HTTP.
pub agent_version: String,
/// Addresses that the node is listening on.
pub listen_addrs: Vec<Multiaddr>,
/// Protocols supported by the node, eg. `/ipfs/ping/1.0.0`.
pub protocols: Vec<String>,
}
impl<C, Maf> ConnectionUpgrade<C, Maf> for IdentifyProtocolConfig
where
C: AsyncRead + AsyncWrite + 'static,
Maf: Future<Item = Multiaddr, Error = IoError> + 'static,
{
type NamesIter = iter::Once<(Bytes, Self::UpgradeIdentifier)>;
type UpgradeIdentifier = ();
type Output = IdentifyOutput<C>;
type MultiaddrFuture = future::Either<future::FutureResult<Multiaddr, IoError>, Maf>;
type Future = Box<Future<Item = (Self::Output, Self::MultiaddrFuture), Error = IoError>>;
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once((Bytes::from("/ipfs/id/1.0.0"), ()))
}
fn upgrade(self, socket: C, _: (), ty: Endpoint, remote_addr: Maf) -> Self::Future {
trace!("Upgrading connection as {:?}", ty);
let socket = Framed::new(socket, codec::UviBytes::default());
match ty {
Endpoint::Dialer => {
let future = socket
.into_future()
.map(|(msg, _)| msg)
.map_err(|(err, _)| err)
.and_then(|msg| {
debug!("Received identify message");
if let Some(msg) = msg {
let (info, observed_addr) = match parse_proto_msg(msg) {
Ok(v) => v,
Err(err) => {
debug!("Failed to parse protobuf message ; error = {:?}", err);
return Err(err.into());
}
};
trace!("Remote observes us as {:?}", observed_addr);
trace!("Information received: {:?}", info);
let out = IdentifyOutput::RemoteInfo {
info,
observed_addr: observed_addr.clone(),
};
Ok((out, future::Either::A(future::ok(observed_addr))))
} else {
debug!("Identify protocol stream closed before receiving info");
Err(IoErrorKind::InvalidData.into())
}
});
Box::new(future) as Box<_>
}
Endpoint::Listener => {
let sender = IdentifySender { inner: socket };
let future = future::ok({
let io = IdentifyOutput::Sender {
sender,
};
(io, future::Either::B(remote_addr))
});
Box::new(future) as Box<_>
}
}
}
}
// Turns a protobuf message into an `IdentifyInfo` and an observed address. If something bad
// happens, turn it into an `IoError`.
fn parse_proto_msg(msg: BytesMut) -> Result<(IdentifyInfo, Multiaddr), IoError> {
match protobuf_parse_from_bytes::<structs_proto::Identify>(&msg) {
Ok(mut msg) => {
// Turn a `Vec<u8>` into a `Multiaddr`. If something bad happens, turn it into
// an `IoError`.
fn bytes_to_multiaddr(bytes: Vec<u8>) -> Result<Multiaddr, IoError> {
Multiaddr::from_bytes(bytes)
.map_err(|err| IoError::new(IoErrorKind::InvalidData, err))
}
let listen_addrs = {
let mut addrs = Vec::new();
for addr in msg.take_listenAddrs().into_iter() {
addrs.push(bytes_to_multiaddr(addr)?);
}
addrs
};
let observed_addr = bytes_to_multiaddr(msg.take_observedAddr())?;
let info = IdentifyInfo {
public_key: PublicKey::from_protobuf_encoding(msg.get_publicKey())?,
protocol_version: msg.take_protocolVersion(),
agent_version: msg.take_agentVersion(),
listen_addrs: listen_addrs,
protocols: msg.take_protocols().into_vec(),
};
Ok((info, observed_addr))
}
Err(err) => Err(IoError::new(IoErrorKind::InvalidData, err)),
}
}
#[cfg(test)]
mod tests {
extern crate libp2p_tcp_transport;
extern crate tokio_current_thread;
use self::libp2p_tcp_transport::TcpConfig;
use futures::{Future, Stream};
use libp2p_core::{PublicKey, Transport};
use std::sync::mpsc;
use std::thread;
use {IdentifyInfo, IdentifyOutput, IdentifyProtocolConfig};
#[test]
fn correct_transfer() {
// We open a server and a client, send info from the server to the client, and check that
// they were successfully received.
let (tx, rx) = mpsc::channel();
let bg_thread = thread::spawn(move || {
let transport = TcpConfig::new().with_upgrade(IdentifyProtocolConfig);
let (listener, addr) = transport
.listen_on("/ip4/127.0.0.1/tcp/0".parse().unwrap())
.unwrap();
tx.send(addr).unwrap();
let future = listener
.into_future()
.map_err(|(err, _)| err)
.and_then(|(client, _)| client.unwrap().map(|v| v.0))
.and_then(|identify| match identify {
IdentifyOutput::Sender { sender, .. } => sender.send(
IdentifyInfo {
public_key: PublicKey::Ed25519(vec![1, 2, 3, 4, 5, 7]),
protocol_version: "proto_version".to_owned(),
agent_version: "agent_version".to_owned(),
listen_addrs: vec![
"/ip4/80.81.82.83/tcp/500".parse().unwrap(),
"/ip6/::1/udp/1000".parse().unwrap(),
],
protocols: vec!["proto1".to_string(), "proto2".to_string()],
},
&"/ip4/100.101.102.103/tcp/5000".parse().unwrap(),
),
_ => panic!(),
});
let _ = tokio_current_thread::block_on_all(future).unwrap();
});
let transport = TcpConfig::new().with_upgrade(IdentifyProtocolConfig);
let future = transport
.dial(rx.recv().unwrap())
.unwrap_or_else(|_| panic!())
.and_then(|(identify, _)| match identify {
IdentifyOutput::RemoteInfo {
info,
observed_addr,
} => {
assert_eq!(
observed_addr,
"/ip4/100.101.102.103/tcp/5000".parse().unwrap()
);
assert_eq!(info.public_key, PublicKey::Ed25519(vec![1, 2, 3, 4, 5, 7]));
assert_eq!(info.protocol_version, "proto_version");
assert_eq!(info.agent_version, "agent_version");
assert_eq!(
info.listen_addrs,
&[
"/ip4/80.81.82.83/tcp/500".parse().unwrap(),
"/ip6/::1/udp/1000".parse().unwrap()
]
);
assert_eq!(
info.protocols,
&["proto1".to_string(), "proto2".to_string()]
);
Ok(())
}
_ => panic!(),
});
let _ = tokio_current_thread::block_on_all(future).unwrap();
bg_thread.join().unwrap();
}
}

View File

@ -0,0 +1,497 @@
// This file is generated by rust-protobuf 2.0.2. Do not edit
// @generated
// https://github.com/Manishearth/rust-clippy/issues/702
#![allow(unknown_lints)]
#![allow(clippy)]
#![cfg_attr(rustfmt, rustfmt_skip)]
#![allow(box_pointers)]
#![allow(dead_code)]
#![allow(missing_docs)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(trivial_casts)]
#![allow(unsafe_code)]
#![allow(unused_imports)]
#![allow(unused_results)]
use protobuf::Message as Message_imported_for_functions;
use protobuf::ProtobufEnum as ProtobufEnum_imported_for_functions;
#[derive(PartialEq,Clone,Default)]
pub struct Identify {
// message fields
protocolVersion: ::protobuf::SingularField<::std::string::String>,
agentVersion: ::protobuf::SingularField<::std::string::String>,
publicKey: ::protobuf::SingularField<::std::vec::Vec<u8>>,
listenAddrs: ::protobuf::RepeatedField<::std::vec::Vec<u8>>,
observedAddr: ::protobuf::SingularField<::std::vec::Vec<u8>>,
protocols: ::protobuf::RepeatedField<::std::string::String>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
impl Identify {
pub fn new() -> Identify {
::std::default::Default::default()
}
// optional string protocolVersion = 5;
pub fn clear_protocolVersion(&mut self) {
self.protocolVersion.clear();
}
pub fn has_protocolVersion(&self) -> bool {
self.protocolVersion.is_some()
}
// Param is passed by value, moved
pub fn set_protocolVersion(&mut self, v: ::std::string::String) {
self.protocolVersion = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_protocolVersion(&mut self) -> &mut ::std::string::String {
if self.protocolVersion.is_none() {
self.protocolVersion.set_default();
}
self.protocolVersion.as_mut().unwrap()
}
// Take field
pub fn take_protocolVersion(&mut self) -> ::std::string::String {
self.protocolVersion.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_protocolVersion(&self) -> &str {
match self.protocolVersion.as_ref() {
Some(v) => &v,
None => "",
}
}
// optional string agentVersion = 6;
pub fn clear_agentVersion(&mut self) {
self.agentVersion.clear();
}
pub fn has_agentVersion(&self) -> bool {
self.agentVersion.is_some()
}
// Param is passed by value, moved
pub fn set_agentVersion(&mut self, v: ::std::string::String) {
self.agentVersion = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_agentVersion(&mut self) -> &mut ::std::string::String {
if self.agentVersion.is_none() {
self.agentVersion.set_default();
}
self.agentVersion.as_mut().unwrap()
}
// Take field
pub fn take_agentVersion(&mut self) -> ::std::string::String {
self.agentVersion.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_agentVersion(&self) -> &str {
match self.agentVersion.as_ref() {
Some(v) => &v,
None => "",
}
}
// optional bytes publicKey = 1;
pub fn clear_publicKey(&mut self) {
self.publicKey.clear();
}
pub fn has_publicKey(&self) -> bool {
self.publicKey.is_some()
}
// Param is passed by value, moved
pub fn set_publicKey(&mut self, v: ::std::vec::Vec<u8>) {
self.publicKey = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_publicKey(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.publicKey.is_none() {
self.publicKey.set_default();
}
self.publicKey.as_mut().unwrap()
}
// Take field
pub fn take_publicKey(&mut self) -> ::std::vec::Vec<u8> {
self.publicKey.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_publicKey(&self) -> &[u8] {
match self.publicKey.as_ref() {
Some(v) => &v,
None => &[],
}
}
// repeated bytes listenAddrs = 2;
pub fn clear_listenAddrs(&mut self) {
self.listenAddrs.clear();
}
// Param is passed by value, moved
pub fn set_listenAddrs(&mut self, v: ::protobuf::RepeatedField<::std::vec::Vec<u8>>) {
self.listenAddrs = v;
}
// Mutable pointer to the field.
pub fn mut_listenAddrs(&mut self) -> &mut ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
&mut self.listenAddrs
}
// Take field
pub fn take_listenAddrs(&mut self) -> ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
::std::mem::replace(&mut self.listenAddrs, ::protobuf::RepeatedField::new())
}
pub fn get_listenAddrs(&self) -> &[::std::vec::Vec<u8>] {
&self.listenAddrs
}
// optional bytes observedAddr = 4;
pub fn clear_observedAddr(&mut self) {
self.observedAddr.clear();
}
pub fn has_observedAddr(&self) -> bool {
self.observedAddr.is_some()
}
// Param is passed by value, moved
pub fn set_observedAddr(&mut self, v: ::std::vec::Vec<u8>) {
self.observedAddr = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_observedAddr(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.observedAddr.is_none() {
self.observedAddr.set_default();
}
self.observedAddr.as_mut().unwrap()
}
// Take field
pub fn take_observedAddr(&mut self) -> ::std::vec::Vec<u8> {
self.observedAddr.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_observedAddr(&self) -> &[u8] {
match self.observedAddr.as_ref() {
Some(v) => &v,
None => &[],
}
}
// repeated string protocols = 3;
pub fn clear_protocols(&mut self) {
self.protocols.clear();
}
// Param is passed by value, moved
pub fn set_protocols(&mut self, v: ::protobuf::RepeatedField<::std::string::String>) {
self.protocols = v;
}
// Mutable pointer to the field.
pub fn mut_protocols(&mut self) -> &mut ::protobuf::RepeatedField<::std::string::String> {
&mut self.protocols
}
// Take field
pub fn take_protocols(&mut self) -> ::protobuf::RepeatedField<::std::string::String> {
::std::mem::replace(&mut self.protocols, ::protobuf::RepeatedField::new())
}
pub fn get_protocols(&self) -> &[::std::string::String] {
&self.protocols
}
}
impl ::protobuf::Message for Identify {
fn is_initialized(&self) -> bool {
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
5 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.protocolVersion)?;
},
6 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.agentVersion)?;
},
1 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.publicKey)?;
},
2 => {
::protobuf::rt::read_repeated_bytes_into(wire_type, is, &mut self.listenAddrs)?;
},
4 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.observedAddr)?;
},
3 => {
::protobuf::rt::read_repeated_string_into(wire_type, is, &mut self.protocols)?;
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(ref v) = self.protocolVersion.as_ref() {
my_size += ::protobuf::rt::string_size(5, &v);
}
if let Some(ref v) = self.agentVersion.as_ref() {
my_size += ::protobuf::rt::string_size(6, &v);
}
if let Some(ref v) = self.publicKey.as_ref() {
my_size += ::protobuf::rt::bytes_size(1, &v);
}
for value in &self.listenAddrs {
my_size += ::protobuf::rt::bytes_size(2, &value);
};
if let Some(ref v) = self.observedAddr.as_ref() {
my_size += ::protobuf::rt::bytes_size(4, &v);
}
for value in &self.protocols {
my_size += ::protobuf::rt::string_size(3, &value);
};
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(ref v) = self.protocolVersion.as_ref() {
os.write_string(5, &v)?;
}
if let Some(ref v) = self.agentVersion.as_ref() {
os.write_string(6, &v)?;
}
if let Some(ref v) = self.publicKey.as_ref() {
os.write_bytes(1, &v)?;
}
for v in &self.listenAddrs {
os.write_bytes(2, &v)?;
};
if let Some(ref v) = self.observedAddr.as_ref() {
os.write_bytes(4, &v)?;
}
for v in &self.protocols {
os.write_string(3, &v)?;
};
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
Self::descriptor_static()
}
fn new() -> Identify {
Identify::new()
}
fn descriptor_static() -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"protocolVersion",
|m: &Identify| { &m.protocolVersion },
|m: &mut Identify| { &mut m.protocolVersion },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"agentVersion",
|m: &Identify| { &m.agentVersion },
|m: &mut Identify| { &mut m.agentVersion },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"publicKey",
|m: &Identify| { &m.publicKey },
|m: &mut Identify| { &mut m.publicKey },
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"listenAddrs",
|m: &Identify| { &m.listenAddrs },
|m: &mut Identify| { &mut m.listenAddrs },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"observedAddr",
|m: &Identify| { &m.observedAddr },
|m: &mut Identify| { &mut m.observedAddr },
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"protocols",
|m: &Identify| { &m.protocols },
|m: &mut Identify| { &mut m.protocols },
));
::protobuf::reflect::MessageDescriptor::new::<Identify>(
"Identify",
fields,
file_descriptor_proto()
)
})
}
}
fn default_instance() -> &'static Identify {
static mut instance: ::protobuf::lazy::Lazy<Identify> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Identify,
};
unsafe {
instance.get(Identify::new)
}
}
}
impl ::protobuf::Clear for Identify {
fn clear(&mut self) {
self.clear_protocolVersion();
self.clear_agentVersion();
self.clear_publicKey();
self.clear_listenAddrs();
self.clear_observedAddr();
self.clear_protocols();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Identify {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Identify {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
static file_descriptor_proto_data: &'static [u8] = b"\
\n\rstructs.proto\"\xda\x01\n\x08Identify\x12(\n\x0fprotocolVersion\x18\
\x05\x20\x01(\tR\x0fprotocolVersion\x12\"\n\x0cagentVersion\x18\x06\x20\
\x01(\tR\x0cagentVersion\x12\x1c\n\tpublicKey\x18\x01\x20\x01(\x0cR\tpub\
licKey\x12\x20\n\x0blistenAddrs\x18\x02\x20\x03(\x0cR\x0blistenAddrs\x12\
\"\n\x0cobservedAddr\x18\x04\x20\x01(\x0cR\x0cobservedAddr\x12\x1c\n\tpr\
otocols\x18\x03\x20\x03(\tR\tprotocolsJ\xc2\t\n\x06\x12\x04\0\0\x16\x01\
\n\n\n\x02\x04\0\x12\x04\0\0\x16\x01\n\n\n\x03\x04\0\x01\x12\x03\0\x08\
\x10\nX\n\x04\x04\0\x02\0\x12\x03\x02\x02&\x1a8\x20protocolVersion\x20de\
termines\x20compatibility\x20between\x20peers\n\"\x11\x20e.g.\x20ipfs/1.\
0.0\n\n\x0c\n\x05\x04\0\x02\0\x04\x12\x03\x02\x02\n\n\x0c\n\x05\x04\0\
\x02\0\x05\x12\x03\x02\x0b\x11\n\x0c\n\x05\x04\0\x02\0\x01\x12\x03\x02\
\x12!\n\x0c\n\x05\x04\0\x02\0\x03\x12\x03\x02$%\n\x9f\x01\n\x04\x04\0\
\x02\x01\x12\x03\x06\x02#\x1a|\x20agentVersion\x20is\x20like\x20a\x20Use\
rAgent\x20string\x20in\x20browsers,\x20or\x20client\x20version\x20in\x20\
bittorrent\n\x20includes\x20the\x20client\x20name\x20and\x20client.\n\"\
\x14\x20e.g.\x20go-ipfs/0.1.0\n\n\x0c\n\x05\x04\0\x02\x01\x04\x12\x03\
\x06\x02\n\n\x0c\n\x05\x04\0\x02\x01\x05\x12\x03\x06\x0b\x11\n\x0c\n\x05\
\x04\0\x02\x01\x01\x12\x03\x06\x12\x1e\n\x0c\n\x05\x04\0\x02\x01\x03\x12\
\x03\x06!\"\n\xe3\x01\n\x04\x04\0\x02\x02\x12\x03\x0b\x02\x1f\x1a\xd5\
\x01\x20publicKey\x20is\x20this\x20node's\x20public\x20key\x20(which\x20\
also\x20gives\x20its\x20node.ID)\n\x20-\x20may\x20not\x20need\x20to\x20b\
e\x20sent,\x20as\x20secure\x20channel\x20implies\x20it\x20has\x20been\
\x20sent.\n\x20-\x20then\x20again,\x20if\x20we\x20change\x20/\x20disable\
\x20secure\x20channel,\x20may\x20still\x20want\x20it.\n\n\x0c\n\x05\x04\
\0\x02\x02\x04\x12\x03\x0b\x02\n\n\x0c\n\x05\x04\0\x02\x02\x05\x12\x03\
\x0b\x0b\x10\n\x0c\n\x05\x04\0\x02\x02\x01\x12\x03\x0b\x11\x1a\n\x0c\n\
\x05\x04\0\x02\x02\x03\x12\x03\x0b\x1d\x1e\n]\n\x04\x04\0\x02\x03\x12\
\x03\x0e\x02!\x1aP\x20listenAddrs\x20are\x20the\x20multiaddrs\x20the\x20\
sender\x20node\x20listens\x20for\x20open\x20connections\x20on\n\n\x0c\n\
\x05\x04\0\x02\x03\x04\x12\x03\x0e\x02\n\n\x0c\n\x05\x04\0\x02\x03\x05\
\x12\x03\x0e\x0b\x10\n\x0c\n\x05\x04\0\x02\x03\x01\x12\x03\x0e\x11\x1c\n\
\x0c\n\x05\x04\0\x02\x03\x03\x12\x03\x0e\x1f\x20\n\x81\x02\n\x04\x04\0\
\x02\x04\x12\x03\x13\x02\"\x1a\xf3\x01\x20oservedAddr\x20is\x20the\x20mu\
ltiaddr\x20of\x20the\x20remote\x20endpoint\x20that\x20the\x20sender\x20n\
ode\x20perceives\n\x20this\x20is\x20useful\x20information\x20to\x20conve\
y\x20to\x20the\x20other\x20side,\x20as\x20it\x20helps\x20the\x20remote\
\x20endpoint\n\x20determine\x20whether\x20its\x20connection\x20to\x20the\
\x20local\x20peer\x20goes\x20through\x20NAT.\n\n\x0c\n\x05\x04\0\x02\x04\
\x04\x12\x03\x13\x02\n\n\x0c\n\x05\x04\0\x02\x04\x05\x12\x03\x13\x0b\x10\
\n\x0c\n\x05\x04\0\x02\x04\x01\x12\x03\x13\x11\x1d\n\x0c\n\x05\x04\0\x02\
\x04\x03\x12\x03\x13\x20!\n\x0b\n\x04\x04\0\x02\x05\x12\x03\x15\x02\x20\
\n\x0c\n\x05\x04\0\x02\x05\x04\x12\x03\x15\x02\n\n\x0c\n\x05\x04\0\x02\
\x05\x05\x12\x03\x15\x0b\x11\n\x0c\n\x05\x04\0\x02\x05\x01\x12\x03\x15\
\x12\x1b\n\x0c\n\x05\x04\0\x02\x05\x03\x12\x03\x15\x1e\x1f\
";
static mut file_descriptor_proto_lazy: ::protobuf::lazy::Lazy<::protobuf::descriptor::FileDescriptorProto> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::descriptor::FileDescriptorProto,
};
fn parse_descriptor_proto() -> ::protobuf::descriptor::FileDescriptorProto {
::protobuf::parse_from_bytes(file_descriptor_proto_data).unwrap()
}
pub fn file_descriptor_proto() -> &'static ::protobuf::descriptor::FileDescriptorProto {
unsafe {
file_descriptor_proto_lazy.get(|| {
parse_descriptor_proto()
})
}
}

View File

@ -0,0 +1,23 @@
message Identify {
// protocolVersion determines compatibility between peers
optional string protocolVersion = 5; // e.g. ipfs/1.0.0
// agentVersion is like a UserAgent string in browsers, or client version in bittorrent
// includes the client name and client.
optional string agentVersion = 6; // e.g. go-ipfs/0.1.0
// publicKey is this node's public key (which also gives its node.ID)
// - may not need to be sent, as secure channel implies it has been sent.
// - then again, if we change / disable secure channel, may still want it.
optional bytes publicKey = 1;
// listenAddrs are the multiaddrs the sender node listens for open connections on
repeated bytes listenAddrs = 2;
// oservedAddr is the multiaddr of the remote endpoint that the sender node perceives
// this is useful information to convey to the other side, as it helps the remote endpoint
// determine whether its connection to the local peer goes through NAT.
optional bytes observedAddr = 4;
repeated string protocols = 3;
}

32
protocols/kad/Cargo.toml Normal file
View File

@ -0,0 +1,32 @@
[package]
name = "libp2p-kad"
version = "0.1.0"
authors = ["Parity Technologies <admin@parity.io>"]
license = "MIT"
[dependencies]
arrayvec = "0.4.7"
bs58 = "0.2.0"
bigint = "4.2"
bytes = "0.4"
datastore = { path = "../../stores/datastore" }
fnv = "1.0"
futures = "0.1"
libp2p-identify = { path = "../../protocols/identify" }
libp2p-ping = { path = "../../protocols/ping" }
libp2p-core = { path = "../../core" }
log = "0.4"
multiaddr = { path = "../../misc/multiaddr" }
parking_lot = "0.6"
protobuf = "2.0.2"
rand = "0.4.2"
smallvec = "0.5"
tokio-codec = "0.1"
tokio-io = "0.1"
tokio-timer = "0.2.6"
unsigned-varint = { version = "0.1", features = ["codec"] }
[dev-dependencies]
libp2p-tcp-transport = { path = "../../transports/tcp" }
rand = "0.4.2"
tokio-current-thread = "0.1"

63
protocols/kad/dht.proto Normal file
View File

@ -0,0 +1,63 @@
syntax = "proto2";
package dht.pb;
import "record.proto";
message Message {
enum MessageType {
PUT_VALUE = 0;
GET_VALUE = 1;
ADD_PROVIDER = 2;
GET_PROVIDERS = 3;
FIND_NODE = 4;
PING = 5;
}
enum ConnectionType {
// sender does not have a connection to peer, and no extra information (default)
NOT_CONNECTED = 0;
// sender has a live connection to peer
CONNECTED = 1;
// sender recently connected to peer
CAN_CONNECT = 2;
// sender recently tried to connect to peer repeatedly but failed to connect
// ("try" here is loose, but this should signal "made strong effort, failed")
CANNOT_CONNECT = 3;
}
message Peer {
// ID of a given peer.
optional bytes id = 1;
// multiaddrs for a given peer
repeated bytes addrs = 2;
// used to signal the sender's connection capabilities to the peer
optional ConnectionType connection = 3;
}
// defines what type of message it is.
optional MessageType type = 1;
// defines what coral cluster level this query/response belongs to.
optional int32 clusterLevelRaw = 10;
// Used to specify the key associated with this message.
// PUT_VALUE, GET_VALUE, ADD_PROVIDER, GET_PROVIDERS
optional bytes key = 2;
// Used to return a value
// PUT_VALUE, GET_VALUE
optional record.pb.Record record = 3;
// Used to return peers closer to a key in a query
// GET_VALUE, GET_PROVIDERS, FIND_NODE
repeated Peer closerPeers = 8;
// Used to return Providers
// GET_VALUE, ADD_PROVIDER, GET_PROVIDERS
repeated Peer providerPeers = 9;
}

View File

@ -0,0 +1,21 @@
syntax = "proto2";
package record.pb;
// Record represents a dht record that contains a value
// for a key value pair
message Record {
// The key that references this record
optional string key = 1;
// The actual value this record is storing
optional bytes value = 2;
// hash of the authors public key
optional string author = 3;
// A PKI signature for the key+value+author
optional bytes signature = 4;
// Time the record was received, set by receiver
optional string timeReceived = 5;
}

View File

@ -0,0 +1,15 @@
#!/bin/sh
# This script regenerates the `src/dht_proto.rs` file from `dht.proto`.
docker run --rm -v `pwd`:/usr/code:z -w /usr/code rust /bin/bash -c " \
apt-get update; \
apt-get install -y protobuf-compiler; \
cargo install --version 2.0.2 protobuf-codegen; \
protoc --rust_out . dht.proto;\
protoc --rust_out . record.proto"
sudo chown $USER:$USER *.rs
mv -f dht.rs ./src/protobuf_structs/dht.rs
mv -f record.rs ./src/protobuf_structs/record.rs

View File

@ -0,0 +1,464 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use fnv::FnvHashSet;
use futures::{future, Future, IntoFuture, stream, Stream};
use kad_server::KadConnecController;
use kbucket::{KBucketsTable, KBucketsPeerId};
use libp2p_core::PeerId;
use multiaddr::Multiaddr;
use protocol;
use rand;
use smallvec::SmallVec;
use std::cmp::Ordering;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::mem;
use std::time::Duration;
use tokio_timer::Timeout;
/// Prototype for a future Kademlia protocol running on a socket.
#[derive(Debug, Clone)]
pub struct KadSystemConfig<I> {
/// Degree of parallelism on the network. Often called `alpha` in technical papers.
/// No more than this number of remotes will be used at a given time for any given operation.
// TODO: ^ share this number between operations? or does each operation use `alpha` remotes?
pub parallelism: u32,
/// Id of the local peer.
pub local_peer_id: PeerId,
/// List of peers initially known.
pub known_initial_peers: I,
/// Duration after which a node in the k-buckets needs to be pinged again.
pub kbuckets_timeout: Duration,
/// When contacting a node, duration after which we consider it unresponsive.
pub request_timeout: Duration,
}
/// System that drives the whole Kademlia process.
pub struct KadSystem {
// The actual DHT.
kbuckets: KBucketsTable<PeerId, ()>,
// Same as in the config.
parallelism: u32,
// Same as in the config.
request_timeout: Duration,
}
/// Event that happens during a query.
#[derive(Debug, Clone)]
pub enum KadQueryEvent<TOut> {
/// Learned about new mutiaddresses for the given peers.
NewKnownMultiaddrs(Vec<(PeerId, Vec<Multiaddr>)>),
/// Finished the processing of the query. Contains the result.
Finished(TOut),
}
impl KadSystem {
/// Starts a new Kademlia system.
///
/// Also produces a `Future` that drives a Kademlia initialization process.
/// This future should be driven to completion by the caller.
pub fn start<'a, F, Fut>(config: KadSystemConfig<impl Iterator<Item = PeerId>>, access: F)
-> (KadSystem, impl Future<Item = (), Error = IoError> + 'a)
where F: FnMut(&PeerId) -> Fut + Clone + 'a,
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
{
let system = KadSystem::without_init(config);
let init_future = system.perform_initialization(access);
(system, init_future)
}
/// Same as `start`, but doesn't perform the initialization process.
pub fn without_init(config: KadSystemConfig<impl Iterator<Item = PeerId>>) -> KadSystem {
let kbuckets = KBucketsTable::new(config.local_peer_id.clone(), config.kbuckets_timeout);
for peer in config.known_initial_peers {
let _ = kbuckets.update(peer, ());
}
let system = KadSystem {
kbuckets: kbuckets,
parallelism: config.parallelism,
request_timeout: config.request_timeout,
};
system
}
/// Starts an initialization process.
pub fn perform_initialization<'a, F, Fut>(&self, access: F) -> impl Future<Item = (), Error = IoError> + 'a
where F: FnMut(&PeerId) -> Fut + Clone + 'a,
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
{
let futures: Vec<_> = (0..256) // TODO: 256 is arbitrary
.map(|n| {
refresh(n, access.clone(), &self.kbuckets,
self.parallelism as usize, self.request_timeout)
})
.map(|stream| stream.for_each(|_| Ok(())))
.collect();
future::loop_fn(futures, |futures| {
if futures.is_empty() {
let fut = future::ok(future::Loop::Break(()));
return future::Either::A(fut);
}
let fut = future::select_all(futures)
.map_err(|(err, _, _)| err)
.map(|(_, _, rest)| future::Loop::Continue(rest));
future::Either::B(fut)
})
}
/// Updates the k-buckets with the specific peer.
///
/// Should be called whenever we receive a message from a peer.
pub fn update_kbuckets(&self, peer: PeerId) {
// TODO: ping system
let _ = self.kbuckets.update(peer, ());
}
/// Returns the local peer ID, as passed in the configuration.
pub fn local_peer_id(&self) -> &PeerId {
self.kbuckets.my_id()
}
/// Finds the known nodes closest to `id`, ordered by distance.
pub fn known_closest_peers(&self, id: &PeerId) -> impl Iterator<Item = PeerId> {
self.kbuckets.find_closest_with_self(id)
}
/// Starts a query for an iterative `FIND_NODE` request.
pub fn find_node<'a, F, Fut>(&self, searched_key: PeerId, access: F)
-> impl Stream<Item = KadQueryEvent<Vec<PeerId>>, Error = IoError> + 'a
where F: FnMut(&PeerId) -> Fut + 'a,
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
{
query(access, &self.kbuckets, searched_key, self.parallelism as usize,
20, self.request_timeout) // TODO: arbitrary const
}
}
// Refreshes a specific bucket by performing an iterative `FIND_NODE` on a random ID of this
// bucket.
//
// Returns a dummy no-op future if `bucket_num` is out of range.
fn refresh<'a, F, Fut>(bucket_num: usize, access: F, kbuckets: &KBucketsTable<PeerId, ()>,
parallelism: usize, request_timeout: Duration)
-> impl Stream<Item = KadQueryEvent<()>, Error = IoError> + 'a
where F: FnMut(&PeerId) -> Fut + 'a,
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
{
let peer_id = match gen_random_id(kbuckets.my_id(), bucket_num) {
Ok(p) => p,
Err(()) => {
let stream = stream::once(Ok(KadQueryEvent::Finished(())));
return Box::new(stream) as Box<Stream<Item = _, Error = _>>;
},
};
let stream = query(access, kbuckets, peer_id, parallelism, 20, request_timeout) // TODO: 20 is arbitrary
.map(|event| {
match event {
KadQueryEvent::NewKnownMultiaddrs(peers) => KadQueryEvent::NewKnownMultiaddrs(peers),
KadQueryEvent::Finished(_) => KadQueryEvent::Finished(()),
}
});
Box::new(stream) as Box<Stream<Item = _, Error = _>>
}
// Generates a random `PeerId` that belongs to the given bucket.
//
// Returns an error if `bucket_num` is out of range.
fn gen_random_id(my_id: &PeerId, bucket_num: usize) -> Result<PeerId, ()> {
let my_id_len = my_id.as_bytes().len();
// TODO: this 2 is magic here ; it is the length of the hash of the multihash
let bits_diff = bucket_num + 1;
if bits_diff > 8 * (my_id_len - 2) {
return Err(());
}
let mut random_id = [0; 64];
for byte in 0..my_id_len {
match byte.cmp(&(my_id_len - bits_diff / 8 - 1)) {
Ordering::Less => {
random_id[byte] = my_id.as_bytes()[byte];
}
Ordering::Equal => {
let mask: u8 = (1 << (bits_diff % 8)) - 1;
random_id[byte] = (my_id.as_bytes()[byte] & !mask) | (rand::random::<u8>() & mask);
}
Ordering::Greater => {
random_id[byte] = rand::random();
}
}
}
let peer_id = PeerId::from_bytes(random_id[..my_id_len].to_owned())
.expect("randomly-generated peer ID should always be valid");
Ok(peer_id)
}
// Generic query-performing function.
fn query<'a, F, Fut>(
access: F,
kbuckets: &KBucketsTable<PeerId, ()>,
searched_key: PeerId,
parallelism: usize,
num_results: usize,
request_timeout: Duration,
) -> impl Stream<Item = KadQueryEvent<Vec<PeerId>>, Error = IoError> + 'a
where F: FnMut(&PeerId) -> Fut + 'a,
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
{
debug!("Start query for {:?} ; num results = {}", searched_key, num_results);
// State of the current iterative process.
struct State<'a, F> {
// At which stage we are.
stage: Stage,
// The `access` parameter.
access: F,
// Final output of the iteration.
result: Vec<PeerId>,
// For each open connection, a future with the response of the remote.
// Note that don't use a `SmallVec` here because `select_all` produces a `Vec`.
current_attempts_fut: Vec<Box<Future<Item = Vec<protocol::KadPeer>, Error = IoError> + 'a>>,
// For each open connection, the peer ID that we are connected to.
// Must always have the same length as `current_attempts_fut`.
current_attempts_addrs: SmallVec<[PeerId; 32]>,
// Nodes that need to be attempted.
pending_nodes: Vec<PeerId>,
// Peers that we tried to contact but failed.
failed_to_contact: FnvHashSet<PeerId>,
}
// General stage of the state.
#[derive(Copy, Clone, PartialEq, Eq)]
enum Stage {
// We are still in the first step of the algorithm where we try to find the closest node.
FirstStep,
// We are contacting the k closest nodes in order to fill the list with enough results.
SecondStep,
// The results are complete, and the next stream iteration will produce the outcome.
FinishingNextIter,
// We are finished and the stream shouldn't return anything anymore.
Finished,
}
let initial_state = State {
stage: Stage::FirstStep,
access: access,
result: Vec::with_capacity(num_results),
current_attempts_fut: Vec::new(),
current_attempts_addrs: SmallVec::new(),
pending_nodes: kbuckets.find_closest(&searched_key).collect(),
failed_to_contact: Default::default(),
};
// Start of the iterative process.
let stream = stream::unfold(initial_state, move |mut state| -> Option<_> {
match state.stage {
Stage::FinishingNextIter => {
let result = mem::replace(&mut state.result, Vec::new());
debug!("Query finished with {} results", result.len());
state.stage = Stage::Finished;
let future = future::ok((Some(KadQueryEvent::Finished(result)), state));
return Some(future::Either::A(future));
},
Stage::Finished => {
return None;
},
_ => ()
};
let searched_key = searched_key.clone();
// Find out which nodes to contact at this iteration.
let to_contact = {
let wanted_len = if state.stage == Stage::FirstStep {
parallelism.saturating_sub(state.current_attempts_fut.len())
} else {
num_results.saturating_sub(state.current_attempts_fut.len())
};
let mut to_contact = SmallVec::<[_; 16]>::new();
while to_contact.len() < wanted_len && !state.pending_nodes.is_empty() {
// Move the first element of `pending_nodes` to `to_contact`, but ignore nodes that
// are already part of the results or of a current attempt or if we failed to
// contact it before.
let peer = state.pending_nodes.remove(0);
if state.result.iter().any(|p| p == &peer) {
continue;
}
if state.current_attempts_addrs.iter().any(|p| p == &peer) {
continue;
}
if state.failed_to_contact.iter().any(|p| p == &peer) {
continue;
}
to_contact.push(peer);
}
to_contact
};
debug!("New query round ; {} queries in progress ; contacting {} new peers",
state.current_attempts_fut.len(),
to_contact.len());
// For each node in `to_contact`, start an RPC query and a corresponding entry in the two
// `state.current_attempts_*` fields.
for peer in to_contact {
let searched_key2 = searched_key.clone();
let current_attempt = (state.access)(&peer)
.into_future()
.and_then(move |controller| {
controller.find_node(&searched_key2)
});
let with_deadline = Timeout::new(current_attempt, request_timeout)
.map_err(|err| {
if let Some(err) = err.into_inner() {
err
} else {
IoError::new(IoErrorKind::ConnectionAborted, "kademlia request timeout")
}
});
state.current_attempts_addrs.push(peer.clone());
state
.current_attempts_fut
.push(Box::new(with_deadline) as Box<_>);
}
debug_assert_eq!(
state.current_attempts_addrs.len(),
state.current_attempts_fut.len()
);
// Extract `current_attempts_fut` so that we can pass it to `select_all`. We will push the
// values back when inside the loop.
let current_attempts_fut = mem::replace(&mut state.current_attempts_fut, Vec::new());
if current_attempts_fut.is_empty() {
// If `current_attempts_fut` is empty, then `select_all` would panic. It happens
// when we have no additional node to query.
debug!("Finishing query early because no additional node available");
state.stage = Stage::FinishingNextIter;
let future = future::ok((None, state));
return Some(future::Either::A(future));
}
// This is the future that continues or breaks the `loop_fn`.
let future = future::select_all(current_attempts_fut.into_iter()).then(move |result| {
let (message, trigger_idx, other_current_attempts) = match result {
Err((err, trigger_idx, other_current_attempts)) => {
(Err(err), trigger_idx, other_current_attempts)
}
Ok((message, trigger_idx, other_current_attempts)) => {
(Ok(message), trigger_idx, other_current_attempts)
}
};
// Putting back the extracted elements in `state`.
let remote_id = state.current_attempts_addrs.remove(trigger_idx);
debug_assert!(state.current_attempts_fut.is_empty());
state.current_attempts_fut = other_current_attempts;
// `message` contains the reason why the current future was woken up.
let closer_peers = match message {
Ok(msg) => msg,
Err(err) => {
trace!("RPC query failed for {:?}: {:?}", remote_id, err);
state.failed_to_contact.insert(remote_id);
return future::ok((None, state));
}
};
// Inserting the node we received a response from into `state.result`.
// The code is non-trivial because `state.result` is ordered by distance and is limited
// by `num_results` elements.
if let Some(insert_pos) = state.result.iter().position(|e| {
e.distance_with(&searched_key) >= remote_id.distance_with(&searched_key)
}) {
if state.result[insert_pos] != remote_id {
if state.result.len() >= num_results {
state.result.pop();
}
state.result.insert(insert_pos, remote_id);
}
} else if state.result.len() < num_results {
state.result.push(remote_id);
}
// The loop below will set this variable to `true` if we find a new element to put at
// the top of the result. This would mean that we have to continue looping.
let mut local_nearest_node_updated = false;
// Update `state` with the actual content of the message.
let mut new_known_multiaddrs = Vec::with_capacity(closer_peers.len());
for mut peer in closer_peers {
// Update the peerstore with the information sent by
// the remote.
{
let multiaddrs = mem::replace(&mut peer.multiaddrs, Vec::new());
trace!("Reporting multiaddresses for {:?}: {:?}", peer.node_id, multiaddrs);
new_known_multiaddrs.push((peer.node_id.clone(), multiaddrs));
}
if peer.node_id.distance_with(&searched_key)
<= state.result[0].distance_with(&searched_key)
{
local_nearest_node_updated = true;
}
if state.result.iter().any(|ma| ma == &peer.node_id) {
continue;
}
// Insert the node into `pending_nodes` at the right position, or do not
// insert it if it is already in there.
if let Some(insert_pos) = state.pending_nodes.iter().position(|e| {
e.distance_with(&searched_key) >= peer.node_id.distance_with(&searched_key)
}) {
if state.pending_nodes[insert_pos] != peer.node_id {
state.pending_nodes.insert(insert_pos, peer.node_id.clone());
}
} else {
state.pending_nodes.push(peer.node_id.clone());
}
}
if state.result.len() >= num_results
|| (state.stage != Stage::FirstStep && state.current_attempts_fut.is_empty())
{
state.stage = Stage::FinishingNextIter;
} else {
if !local_nearest_node_updated {
trace!("Loop didn't update closer node ; jumping to step 2");
state.stage = Stage::SecondStep;
}
}
future::ok((Some(KadQueryEvent::NewKnownMultiaddrs(new_known_multiaddrs)), state))
});
Some(future::Either::B(future))
}).filter_map(|val| val);
// Boxing the stream is not necessary, but we do it in order to improve compilation time.
Box::new(stream) as Box<_>
}

View File

@ -0,0 +1,508 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Contains a `ConnectionUpgrade` that makes it possible to send requests and receive responses
//! from nodes after the upgrade.
//!
//! # Usage
//!
//! - Create a `KadConnecConfig` object. This struct implements `ConnectionUpgrade`.
//!
//! - Update a connection through that `KadConnecConfig`. The output yields you a
//! `KadConnecController` and a stream that must be driven to completion. The controller
//! allows you to perform queries and receive responses. The stream produces incoming requests
//! from the remote.
//!
//! This `KadConnecController` is usually extracted and stored in some sort of hash map in an
//! `Arc` in order to be available whenever we need to request something from a node.
use bytes::Bytes;
use futures::sync::{mpsc, oneshot};
use futures::{future, Future, Sink, stream, Stream};
use libp2p_core::{ConnectionUpgrade, Endpoint, PeerId};
use protocol::{self, KadMsg, KademliaProtocolConfig, KadPeer};
use std::collections::VecDeque;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use tokio_io::{AsyncRead, AsyncWrite};
/// Configuration for a Kademlia server.
///
/// Implements `ConnectionUpgrade`. On a successful upgrade, produces a `KadConnecController`
/// and a `Future`. The controller lets you send queries to the remote and receive answers, while
/// the `Future` must be driven to completion in order for things to work.
#[derive(Debug, Clone)]
pub struct KadConnecConfig {
raw_proto: KademliaProtocolConfig,
}
impl KadConnecConfig {
/// Builds a configuration object for an upcoming Kademlia server.
#[inline]
pub fn new() -> Self {
KadConnecConfig {
raw_proto: KademliaProtocolConfig,
}
}
}
impl<C, Maf> ConnectionUpgrade<C, Maf> for KadConnecConfig
where
C: AsyncRead + AsyncWrite + 'static, // TODO: 'static :-/
{
type Output = (
KadConnecController,
Box<Stream<Item = KadIncomingRequest, Error = IoError>>,
);
type MultiaddrFuture = Maf;
type Future = future::Map<<KademliaProtocolConfig as ConnectionUpgrade<C, Maf>>::Future, fn((<KademliaProtocolConfig as ConnectionUpgrade<C, Maf>>::Output, Maf)) -> (Self::Output, Maf)>;
type NamesIter = iter::Once<(Bytes, ())>;
type UpgradeIdentifier = ();
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
ConnectionUpgrade::<C, Maf>::protocol_names(&self.raw_proto)
}
#[inline]
fn upgrade(self, incoming: C, id: (), endpoint: Endpoint, addr: Maf) -> Self::Future {
self.raw_proto
.upgrade(incoming, id, endpoint, addr)
.map::<fn(_) -> _, _>(move |(connec, addr)| {
(build_from_sink_stream(connec), addr)
})
}
}
/// Allows sending Kademlia requests and receiving responses.
#[derive(Debug, Clone)]
pub struct KadConnecController {
// In order to send a request, we use this sender to send a tuple. The first element of the
// tuple is the message to send to the remote, and the second element is what is used to
// receive the response. If the query doesn't expect a response (eg. `PUT_VALUE`), then the
// one-shot sender will be dropped without being used.
inner: mpsc::UnboundedSender<(KadMsg, oneshot::Sender<KadMsg>)>,
}
impl KadConnecController {
/// Sends a `FIND_NODE` query to the node and provides a future that will contain the response.
// TODO: future item could be `impl Iterator` instead
pub fn find_node(
&self,
searched_key: &PeerId,
) -> impl Future<Item = Vec<KadPeer>, Error = IoError> {
let message = protocol::KadMsg::FindNodeReq {
key: searched_key.clone().into_bytes(),
};
let (tx, rx) = oneshot::channel();
match self.inner.unbounded_send((message, tx)) {
Ok(()) => (),
Err(_) => {
let fut = future::err(IoError::new(
IoErrorKind::ConnectionAborted,
"connection to remote has aborted",
));
return future::Either::B(fut);
}
};
let future = rx.map_err(|_| {
IoError::new(
IoErrorKind::ConnectionAborted,
"connection to remote has aborted",
)
}).and_then(|msg| match msg {
KadMsg::FindNodeRes { closer_peers, .. } => Ok(closer_peers),
_ => Err(IoError::new(
IoErrorKind::InvalidData,
"invalid response type received from the remote",
)),
});
future::Either::A(future)
}
/// Sends a `PING` query to the node. Because of the way the protocol is designed, there is
/// no way to differentiate between a ping and a pong. Therefore this function doesn't return a
/// future, and the only way to be notified of the result is through the stream.
pub fn ping(&self) -> Result<(), IoError> {
// Dummy channel, as the `tx` is going to be dropped anyway.
let (tx, _rx) = oneshot::channel();
match self.inner.unbounded_send((protocol::KadMsg::Ping, tx)) {
Ok(()) => Ok(()),
Err(_) => Err(IoError::new(
IoErrorKind::ConnectionAborted,
"connection to remote has aborted",
)),
}
}
}
/// Request received from the remote.
pub enum KadIncomingRequest {
/// Find the nodes closest to `searched`.
FindNode {
/// The value being searched.
searched: PeerId,
/// Object to use to respond to the request.
responder: KadFindNodeRespond,
},
// TODO: PutValue and FindValue
/// Received either a ping or a pong.
PingPong,
}
/// Object used to respond to `FindNode` queries from remotes.
pub struct KadFindNodeRespond {
inner: oneshot::Sender<KadMsg>,
}
impl KadFindNodeRespond {
/// Respond to the `FindNode` request.
pub fn respond<I>(self, peers: I)
where I: IntoIterator<Item = protocol::KadPeer>
{
let _ = self.inner.send(KadMsg::FindNodeRes {
closer_peers: peers.into_iter().collect()
});
}
}
// Builds a controller and stream from a stream/sink of raw messages.
fn build_from_sink_stream<'a, S>(connec: S) -> (KadConnecController, Box<Stream<Item = KadIncomingRequest, Error = IoError> + 'a>)
where S: Sink<SinkItem = KadMsg, SinkError = IoError> + Stream<Item = KadMsg, Error = IoError> + 'a
{
let (tx, rx) = mpsc::unbounded();
let future = kademlia_handler(connec, rx);
let controller = KadConnecController { inner: tx };
(controller, future)
}
// Handles a newly-opened Kademlia stream with a remote peer.
//
// Takes a `Stream` and `Sink` of Kademlia messages representing the connection to the client,
// plus a `Receiver` that will receive messages to transmit to that connection.
//
// Returns a `Stream` that must be resolved in order for progress to work. The `Stream` will
// produce objects that represent the requests sent by the remote. These requests must be answered
// immediately before the stream continues to produce items.
fn kademlia_handler<'a, S>(
kad_bistream: S,
rq_rx: mpsc::UnboundedReceiver<(KadMsg, oneshot::Sender<KadMsg>)>,
) -> Box<Stream<Item = KadIncomingRequest, Error = IoError> + 'a>
where
S: Stream<Item = KadMsg, Error = IoError> + Sink<SinkItem = KadMsg, SinkError = IoError> + 'a,
{
let (kad_sink, kad_stream) = kad_bistream.split();
// This is a stream of futures containing local responses.
// Every time we receive a request from the remote, we create a `oneshot::channel()` and send
// the receiving end to `responders_tx`.
// This way, if a future is available on `responders_rx`, we block until it produces the
// response.
let (responders_tx, responders_rx) = mpsc::unbounded();
// We combine all the streams into one so that the loop wakes up whenever any generates
// something.
enum EventSource {
Remote(KadMsg),
LocalRequest(KadMsg, oneshot::Sender<KadMsg>),
LocalResponse(oneshot::Receiver<KadMsg>),
Finished,
}
let events = {
let responders = responders_rx
.map(|m| EventSource::LocalResponse(m))
.map_err(|_| unreachable!());
let rq_rx = rq_rx
.map(|(m, o)| EventSource::LocalRequest(m, o))
.map_err(|_| unreachable!());
let kad_stream = kad_stream
.map(|m| EventSource::Remote(m))
.chain(future::ok(EventSource::Finished).into_stream());
responders.select(rq_rx).select(kad_stream)
};
let stream = stream::unfold((events, kad_sink, responders_tx, VecDeque::new(), 0u32, false),
move |(events, kad_sink, responders_tx, mut send_back_queue, expected_pongs, finished)| {
if finished {
return None;
}
Some(events
.into_future()
.map_err(|(err, _)| err)
.and_then(move |(message, events)| -> Box<Future<Item = _, Error = _>> {
match message {
Some(EventSource::Finished) | None => {
let future = future::ok({
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, true);
(None, state)
});
Box::new(future)
},
Some(EventSource::LocalResponse(message)) => {
let future = message
.map_err(|_| {
// The user destroyed the responder without responding.
warn!("Kad responder object destroyed without responding");
panic!() // TODO: what to do here? we have to close the connection
})
.and_then(move |message| {
kad_sink
.send(message)
.map(move |kad_sink| {
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
(None, state)
})
});
Box::new(future)
},
Some(EventSource::LocalRequest(message @ KadMsg::PutValue { .. }, _)) => {
// A `PutValue` request. Contrary to other types of messages, this one
// doesn't expect any answer and therefore we ignore the sender.
let future = kad_sink
.send(message)
.map(move |kad_sink| {
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
(None, state)
});
Box::new(future) as Box<_>
}
Some(EventSource::LocalRequest(message @ KadMsg::Ping { .. }, _)) => {
// A local `Ping` request.
let expected_pongs = expected_pongs.checked_add(1)
.expect("overflow in number of simultaneous pings");
let future = kad_sink
.send(message)
.map(move |kad_sink| {
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
(None, state)
});
Box::new(future) as Box<_>
}
Some(EventSource::LocalRequest(message, send_back)) => {
// Any local request other than `PutValue` or `Ping`.
send_back_queue.push_back(send_back);
let future = kad_sink
.send(message)
.map(move |kad_sink| {
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
(None, state)
});
Box::new(future) as Box<_>
}
Some(EventSource::Remote(KadMsg::Ping)) => {
// The way the protocol was designed, there is no way to differentiate
// between a ping and a pong.
if let Some(expected_pongs) = expected_pongs.checked_sub(1) {
// Maybe we received a PONG, or maybe we received a PONG, no way
// to tell. If it was a PING and we expected a PONG, then the
// remote will see its PING answered only when it PONGs us.
let future = future::ok({
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
let rq = KadIncomingRequest::PingPong;
(Some(rq), state)
});
Box::new(future) as Box<_>
} else {
let future = kad_sink
.send(KadMsg::Ping)
.map(move |kad_sink| {
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
let rq = KadIncomingRequest::PingPong;
(Some(rq), state)
});
Box::new(future) as Box<_>
}
}
Some(EventSource::Remote(message @ KadMsg::FindNodeRes { .. }))
| Some(EventSource::Remote(message @ KadMsg::GetValueRes { .. })) => {
// `FindNodeRes` or `GetValueRes` received on the socket.
// Send it back through `send_back_queue`.
if let Some(send_back) = send_back_queue.pop_front() {
let _ = send_back.send(message);
let future = future::ok({
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
(None, state)
});
Box::new(future)
} else {
debug!("Remote sent a Kad response but we didn't request anything");
let future = future::err(IoErrorKind::InvalidData.into());
Box::new(future)
}
}
Some(EventSource::Remote(KadMsg::FindNodeReq { key, .. })) => {
let peer_id = match PeerId::from_bytes(key) {
Ok(id) => id,
Err(key) => {
debug!("Ignoring FIND_NODE request with invalid key: {:?}", key);
let future = future::err(IoError::new(IoErrorKind::InvalidData, "invalid key in FIND_NODE"));
return Box::new(future);
}
};
let (tx, rx) = oneshot::channel();
let _ = responders_tx.unbounded_send(rx);
let future = future::ok({
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
let rq = KadIncomingRequest::FindNode {
searched: peer_id,
responder: KadFindNodeRespond {
inner: tx
}
};
(Some(rq), state)
});
Box::new(future)
}
Some(EventSource::Remote(KadMsg::GetValueReq { .. })) => {
warn!("GET_VALUE requests are not implemented yet");
let future = future::err(IoError::new(IoErrorKind::Other,
"GET_VALUE requests are not implemented yet"));
return Box::new(future);
}
Some(EventSource::Remote(KadMsg::PutValue { .. })) => {
warn!("PUT_VALUE requests are not implemented yet");
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
let future = future::ok((None, state));
return Box::new(future);
}
}
}))
}).filter_map(|val| val);
Box::new(stream) as Box<Stream<Item = _, Error = IoError>>
}
#[cfg(test)]
mod tests {
use std::io::Error as IoError;
use std::iter;
use futures::{Future, Poll, Sink, StartSend, Stream};
use futures::sync::mpsc;
use kad_server::{self, KadIncomingRequest, KadConnecController};
use libp2p_core::PublicKey;
use protocol::{KadConnectionType, KadPeer};
use rand;
// This struct merges a stream and a sink and is quite useful for tests.
struct Wrapper<St, Si>(St, Si);
impl<St, Si> Stream for Wrapper<St, Si>
where
St: Stream,
{
type Item = St::Item;
type Error = St::Error;
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
self.0.poll()
}
}
impl<St, Si> Sink for Wrapper<St, Si>
where
Si: Sink,
{
type SinkItem = Si::SinkItem;
type SinkError = Si::SinkError;
fn start_send(
&mut self,
item: Self::SinkItem,
) -> StartSend<Self::SinkItem, Self::SinkError> {
self.1.start_send(item)
}
fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
self.1.poll_complete()
}
}
fn build_test() -> (KadConnecController, impl Stream<Item = KadIncomingRequest, Error = IoError>, KadConnecController, impl Stream<Item = KadIncomingRequest, Error = IoError>) {
let (a_to_b, b_from_a) = mpsc::unbounded();
let (b_to_a, a_from_b) = mpsc::unbounded();
let sink_stream_a = Wrapper(a_from_b, a_to_b)
.map_err(|_| panic!()).sink_map_err(|_| panic!());
let sink_stream_b = Wrapper(b_from_a, b_to_a)
.map_err(|_| panic!()).sink_map_err(|_| panic!());
let (controller_a, stream_events_a) = kad_server::build_from_sink_stream(sink_stream_a);
let (controller_b, stream_events_b) = kad_server::build_from_sink_stream(sink_stream_b);
(controller_a, stream_events_a, controller_b, stream_events_b)
}
#[test]
fn ping_response() {
let (controller_a, stream_events_a, _controller_b, stream_events_b) = build_test();
controller_a.ping().unwrap();
let streams = stream_events_a.map(|ev| (ev, "a"))
.select(stream_events_b.map(|ev| (ev, "b")));
match streams.into_future().map_err(|(err, _)| err).wait().unwrap() {
(Some((KadIncomingRequest::PingPong, "b")), _) => {},
_ => panic!()
}
}
#[test]
fn find_node_response() {
let (controller_a, stream_events_a, _controller_b, stream_events_b) = build_test();
let random_peer_id = {
let buf = (0 .. 1024).map(|_| -> u8 { rand::random() }).collect::<Vec<_>>();
PublicKey::Rsa(buf).into_peer_id()
};
let find_node_fut = controller_a.find_node(&random_peer_id);
let example_response = KadPeer {
node_id: {
let buf = (0 .. 1024).map(|_| -> u8 { rand::random() }).collect::<Vec<_>>();
PublicKey::Rsa(buf).into_peer_id()
},
multiaddrs: Vec::new(),
connection_ty: KadConnectionType::Connected,
};
let streams = stream_events_a.map(|ev| (ev, "a"))
.select(stream_events_b.map(|ev| (ev, "b")));
let streams = match streams.into_future().map_err(|(err, _)| err).wait().unwrap() {
(Some((KadIncomingRequest::FindNode { searched, responder }, "b")), streams) => {
assert_eq!(searched, random_peer_id);
responder.respond(iter::once(example_response.clone()));
streams
},
_ => panic!()
};
let resp = streams.into_future().map_err(|(err, _)| err).map(|_| unreachable!())
.select(find_node_fut)
.map_err(|_| -> IoError { panic!() });
assert_eq!(resp.wait().unwrap().0, vec![example_response]);
}
}

View File

@ -0,0 +1,498 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Key-value storage, with a refresh and a time-to-live system.
//!
//! A k-buckets table allows one to store a value identified by keys, ordered by their distance
//! to a reference key passed to the constructor.
//!
//! If the local ID has `N` bits, then the k-buckets table contains `N` *buckets* each containing
//! a constant number of entries. Storing a key in the k-buckets table adds it to the bucket
//! corresponding to its distance with the reference key.
use arrayvec::ArrayVec;
use bigint::U512;
use libp2p_core::PeerId;
use parking_lot::{Mutex, MutexGuard};
use std::mem;
use std::slice::Iter as SliceIter;
use std::time::{Duration, Instant};
use std::vec::IntoIter as VecIntoIter;
/// Maximum number of nodes in a bucket.
pub const MAX_NODES_PER_BUCKET: usize = 20;
/// Table of k-buckets with interior mutability.
#[derive(Debug)]
pub struct KBucketsTable<Id, Val> {
my_id: Id,
tables: Vec<Mutex<KBucket<Id, Val>>>,
// The timeout when pinging the first node after which we consider that it no longer responds.
ping_timeout: Duration,
}
impl<Id, Val> Clone for KBucketsTable<Id, Val>
where
Id: Clone,
Val: Clone,
{
#[inline]
fn clone(&self) -> Self {
KBucketsTable {
my_id: self.my_id.clone(),
tables: self.tables
.iter()
.map(|t| t.lock().clone())
.map(Mutex::new)
.collect(),
ping_timeout: self.ping_timeout.clone(),
}
}
}
#[derive(Debug, Clone)]
struct KBucket<Id, Val> {
// Nodes are always ordered from oldest to newest.
// Note that we will very often move elements to the end of this. No benchmarking has been
// performed, but it is very likely that a `ArrayVec` is the most performant data structure.
nodes: ArrayVec<[Node<Id, Val>; MAX_NODES_PER_BUCKET]>,
// Node received when the bucket was full. Will be added to the list if the first node doesn't
// respond in time to our ping. The second element is the time when the pending node was added.
// If it is too much in the past, then we drop the first node and add the pending node to the
// end of the list.
pending_node: Option<(Node<Id, Val>, Instant)>,
// Last time this bucket was updated.
last_update: Instant,
}
impl<Id, Val> KBucket<Id, Val> {
// Puts the kbucket into a coherent state.
// If a node is pending and the timeout has expired, removes the first element of `nodes`
// and pushes back the node in `pending_node`.
fn flush(&mut self, timeout: Duration) {
if let Some((pending_node, instant)) = self.pending_node.take() {
if instant.elapsed() >= timeout {
let _ = self.nodes.remove(0);
self.nodes.push(pending_node);
} else {
self.pending_node = Some((pending_node, instant));
}
}
}
}
#[derive(Debug, Clone)]
struct Node<Id, Val> {
id: Id,
value: Val,
}
/// Trait that must be implemented on types that can be used as an identifier in a k-bucket.
pub trait KBucketsPeerId: Eq + Clone {
/// Distance between two peer IDs.
type Distance: Ord;
/// Computes the XOR of this value and another one.
fn distance_with(&self, other: &Self) -> Self::Distance;
/// Returns then number of bits that are necessary to store the distance between peer IDs.
/// Used for pre-allocations.
///
/// > **Note**: Returning 0 would lead to a panic.
fn num_bits() -> usize;
/// Returns the number of leading zeroes of the distance between peer IDs.
fn leading_zeros(Self::Distance) -> u32;
}
impl KBucketsPeerId for PeerId {
type Distance = U512;
#[inline]
fn num_bits() -> usize {
512
}
#[inline]
fn distance_with(&self, other: &Self) -> Self::Distance {
// Note that we don't compare the hash functions because there's no chance of collision
// of the same value hashed with two different hash functions.
let my_hash = U512::from(self.digest());
let other_hash = U512::from(other.digest());
my_hash ^ other_hash
}
#[inline]
fn leading_zeros(distance: Self::Distance) -> u32 {
distance.leading_zeros()
}
}
impl<Id, Val> KBucketsTable<Id, Val>
where
Id: KBucketsPeerId,
{
/// Builds a new routing table.
pub fn new(my_id: Id, ping_timeout: Duration) -> Self {
KBucketsTable {
my_id: my_id,
tables: (0..Id::num_bits())
.map(|_| KBucket {
nodes: ArrayVec::new(),
pending_node: None,
last_update: Instant::now(),
})
.map(Mutex::new)
.collect(),
ping_timeout: ping_timeout,
}
}
// Returns the id of the bucket that should contain the peer with the given ID.
//
// Returns `None` if out of range, which happens if `id` is the same as the local peer id.
#[inline]
fn bucket_num(&self, id: &Id) -> Option<usize> {
(Id::num_bits() - 1).checked_sub(Id::leading_zeros(self.my_id.distance_with(id)) as usize)
}
/// Returns an iterator to all the buckets of this table.
///
/// Ordered by proximity to the local node. Closest bucket (with max. one node in it) comes
/// first.
#[inline]
pub fn buckets(&self) -> BucketsIter<Id, Val> {
BucketsIter(self.tables.iter(), self.ping_timeout)
}
/// Returns the ID of the local node.
#[inline]
pub fn my_id(&self) -> &Id {
&self.my_id
}
/// Finds the `num` nodes closest to `id`, ordered by distance.
pub fn find_closest(&self, id: &Id) -> VecIntoIter<Id>
where
Id: Clone,
{
// TODO: optimize
let mut out = Vec::new();
for table in self.tables.iter() {
let mut table = table.lock();
table.flush(self.ping_timeout);
if table.last_update.elapsed() > self.ping_timeout {
continue // ignore bucket with expired nodes
}
for node in table.nodes.iter() {
out.push(node.id.clone());
}
}
out.sort_by(|a, b| b.distance_with(id).cmp(&a.distance_with(id)));
out.into_iter()
}
/// Same as `find_closest`, but includes the local peer as well.
pub fn find_closest_with_self(&self, id: &Id) -> VecIntoIter<Id>
where
Id: Clone,
{
// TODO: optimize
let mut intermediate: Vec<_> = self.find_closest(&id).collect();
if let Some(pos) = intermediate
.iter()
.position(|e| e.distance_with(&id) >= self.my_id.distance_with(&id))
{
if intermediate[pos] != self.my_id {
intermediate.insert(pos, self.my_id.clone());
}
} else {
intermediate.push(self.my_id.clone());
}
intermediate.into_iter()
}
/// Marks the node as "most recent" in its bucket and modifies the value associated to it.
/// This function should be called whenever we receive a communication from a node.
pub fn update(&self, id: Id, value: Val) -> UpdateOutcome<Id, Val> {
let table = match self.bucket_num(&id) {
Some(n) => &self.tables[n],
None => return UpdateOutcome::FailSelfUpdate,
};
let mut table = table.lock();
table.flush(self.ping_timeout);
if let Some(pos) = table.nodes.iter().position(|n| n.id == id) {
// Node is already in the bucket.
let mut existing = table.nodes.remove(pos);
let old_val = mem::replace(&mut existing.value, value);
if pos == 0 {
// If it's the first node of the bucket that we update, then we drop the node that
// was waiting for a ping.
table.nodes.truncate(MAX_NODES_PER_BUCKET - 1);
table.pending_node = None;
}
table.nodes.push(existing);
table.last_update = Instant::now();
UpdateOutcome::Refreshed(old_val)
} else if table.nodes.len() < MAX_NODES_PER_BUCKET {
// Node not yet in the bucket, but there's plenty of space.
table.nodes.push(Node {
id: id,
value: value,
});
table.last_update = Instant::now();
UpdateOutcome::Added
} else {
// Not enough space to put the node, but we can add it to the end as "pending". We
// then need to tell the caller that we want it to ping the node at the top of the
// list.
if table.pending_node.is_none() {
table.pending_node = Some((
Node {
id: id,
value: value,
},
Instant::now(),
));
UpdateOutcome::NeedPing(table.nodes[0].id.clone())
} else {
UpdateOutcome::Discarded
}
}
}
}
/// Return value of the `update()` method.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[must_use]
pub enum UpdateOutcome<Id, Val> {
/// The node has been added to the bucket.
Added,
/// The node was already in the bucket and has been refreshed.
Refreshed(Val),
/// The node wasn't added. Instead we need to ping the node passed as parameter, and call
/// `update` if it responds.
NeedPing(Id),
/// The node wasn't added at all because a node was already pending.
Discarded,
/// Tried to update the local peer ID. This is an invalid operation.
FailSelfUpdate,
}
/// Iterator giving access to a bucket.
pub struct BucketsIter<'a, Id: 'a, Val: 'a>(SliceIter<'a, Mutex<KBucket<Id, Val>>>, Duration);
impl<'a, Id: 'a, Val: 'a> Iterator for BucketsIter<'a, Id, Val> {
type Item = Bucket<'a, Id, Val>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.0.next().map(|bucket| {
let mut bucket = bucket.lock();
bucket.flush(self.1);
Bucket(bucket)
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
}
impl<'a, Id: 'a, Val: 'a> ExactSizeIterator for BucketsIter<'a, Id, Val> {}
/// Access to a bucket.
pub struct Bucket<'a, Id: 'a, Val: 'a>(MutexGuard<'a, KBucket<Id, Val>>);
impl<'a, Id: 'a, Val: 'a> Bucket<'a, Id, Val> {
/// Returns the number of entries in that bucket.
///
/// > **Note**: Keep in mind that this operation can be racy. If `update()` is called on the
/// > table while this function is running, the `update()` may or may not be taken
/// > into account.
#[inline]
pub fn num_entries(&self) -> usize {
self.0.nodes.len()
}
/// Returns true if this bucket has a pending node.
#[inline]
pub fn has_pending(&self) -> bool {
self.0.pending_node.is_some()
}
/// Returns the time when any of the values in this bucket was last updated.
///
/// If the bucket is empty, this returns the time when the whole table was created.
#[inline]
pub fn last_update(&self) -> Instant {
self.0.last_update.clone()
}
}
#[cfg(test)]
mod tests {
extern crate rand;
use self::rand::random;
use kbucket::{KBucketsTable, UpdateOutcome, MAX_NODES_PER_BUCKET};
use libp2p_core::PeerId;
use std::thread;
use std::time::Duration;
#[test]
fn basic_closest() {
let my_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
let other_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
let table = KBucketsTable::new(my_id, Duration::from_secs(5));
let _ = table.update(other_id.clone(), ());
let res = table.find_closest(&other_id).collect::<Vec<_>>();
assert_eq!(res.len(), 1);
assert_eq!(res[0], other_id);
}
#[test]
fn update_local_id_fails() {
let my_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
let table = KBucketsTable::new(my_id.clone(), Duration::from_secs(5));
match table.update(my_id, ()) {
UpdateOutcome::FailSelfUpdate => (),
_ => panic!()
}
}
#[test]
fn update_time_last_refresh() {
let my_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
// Generate some other IDs varying by just one bit.
let other_ids = (0..random::<usize>() % 20)
.map(|_| {
let bit_num = random::<usize>() % 256;
let mut id = my_id.as_bytes().to_vec().clone();
id[33 - (bit_num / 8)] ^= 1 << (bit_num % 8);
(PeerId::from_bytes(id).unwrap(), bit_num)
})
.collect::<Vec<_>>();
let table = KBucketsTable::new(my_id, Duration::from_secs(5));
let before_update = table.buckets().map(|b| b.last_update()).collect::<Vec<_>>();
thread::sleep(Duration::from_secs(2));
for &(ref id, _) in &other_ids {
let _ = table.update(id.clone(), ());
}
let after_update = table.buckets().map(|b| b.last_update()).collect::<Vec<_>>();
for (offset, (bef, aft)) in before_update.iter().zip(after_update.iter()).enumerate() {
if other_ids.iter().any(|&(_, bucket)| bucket == offset) {
assert_ne!(bef, aft);
} else {
assert_eq!(bef, aft);
}
}
}
#[test]
fn full_kbucket() {
let my_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
assert!(MAX_NODES_PER_BUCKET <= 251); // Test doesn't work otherwise.
let mut fill_ids = (0..MAX_NODES_PER_BUCKET + 3)
.map(|n| {
let mut id = my_id.clone().into_bytes();
id[2] ^= 0x80; // Flip the first bit so that we get in the most distant bucket.
id[33] = id[33].wrapping_add(n as u8);
PeerId::from_bytes(id).unwrap()
})
.collect::<Vec<_>>();
let first_node = fill_ids[0].clone();
let second_node = fill_ids[1].clone();
let table = KBucketsTable::new(my_id.clone(), Duration::from_secs(1));
for (num, id) in fill_ids.drain(..MAX_NODES_PER_BUCKET).enumerate() {
assert_eq!(table.update(id, ()), UpdateOutcome::Added);
assert_eq!(table.buckets().nth(255).unwrap().num_entries(), num + 1);
}
assert_eq!(
table.buckets().nth(255).unwrap().num_entries(),
MAX_NODES_PER_BUCKET
);
assert!(!table.buckets().nth(255).unwrap().has_pending());
assert_eq!(
table.update(fill_ids.remove(0), ()),
UpdateOutcome::NeedPing(first_node)
);
assert_eq!(
table.buckets().nth(255).unwrap().num_entries(),
MAX_NODES_PER_BUCKET
);
assert!(table.buckets().nth(255).unwrap().has_pending());
assert_eq!(
table.update(fill_ids.remove(0), ()),
UpdateOutcome::Discarded
);
thread::sleep(Duration::from_secs(2));
assert!(!table.buckets().nth(255).unwrap().has_pending());
assert_eq!(
table.update(fill_ids.remove(0), ()),
UpdateOutcome::NeedPing(second_node)
);
}
}

89
protocols/kad/src/lib.rs Normal file
View File

@ -0,0 +1,89 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Kademlia protocol. Allows peer discovery, records store and records fetch.
//!
//! # Usage
//!
//! Usage is done in the following steps:
//!
//! - Build a `KadSystemConfig` and a `KadConnecConfig` object that contain the way you want the
//! Kademlia protocol to behave.
//!
//! - Create a swarm that upgrades incoming connections with the `KadConnecConfig`.
//!
//! - Build a `KadSystem` from the `KadSystemConfig`. This requires passing a closure that provides
//! the Kademlia controller of a peer.
//!
//! - You can perform queries using the `KadSystem`.
//!
// TODO: we allow dead_code for now because this library contains a lot of unused code that will
// be useful later for record store
#![allow(dead_code)]
// # Crate organization
//
// The crate contains three levels of abstractions over the Kademlia protocol.
//
// - The first level of abstraction is in `protocol`. The API of this module lets you turn a raw
// bytes stream (`AsyncRead + AsyncWrite`) into a `Sink + Stream` of raw but strongly-typed
// Kademlia messages.
//
// - The second level of abstraction is in `kad_server`. Its API lets you upgrade a connection and
// obtain a future (that must be driven to completion), plus a controller. Processing the future
// will automatically respond to Kad requests received by the remote. The controller lets you
// send your own requests to this remote and obtain strongly-typed responses.
//
// - The third level of abstraction is in `high_level`. This module only provides the
// `KademliaSystem`.
//
extern crate arrayvec;
extern crate bigint;
extern crate bs58;
extern crate bytes;
extern crate datastore;
extern crate fnv;
extern crate futures;
extern crate libp2p_identify;
extern crate libp2p_ping;
extern crate libp2p_core;
#[macro_use]
extern crate log;
extern crate multiaddr;
extern crate parking_lot;
extern crate protobuf;
extern crate rand;
extern crate smallvec;
extern crate tokio_codec;
extern crate tokio_io;
extern crate tokio_timer;
extern crate unsigned_varint;
pub use self::high_level::{KadSystemConfig, KadSystem, KadQueryEvent};
pub use self::kad_server::{KadConnecController, KadConnecConfig, KadIncomingRequest, KadFindNodeRespond};
pub use self::protocol::{KadConnectionType, KadPeer};
mod high_level;
mod kad_server;
mod kbucket;
mod protobuf_structs;
mod protocol;

View File

@ -0,0 +1,900 @@
// This file is generated by rust-protobuf 2.0.2. Do not edit
// @generated
// https://github.com/Manishearth/rust-clippy/issues/702
#![allow(unknown_lints)]
#![allow(clippy)]
#![cfg_attr(rustfmt, rustfmt_skip)]
#![allow(box_pointers)]
#![allow(dead_code)]
#![allow(missing_docs)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(trivial_casts)]
#![allow(unsafe_code)]
#![allow(unused_imports)]
#![allow(unused_results)]
use protobuf::Message as Message_imported_for_functions;
use protobuf::ProtobufEnum as ProtobufEnum_imported_for_functions;
#[derive(PartialEq,Clone,Default)]
pub struct Message {
// message fields
field_type: ::std::option::Option<Message_MessageType>,
clusterLevelRaw: ::std::option::Option<i32>,
key: ::protobuf::SingularField<::std::vec::Vec<u8>>,
record: ::protobuf::SingularPtrField<super::record::Record>,
closerPeers: ::protobuf::RepeatedField<Message_Peer>,
providerPeers: ::protobuf::RepeatedField<Message_Peer>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
impl Message {
pub fn new() -> Message {
::std::default::Default::default()
}
// optional .dht.pb.Message.MessageType type = 1;
pub fn clear_field_type(&mut self) {
self.field_type = ::std::option::Option::None;
}
pub fn has_field_type(&self) -> bool {
self.field_type.is_some()
}
// Param is passed by value, moved
pub fn set_field_type(&mut self, v: Message_MessageType) {
self.field_type = ::std::option::Option::Some(v);
}
pub fn get_field_type(&self) -> Message_MessageType {
self.field_type.unwrap_or(Message_MessageType::PUT_VALUE)
}
// optional int32 clusterLevelRaw = 10;
pub fn clear_clusterLevelRaw(&mut self) {
self.clusterLevelRaw = ::std::option::Option::None;
}
pub fn has_clusterLevelRaw(&self) -> bool {
self.clusterLevelRaw.is_some()
}
// Param is passed by value, moved
pub fn set_clusterLevelRaw(&mut self, v: i32) {
self.clusterLevelRaw = ::std::option::Option::Some(v);
}
pub fn get_clusterLevelRaw(&self) -> i32 {
self.clusterLevelRaw.unwrap_or(0)
}
// optional bytes key = 2;
pub fn clear_key(&mut self) {
self.key.clear();
}
pub fn has_key(&self) -> bool {
self.key.is_some()
}
// Param is passed by value, moved
pub fn set_key(&mut self, v: ::std::vec::Vec<u8>) {
self.key = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_key(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.key.is_none() {
self.key.set_default();
}
self.key.as_mut().unwrap()
}
// Take field
pub fn take_key(&mut self) -> ::std::vec::Vec<u8> {
self.key.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_key(&self) -> &[u8] {
match self.key.as_ref() {
Some(v) => &v,
None => &[],
}
}
// optional .record.pb.Record record = 3;
pub fn clear_record(&mut self) {
self.record.clear();
}
pub fn has_record(&self) -> bool {
self.record.is_some()
}
// Param is passed by value, moved
pub fn set_record(&mut self, v: super::record::Record) {
self.record = ::protobuf::SingularPtrField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_record(&mut self) -> &mut super::record::Record {
if self.record.is_none() {
self.record.set_default();
}
self.record.as_mut().unwrap()
}
// Take field
pub fn take_record(&mut self) -> super::record::Record {
self.record.take().unwrap_or_else(|| super::record::Record::new())
}
pub fn get_record(&self) -> &super::record::Record {
self.record.as_ref().unwrap_or_else(|| super::record::Record::default_instance())
}
// repeated .dht.pb.Message.Peer closerPeers = 8;
pub fn clear_closerPeers(&mut self) {
self.closerPeers.clear();
}
// Param is passed by value, moved
pub fn set_closerPeers(&mut self, v: ::protobuf::RepeatedField<Message_Peer>) {
self.closerPeers = v;
}
// Mutable pointer to the field.
pub fn mut_closerPeers(&mut self) -> &mut ::protobuf::RepeatedField<Message_Peer> {
&mut self.closerPeers
}
// Take field
pub fn take_closerPeers(&mut self) -> ::protobuf::RepeatedField<Message_Peer> {
::std::mem::replace(&mut self.closerPeers, ::protobuf::RepeatedField::new())
}
pub fn get_closerPeers(&self) -> &[Message_Peer] {
&self.closerPeers
}
// repeated .dht.pb.Message.Peer providerPeers = 9;
pub fn clear_providerPeers(&mut self) {
self.providerPeers.clear();
}
// Param is passed by value, moved
pub fn set_providerPeers(&mut self, v: ::protobuf::RepeatedField<Message_Peer>) {
self.providerPeers = v;
}
// Mutable pointer to the field.
pub fn mut_providerPeers(&mut self) -> &mut ::protobuf::RepeatedField<Message_Peer> {
&mut self.providerPeers
}
// Take field
pub fn take_providerPeers(&mut self) -> ::protobuf::RepeatedField<Message_Peer> {
::std::mem::replace(&mut self.providerPeers, ::protobuf::RepeatedField::new())
}
pub fn get_providerPeers(&self) -> &[Message_Peer] {
&self.providerPeers
}
}
impl ::protobuf::Message for Message {
fn is_initialized(&self) -> bool {
for v in &self.record {
if !v.is_initialized() {
return false;
}
};
for v in &self.closerPeers {
if !v.is_initialized() {
return false;
}
};
for v in &self.providerPeers {
if !v.is_initialized() {
return false;
}
};
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
1 => {
::protobuf::rt::read_proto2_enum_with_unknown_fields_into(wire_type, is, &mut self.field_type, 1, &mut self.unknown_fields)?
},
10 => {
if wire_type != ::protobuf::wire_format::WireTypeVarint {
return ::std::result::Result::Err(::protobuf::rt::unexpected_wire_type(wire_type));
}
let tmp = is.read_int32()?;
self.clusterLevelRaw = ::std::option::Option::Some(tmp);
},
2 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.key)?;
},
3 => {
::protobuf::rt::read_singular_message_into(wire_type, is, &mut self.record)?;
},
8 => {
::protobuf::rt::read_repeated_message_into(wire_type, is, &mut self.closerPeers)?;
},
9 => {
::protobuf::rt::read_repeated_message_into(wire_type, is, &mut self.providerPeers)?;
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(v) = self.field_type {
my_size += ::protobuf::rt::enum_size(1, v);
}
if let Some(v) = self.clusterLevelRaw {
my_size += ::protobuf::rt::value_size(10, v, ::protobuf::wire_format::WireTypeVarint);
}
if let Some(ref v) = self.key.as_ref() {
my_size += ::protobuf::rt::bytes_size(2, &v);
}
if let Some(ref v) = self.record.as_ref() {
let len = v.compute_size();
my_size += 1 + ::protobuf::rt::compute_raw_varint32_size(len) + len;
}
for value in &self.closerPeers {
let len = value.compute_size();
my_size += 1 + ::protobuf::rt::compute_raw_varint32_size(len) + len;
};
for value in &self.providerPeers {
let len = value.compute_size();
my_size += 1 + ::protobuf::rt::compute_raw_varint32_size(len) + len;
};
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(v) = self.field_type {
os.write_enum(1, v.value())?;
}
if let Some(v) = self.clusterLevelRaw {
os.write_int32(10, v)?;
}
if let Some(ref v) = self.key.as_ref() {
os.write_bytes(2, &v)?;
}
if let Some(ref v) = self.record.as_ref() {
os.write_tag(3, ::protobuf::wire_format::WireTypeLengthDelimited)?;
os.write_raw_varint32(v.get_cached_size())?;
v.write_to_with_cached_sizes(os)?;
}
for v in &self.closerPeers {
os.write_tag(8, ::protobuf::wire_format::WireTypeLengthDelimited)?;
os.write_raw_varint32(v.get_cached_size())?;
v.write_to_with_cached_sizes(os)?;
};
for v in &self.providerPeers {
os.write_tag(9, ::protobuf::wire_format::WireTypeLengthDelimited)?;
os.write_raw_varint32(v.get_cached_size())?;
v.write_to_with_cached_sizes(os)?;
};
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
Self::descriptor_static()
}
fn new() -> Message {
Message::new()
}
fn descriptor_static() -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_option_accessor::<_, ::protobuf::types::ProtobufTypeEnum<Message_MessageType>>(
"type",
|m: &Message| { &m.field_type },
|m: &mut Message| { &mut m.field_type },
));
fields.push(::protobuf::reflect::accessor::make_option_accessor::<_, ::protobuf::types::ProtobufTypeInt32>(
"clusterLevelRaw",
|m: &Message| { &m.clusterLevelRaw },
|m: &mut Message| { &mut m.clusterLevelRaw },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"key",
|m: &Message| { &m.key },
|m: &mut Message| { &mut m.key },
));
fields.push(::protobuf::reflect::accessor::make_singular_ptr_field_accessor::<_, ::protobuf::types::ProtobufTypeMessage<super::record::Record>>(
"record",
|m: &Message| { &m.record },
|m: &mut Message| { &mut m.record },
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeMessage<Message_Peer>>(
"closerPeers",
|m: &Message| { &m.closerPeers },
|m: &mut Message| { &mut m.closerPeers },
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeMessage<Message_Peer>>(
"providerPeers",
|m: &Message| { &m.providerPeers },
|m: &mut Message| { &mut m.providerPeers },
));
::protobuf::reflect::MessageDescriptor::new::<Message>(
"Message",
fields,
file_descriptor_proto()
)
})
}
}
fn default_instance() -> &'static Message {
static mut instance: ::protobuf::lazy::Lazy<Message> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Message,
};
unsafe {
instance.get(Message::new)
}
}
}
impl ::protobuf::Clear for Message {
fn clear(&mut self) {
self.clear_field_type();
self.clear_clusterLevelRaw();
self.clear_key();
self.clear_record();
self.clear_closerPeers();
self.clear_providerPeers();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Message {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Message {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
#[derive(PartialEq,Clone,Default)]
pub struct Message_Peer {
// message fields
id: ::protobuf::SingularField<::std::vec::Vec<u8>>,
addrs: ::protobuf::RepeatedField<::std::vec::Vec<u8>>,
connection: ::std::option::Option<Message_ConnectionType>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
impl Message_Peer {
pub fn new() -> Message_Peer {
::std::default::Default::default()
}
// optional bytes id = 1;
pub fn clear_id(&mut self) {
self.id.clear();
}
pub fn has_id(&self) -> bool {
self.id.is_some()
}
// Param is passed by value, moved
pub fn set_id(&mut self, v: ::std::vec::Vec<u8>) {
self.id = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_id(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.id.is_none() {
self.id.set_default();
}
self.id.as_mut().unwrap()
}
// Take field
pub fn take_id(&mut self) -> ::std::vec::Vec<u8> {
self.id.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_id(&self) -> &[u8] {
match self.id.as_ref() {
Some(v) => &v,
None => &[],
}
}
// repeated bytes addrs = 2;
pub fn clear_addrs(&mut self) {
self.addrs.clear();
}
// Param is passed by value, moved
pub fn set_addrs(&mut self, v: ::protobuf::RepeatedField<::std::vec::Vec<u8>>) {
self.addrs = v;
}
// Mutable pointer to the field.
pub fn mut_addrs(&mut self) -> &mut ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
&mut self.addrs
}
// Take field
pub fn take_addrs(&mut self) -> ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
::std::mem::replace(&mut self.addrs, ::protobuf::RepeatedField::new())
}
pub fn get_addrs(&self) -> &[::std::vec::Vec<u8>] {
&self.addrs
}
// optional .dht.pb.Message.ConnectionType connection = 3;
pub fn clear_connection(&mut self) {
self.connection = ::std::option::Option::None;
}
pub fn has_connection(&self) -> bool {
self.connection.is_some()
}
// Param is passed by value, moved
pub fn set_connection(&mut self, v: Message_ConnectionType) {
self.connection = ::std::option::Option::Some(v);
}
pub fn get_connection(&self) -> Message_ConnectionType {
self.connection.unwrap_or(Message_ConnectionType::NOT_CONNECTED)
}
}
impl ::protobuf::Message for Message_Peer {
fn is_initialized(&self) -> bool {
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
1 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.id)?;
},
2 => {
::protobuf::rt::read_repeated_bytes_into(wire_type, is, &mut self.addrs)?;
},
3 => {
::protobuf::rt::read_proto2_enum_with_unknown_fields_into(wire_type, is, &mut self.connection, 3, &mut self.unknown_fields)?
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(ref v) = self.id.as_ref() {
my_size += ::protobuf::rt::bytes_size(1, &v);
}
for value in &self.addrs {
my_size += ::protobuf::rt::bytes_size(2, &value);
};
if let Some(v) = self.connection {
my_size += ::protobuf::rt::enum_size(3, v);
}
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(ref v) = self.id.as_ref() {
os.write_bytes(1, &v)?;
}
for v in &self.addrs {
os.write_bytes(2, &v)?;
};
if let Some(v) = self.connection {
os.write_enum(3, v.value())?;
}
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
Self::descriptor_static()
}
fn new() -> Message_Peer {
Message_Peer::new()
}
fn descriptor_static() -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"id",
|m: &Message_Peer| { &m.id },
|m: &mut Message_Peer| { &mut m.id },
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"addrs",
|m: &Message_Peer| { &m.addrs },
|m: &mut Message_Peer| { &mut m.addrs },
));
fields.push(::protobuf::reflect::accessor::make_option_accessor::<_, ::protobuf::types::ProtobufTypeEnum<Message_ConnectionType>>(
"connection",
|m: &Message_Peer| { &m.connection },
|m: &mut Message_Peer| { &mut m.connection },
));
::protobuf::reflect::MessageDescriptor::new::<Message_Peer>(
"Message_Peer",
fields,
file_descriptor_proto()
)
})
}
}
fn default_instance() -> &'static Message_Peer {
static mut instance: ::protobuf::lazy::Lazy<Message_Peer> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Message_Peer,
};
unsafe {
instance.get(Message_Peer::new)
}
}
}
impl ::protobuf::Clear for Message_Peer {
fn clear(&mut self) {
self.clear_id();
self.clear_addrs();
self.clear_connection();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Message_Peer {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Message_Peer {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
#[derive(Clone,PartialEq,Eq,Debug,Hash)]
pub enum Message_MessageType {
PUT_VALUE = 0,
GET_VALUE = 1,
ADD_PROVIDER = 2,
GET_PROVIDERS = 3,
FIND_NODE = 4,
PING = 5,
}
impl ::protobuf::ProtobufEnum for Message_MessageType {
fn value(&self) -> i32 {
*self as i32
}
fn from_i32(value: i32) -> ::std::option::Option<Message_MessageType> {
match value {
0 => ::std::option::Option::Some(Message_MessageType::PUT_VALUE),
1 => ::std::option::Option::Some(Message_MessageType::GET_VALUE),
2 => ::std::option::Option::Some(Message_MessageType::ADD_PROVIDER),
3 => ::std::option::Option::Some(Message_MessageType::GET_PROVIDERS),
4 => ::std::option::Option::Some(Message_MessageType::FIND_NODE),
5 => ::std::option::Option::Some(Message_MessageType::PING),
_ => ::std::option::Option::None
}
}
fn values() -> &'static [Self] {
static values: &'static [Message_MessageType] = &[
Message_MessageType::PUT_VALUE,
Message_MessageType::GET_VALUE,
Message_MessageType::ADD_PROVIDER,
Message_MessageType::GET_PROVIDERS,
Message_MessageType::FIND_NODE,
Message_MessageType::PING,
];
values
}
fn enum_descriptor_static() -> &'static ::protobuf::reflect::EnumDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::EnumDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::EnumDescriptor,
};
unsafe {
descriptor.get(|| {
::protobuf::reflect::EnumDescriptor::new("Message_MessageType", file_descriptor_proto())
})
}
}
}
impl ::std::marker::Copy for Message_MessageType {
}
impl ::protobuf::reflect::ProtobufValue for Message_MessageType {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Enum(self.descriptor())
}
}
#[derive(Clone,PartialEq,Eq,Debug,Hash)]
pub enum Message_ConnectionType {
NOT_CONNECTED = 0,
CONNECTED = 1,
CAN_CONNECT = 2,
CANNOT_CONNECT = 3,
}
impl ::protobuf::ProtobufEnum for Message_ConnectionType {
fn value(&self) -> i32 {
*self as i32
}
fn from_i32(value: i32) -> ::std::option::Option<Message_ConnectionType> {
match value {
0 => ::std::option::Option::Some(Message_ConnectionType::NOT_CONNECTED),
1 => ::std::option::Option::Some(Message_ConnectionType::CONNECTED),
2 => ::std::option::Option::Some(Message_ConnectionType::CAN_CONNECT),
3 => ::std::option::Option::Some(Message_ConnectionType::CANNOT_CONNECT),
_ => ::std::option::Option::None
}
}
fn values() -> &'static [Self] {
static values: &'static [Message_ConnectionType] = &[
Message_ConnectionType::NOT_CONNECTED,
Message_ConnectionType::CONNECTED,
Message_ConnectionType::CAN_CONNECT,
Message_ConnectionType::CANNOT_CONNECT,
];
values
}
fn enum_descriptor_static() -> &'static ::protobuf::reflect::EnumDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::EnumDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::EnumDescriptor,
};
unsafe {
descriptor.get(|| {
::protobuf::reflect::EnumDescriptor::new("Message_ConnectionType", file_descriptor_proto())
})
}
}
}
impl ::std::marker::Copy for Message_ConnectionType {
}
impl ::protobuf::reflect::ProtobufValue for Message_ConnectionType {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Enum(self.descriptor())
}
}
static file_descriptor_proto_data: &'static [u8] = b"\
\n\tdht.proto\x12\x06dht.pb\x1a\x0crecord.proto\"\xc7\x04\n\x07Message\
\x12/\n\x04type\x18\x01\x20\x01(\x0e2\x1b.dht.pb.Message.MessageTypeR\
\x04type\x12(\n\x0fclusterLevelRaw\x18\n\x20\x01(\x05R\x0fclusterLevelRa\
w\x12\x10\n\x03key\x18\x02\x20\x01(\x0cR\x03key\x12)\n\x06record\x18\x03\
\x20\x01(\x0b2\x11.record.pb.RecordR\x06record\x126\n\x0bcloserPeers\x18\
\x08\x20\x03(\x0b2\x14.dht.pb.Message.PeerR\x0bcloserPeers\x12:\n\rprovi\
derPeers\x18\t\x20\x03(\x0b2\x14.dht.pb.Message.PeerR\rproviderPeers\x1a\
l\n\x04Peer\x12\x0e\n\x02id\x18\x01\x20\x01(\x0cR\x02id\x12\x14\n\x05add\
rs\x18\x02\x20\x03(\x0cR\x05addrs\x12>\n\nconnection\x18\x03\x20\x01(\
\x0e2\x1e.dht.pb.Message.ConnectionTypeR\nconnection\"i\n\x0bMessageType\
\x12\r\n\tPUT_VALUE\x10\0\x12\r\n\tGET_VALUE\x10\x01\x12\x10\n\x0cADD_PR\
OVIDER\x10\x02\x12\x11\n\rGET_PROVIDERS\x10\x03\x12\r\n\tFIND_NODE\x10\
\x04\x12\x08\n\x04PING\x10\x05\"W\n\x0eConnectionType\x12\x11\n\rNOT_CON\
NECTED\x10\0\x12\r\n\tCONNECTED\x10\x01\x12\x0f\n\x0bCAN_CONNECT\x10\x02\
\x12\x12\n\x0eCANNOT_CONNECT\x10\x03J\xc9\x10\n\x06\x12\x04\0\0>\x01\n\
\x08\n\x01\x0c\x12\x03\0\0\x12\n\x08\n\x01\x02\x12\x03\x01\x08\x0e\n\t\n\
\x02\x03\0\x12\x03\x03\x07\x15\n\n\n\x02\x04\0\x12\x04\x05\0>\x01\n\n\n\
\x03\x04\0\x01\x12\x03\x05\x08\x0f\n\x0c\n\x04\x04\0\x04\0\x12\x04\x06\
\x08\r\t\n\x0c\n\x05\x04\0\x04\0\x01\x12\x03\x06\r\x18\n\r\n\x06\x04\0\
\x04\0\x02\0\x12\x03\x07\x10\x1e\n\x0e\n\x07\x04\0\x04\0\x02\0\x01\x12\
\x03\x07\x10\x19\n\x0e\n\x07\x04\0\x04\0\x02\0\x02\x12\x03\x07\x1c\x1d\n\
\r\n\x06\x04\0\x04\0\x02\x01\x12\x03\x08\x10\x1e\n\x0e\n\x07\x04\0\x04\0\
\x02\x01\x01\x12\x03\x08\x10\x19\n\x0e\n\x07\x04\0\x04\0\x02\x01\x02\x12\
\x03\x08\x1c\x1d\n\r\n\x06\x04\0\x04\0\x02\x02\x12\x03\t\x10!\n\x0e\n\
\x07\x04\0\x04\0\x02\x02\x01\x12\x03\t\x10\x1c\n\x0e\n\x07\x04\0\x04\0\
\x02\x02\x02\x12\x03\t\x1f\x20\n\r\n\x06\x04\0\x04\0\x02\x03\x12\x03\n\
\x10\"\n\x0e\n\x07\x04\0\x04\0\x02\x03\x01\x12\x03\n\x10\x1d\n\x0e\n\x07\
\x04\0\x04\0\x02\x03\x02\x12\x03\n\x20!\n\r\n\x06\x04\0\x04\0\x02\x04\
\x12\x03\x0b\x10\x1e\n\x0e\n\x07\x04\0\x04\0\x02\x04\x01\x12\x03\x0b\x10\
\x19\n\x0e\n\x07\x04\0\x04\0\x02\x04\x02\x12\x03\x0b\x1c\x1d\n\r\n\x06\
\x04\0\x04\0\x02\x05\x12\x03\x0c\x10\x19\n\x0e\n\x07\x04\0\x04\0\x02\x05\
\x01\x12\x03\x0c\x10\x14\n\x0e\n\x07\x04\0\x04\0\x02\x05\x02\x12\x03\x0c\
\x17\x18\n\x0c\n\x04\x04\0\x04\x01\x12\x04\x0f\x08\x1c\t\n\x0c\n\x05\x04\
\0\x04\x01\x01\x12\x03\x0f\r\x1b\n^\n\x06\x04\0\x04\x01\x02\0\x12\x03\
\x11\x10\"\x1aO\x20sender\x20does\x20not\x20have\x20a\x20connection\x20t\
o\x20peer,\x20and\x20no\x20extra\x20information\x20(default)\n\n\x0e\n\
\x07\x04\0\x04\x01\x02\0\x01\x12\x03\x11\x10\x1d\n\x0e\n\x07\x04\0\x04\
\x01\x02\0\x02\x12\x03\x11\x20!\n5\n\x06\x04\0\x04\x01\x02\x01\x12\x03\
\x14\x10\x1e\x1a&\x20sender\x20has\x20a\x20live\x20connection\x20to\x20p\
eer\n\n\x0e\n\x07\x04\0\x04\x01\x02\x01\x01\x12\x03\x14\x10\x19\n\x0e\n\
\x07\x04\0\x04\x01\x02\x01\x02\x12\x03\x14\x1c\x1d\n2\n\x06\x04\0\x04\
\x01\x02\x02\x12\x03\x17\x10\x20\x1a#\x20sender\x20recently\x20connected\
\x20to\x20peer\n\n\x0e\n\x07\x04\0\x04\x01\x02\x02\x01\x12\x03\x17\x10\
\x1b\n\x0e\n\x07\x04\0\x04\x01\x02\x02\x02\x12\x03\x17\x1e\x1f\n\xa7\x01\
\n\x06\x04\0\x04\x01\x02\x03\x12\x03\x1b\x10#\x1a\x97\x01\x20sender\x20r\
ecently\x20tried\x20to\x20connect\x20to\x20peer\x20repeatedly\x20but\x20\
failed\x20to\x20connect\n\x20(\"try\"\x20here\x20is\x20loose,\x20but\x20\
this\x20should\x20signal\x20\"made\x20strong\x20effort,\x20failed\")\n\n\
\x0e\n\x07\x04\0\x04\x01\x02\x03\x01\x12\x03\x1b\x10\x1e\n\x0e\n\x07\x04\
\0\x04\x01\x02\x03\x02\x12\x03\x1b!\"\n\x0c\n\x04\x04\0\x03\0\x12\x04\
\x1e\x08'\t\n\x0c\n\x05\x04\0\x03\0\x01\x12\x03\x1e\x10\x14\n$\n\x06\x04\
\0\x03\0\x02\0\x12\x03\x20\x10&\x1a\x15\x20ID\x20of\x20a\x20given\x20pee\
r.\n\n\x0e\n\x07\x04\0\x03\0\x02\0\x04\x12\x03\x20\x10\x18\n\x0e\n\x07\
\x04\0\x03\0\x02\0\x05\x12\x03\x20\x19\x1e\n\x0e\n\x07\x04\0\x03\0\x02\0\
\x01\x12\x03\x20\x1f!\n\x0e\n\x07\x04\0\x03\0\x02\0\x03\x12\x03\x20$%\n,\
\n\x06\x04\0\x03\0\x02\x01\x12\x03#\x10)\x1a\x1d\x20multiaddrs\x20for\
\x20a\x20given\x20peer\n\n\x0e\n\x07\x04\0\x03\0\x02\x01\x04\x12\x03#\
\x10\x18\n\x0e\n\x07\x04\0\x03\0\x02\x01\x05\x12\x03#\x19\x1e\n\x0e\n\
\x07\x04\0\x03\0\x02\x01\x01\x12\x03#\x1f$\n\x0e\n\x07\x04\0\x03\0\x02\
\x01\x03\x12\x03#'(\nP\n\x06\x04\0\x03\0\x02\x02\x12\x03&\x107\x1aA\x20u\
sed\x20to\x20signal\x20the\x20sender's\x20connection\x20capabilities\x20\
to\x20the\x20peer\n\n\x0e\n\x07\x04\0\x03\0\x02\x02\x04\x12\x03&\x10\x18\
\n\x0e\n\x07\x04\0\x03\0\x02\x02\x06\x12\x03&\x19'\n\x0e\n\x07\x04\0\x03\
\0\x02\x02\x01\x12\x03&(2\n\x0e\n\x07\x04\0\x03\0\x02\x02\x03\x12\x03&56\
\n2\n\x04\x04\0\x02\0\x12\x03*\x08&\x1a%\x20defines\x20what\x20type\x20o\
f\x20message\x20it\x20is.\n\n\x0c\n\x05\x04\0\x02\0\x04\x12\x03*\x08\x10\
\n\x0c\n\x05\x04\0\x02\0\x06\x12\x03*\x11\x1c\n\x0c\n\x05\x04\0\x02\0\
\x01\x12\x03*\x1d!\n\x0c\n\x05\x04\0\x02\0\x03\x12\x03*$%\nO\n\x04\x04\0\
\x02\x01\x12\x03-\x08,\x1aB\x20defines\x20what\x20coral\x20cluster\x20le\
vel\x20this\x20query/response\x20belongs\x20to.\n\n\x0c\n\x05\x04\0\x02\
\x01\x04\x12\x03-\x08\x10\n\x0c\n\x05\x04\0\x02\x01\x05\x12\x03-\x11\x16\
\n\x0c\n\x05\x04\0\x02\x01\x01\x12\x03-\x17&\n\x0c\n\x05\x04\0\x02\x01\
\x03\x12\x03-)+\nw\n\x04\x04\0\x02\x02\x12\x031\x08\x1f\x1aj\x20Used\x20\
to\x20specify\x20the\x20key\x20associated\x20with\x20this\x20message.\n\
\x20PUT_VALUE,\x20GET_VALUE,\x20ADD_PROVIDER,\x20GET_PROVIDERS\n\n\x0c\n\
\x05\x04\0\x02\x02\x04\x12\x031\x08\x10\n\x0c\n\x05\x04\0\x02\x02\x05\
\x12\x031\x11\x16\n\x0c\n\x05\x04\0\x02\x02\x01\x12\x031\x17\x1a\n\x0c\n\
\x05\x04\0\x02\x02\x03\x12\x031\x1d\x1e\n;\n\x04\x04\0\x02\x03\x12\x035\
\x08-\x1a.\x20Used\x20to\x20return\x20a\x20value\n\x20PUT_VALUE,\x20GET_\
VALUE\n\n\x0c\n\x05\x04\0\x02\x03\x04\x12\x035\x08\x10\n\x0c\n\x05\x04\0\
\x02\x03\x06\x12\x035\x11!\n\x0c\n\x05\x04\0\x02\x03\x01\x12\x035\"(\n\
\x0c\n\x05\x04\0\x02\x03\x03\x12\x035+,\nc\n\x04\x04\0\x02\x04\x12\x039\
\x08&\x1aV\x20Used\x20to\x20return\x20peers\x20closer\x20to\x20a\x20key\
\x20in\x20a\x20query\n\x20GET_VALUE,\x20GET_PROVIDERS,\x20FIND_NODE\n\n\
\x0c\n\x05\x04\0\x02\x04\x04\x12\x039\x08\x10\n\x0c\n\x05\x04\0\x02\x04\
\x06\x12\x039\x11\x15\n\x0c\n\x05\x04\0\x02\x04\x01\x12\x039\x16!\n\x0c\
\n\x05\x04\0\x02\x04\x03\x12\x039$%\nO\n\x04\x04\0\x02\x05\x12\x03=\x08(\
\x1aB\x20Used\x20to\x20return\x20Providers\n\x20GET_VALUE,\x20ADD_PROVID\
ER,\x20GET_PROVIDERS\n\n\x0c\n\x05\x04\0\x02\x05\x04\x12\x03=\x08\x10\n\
\x0c\n\x05\x04\0\x02\x05\x06\x12\x03=\x11\x15\n\x0c\n\x05\x04\0\x02\x05\
\x01\x12\x03=\x16#\n\x0c\n\x05\x04\0\x02\x05\x03\x12\x03=&'\
";
static mut file_descriptor_proto_lazy: ::protobuf::lazy::Lazy<::protobuf::descriptor::FileDescriptorProto> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::descriptor::FileDescriptorProto,
};
fn parse_descriptor_proto() -> ::protobuf::descriptor::FileDescriptorProto {
::protobuf::parse_from_bytes(file_descriptor_proto_data).unwrap()
}
pub fn file_descriptor_proto() -> &'static ::protobuf::descriptor::FileDescriptorProto {
unsafe {
file_descriptor_proto_lazy.get(|| {
parse_descriptor_proto()
})
}
}

View File

@ -0,0 +1,22 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
pub mod dht;
pub mod record;

View File

@ -0,0 +1,453 @@
// This file is generated by rust-protobuf 2.0.2. Do not edit
// @generated
// https://github.com/Manishearth/rust-clippy/issues/702
#![allow(unknown_lints)]
#![allow(clippy)]
#![cfg_attr(rustfmt, rustfmt_skip)]
#![allow(box_pointers)]
#![allow(dead_code)]
#![allow(missing_docs)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(trivial_casts)]
#![allow(unsafe_code)]
#![allow(unused_imports)]
#![allow(unused_results)]
use protobuf::Message as Message_imported_for_functions;
use protobuf::ProtobufEnum as ProtobufEnum_imported_for_functions;
#[derive(PartialEq,Clone,Default)]
pub struct Record {
// message fields
key: ::protobuf::SingularField<::std::string::String>,
value: ::protobuf::SingularField<::std::vec::Vec<u8>>,
author: ::protobuf::SingularField<::std::string::String>,
signature: ::protobuf::SingularField<::std::vec::Vec<u8>>,
timeReceived: ::protobuf::SingularField<::std::string::String>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
impl Record {
pub fn new() -> Record {
::std::default::Default::default()
}
// optional string key = 1;
pub fn clear_key(&mut self) {
self.key.clear();
}
pub fn has_key(&self) -> bool {
self.key.is_some()
}
// Param is passed by value, moved
pub fn set_key(&mut self, v: ::std::string::String) {
self.key = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_key(&mut self) -> &mut ::std::string::String {
if self.key.is_none() {
self.key.set_default();
}
self.key.as_mut().unwrap()
}
// Take field
pub fn take_key(&mut self) -> ::std::string::String {
self.key.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_key(&self) -> &str {
match self.key.as_ref() {
Some(v) => &v,
None => "",
}
}
// optional bytes value = 2;
pub fn clear_value(&mut self) {
self.value.clear();
}
pub fn has_value(&self) -> bool {
self.value.is_some()
}
// Param is passed by value, moved
pub fn set_value(&mut self, v: ::std::vec::Vec<u8>) {
self.value = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_value(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.value.is_none() {
self.value.set_default();
}
self.value.as_mut().unwrap()
}
// Take field
pub fn take_value(&mut self) -> ::std::vec::Vec<u8> {
self.value.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_value(&self) -> &[u8] {
match self.value.as_ref() {
Some(v) => &v,
None => &[],
}
}
// optional string author = 3;
pub fn clear_author(&mut self) {
self.author.clear();
}
pub fn has_author(&self) -> bool {
self.author.is_some()
}
// Param is passed by value, moved
pub fn set_author(&mut self, v: ::std::string::String) {
self.author = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_author(&mut self) -> &mut ::std::string::String {
if self.author.is_none() {
self.author.set_default();
}
self.author.as_mut().unwrap()
}
// Take field
pub fn take_author(&mut self) -> ::std::string::String {
self.author.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_author(&self) -> &str {
match self.author.as_ref() {
Some(v) => &v,
None => "",
}
}
// optional bytes signature = 4;
pub fn clear_signature(&mut self) {
self.signature.clear();
}
pub fn has_signature(&self) -> bool {
self.signature.is_some()
}
// Param is passed by value, moved
pub fn set_signature(&mut self, v: ::std::vec::Vec<u8>) {
self.signature = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_signature(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.signature.is_none() {
self.signature.set_default();
}
self.signature.as_mut().unwrap()
}
// Take field
pub fn take_signature(&mut self) -> ::std::vec::Vec<u8> {
self.signature.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_signature(&self) -> &[u8] {
match self.signature.as_ref() {
Some(v) => &v,
None => &[],
}
}
// optional string timeReceived = 5;
pub fn clear_timeReceived(&mut self) {
self.timeReceived.clear();
}
pub fn has_timeReceived(&self) -> bool {
self.timeReceived.is_some()
}
// Param is passed by value, moved
pub fn set_timeReceived(&mut self, v: ::std::string::String) {
self.timeReceived = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_timeReceived(&mut self) -> &mut ::std::string::String {
if self.timeReceived.is_none() {
self.timeReceived.set_default();
}
self.timeReceived.as_mut().unwrap()
}
// Take field
pub fn take_timeReceived(&mut self) -> ::std::string::String {
self.timeReceived.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_timeReceived(&self) -> &str {
match self.timeReceived.as_ref() {
Some(v) => &v,
None => "",
}
}
}
impl ::protobuf::Message for Record {
fn is_initialized(&self) -> bool {
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
1 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.key)?;
},
2 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.value)?;
},
3 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.author)?;
},
4 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.signature)?;
},
5 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.timeReceived)?;
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(ref v) = self.key.as_ref() {
my_size += ::protobuf::rt::string_size(1, &v);
}
if let Some(ref v) = self.value.as_ref() {
my_size += ::protobuf::rt::bytes_size(2, &v);
}
if let Some(ref v) = self.author.as_ref() {
my_size += ::protobuf::rt::string_size(3, &v);
}
if let Some(ref v) = self.signature.as_ref() {
my_size += ::protobuf::rt::bytes_size(4, &v);
}
if let Some(ref v) = self.timeReceived.as_ref() {
my_size += ::protobuf::rt::string_size(5, &v);
}
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(ref v) = self.key.as_ref() {
os.write_string(1, &v)?;
}
if let Some(ref v) = self.value.as_ref() {
os.write_bytes(2, &v)?;
}
if let Some(ref v) = self.author.as_ref() {
os.write_string(3, &v)?;
}
if let Some(ref v) = self.signature.as_ref() {
os.write_bytes(4, &v)?;
}
if let Some(ref v) = self.timeReceived.as_ref() {
os.write_string(5, &v)?;
}
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
Self::descriptor_static()
}
fn new() -> Record {
Record::new()
}
fn descriptor_static() -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"key",
|m: &Record| { &m.key },
|m: &mut Record| { &mut m.key },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"value",
|m: &Record| { &m.value },
|m: &mut Record| { &mut m.value },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"author",
|m: &Record| { &m.author },
|m: &mut Record| { &mut m.author },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"signature",
|m: &Record| { &m.signature },
|m: &mut Record| { &mut m.signature },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"timeReceived",
|m: &Record| { &m.timeReceived },
|m: &mut Record| { &mut m.timeReceived },
));
::protobuf::reflect::MessageDescriptor::new::<Record>(
"Record",
fields,
file_descriptor_proto()
)
})
}
}
fn default_instance() -> &'static Record {
static mut instance: ::protobuf::lazy::Lazy<Record> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Record,
};
unsafe {
instance.get(Record::new)
}
}
}
impl ::protobuf::Clear for Record {
fn clear(&mut self) {
self.clear_key();
self.clear_value();
self.clear_author();
self.clear_signature();
self.clear_timeReceived();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Record {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Record {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
static file_descriptor_proto_data: &'static [u8] = b"\
\n\x0crecord.proto\x12\trecord.pb\"\x8a\x01\n\x06Record\x12\x10\n\x03key\
\x18\x01\x20\x01(\tR\x03key\x12\x14\n\x05value\x18\x02\x20\x01(\x0cR\x05\
value\x12\x16\n\x06author\x18\x03\x20\x01(\tR\x06author\x12\x1c\n\tsigna\
ture\x18\x04\x20\x01(\x0cR\tsignature\x12\"\n\x0ctimeReceived\x18\x05\
\x20\x01(\tR\x0ctimeReceivedJ\xac\x05\n\x06\x12\x04\0\0\x14\x01\n\x08\n\
\x01\x0c\x12\x03\0\0\x12\n\x08\n\x01\x02\x12\x03\x01\x08\x11\nX\n\x02\
\x04\0\x12\x04\x05\0\x14\x01\x1aL\x20Record\x20represents\x20a\x20dht\
\x20record\x20that\x20contains\x20a\x20value\n\x20for\x20a\x20key\x20val\
ue\x20pair\n\n\n\n\x03\x04\0\x01\x12\x03\x05\x08\x0e\n2\n\x04\x04\0\x02\
\0\x12\x03\x07\x08\x20\x1a%\x20The\x20key\x20that\x20references\x20this\
\x20record\n\n\x0c\n\x05\x04\0\x02\0\x04\x12\x03\x07\x08\x10\n\x0c\n\x05\
\x04\0\x02\0\x05\x12\x03\x07\x11\x17\n\x0c\n\x05\x04\0\x02\0\x01\x12\x03\
\x07\x18\x1b\n\x0c\n\x05\x04\0\x02\0\x03\x12\x03\x07\x1e\x1f\n6\n\x04\
\x04\0\x02\x01\x12\x03\n\x08!\x1a)\x20The\x20actual\x20value\x20this\x20\
record\x20is\x20storing\n\n\x0c\n\x05\x04\0\x02\x01\x04\x12\x03\n\x08\
\x10\n\x0c\n\x05\x04\0\x02\x01\x05\x12\x03\n\x11\x16\n\x0c\n\x05\x04\0\
\x02\x01\x01\x12\x03\n\x17\x1c\n\x0c\n\x05\x04\0\x02\x01\x03\x12\x03\n\
\x1f\x20\n-\n\x04\x04\0\x02\x02\x12\x03\r\x08#\x1a\x20\x20hash\x20of\x20\
the\x20authors\x20public\x20key\n\n\x0c\n\x05\x04\0\x02\x02\x04\x12\x03\
\r\x08\x10\n\x0c\n\x05\x04\0\x02\x02\x05\x12\x03\r\x11\x17\n\x0c\n\x05\
\x04\0\x02\x02\x01\x12\x03\r\x18\x1e\n\x0c\n\x05\x04\0\x02\x02\x03\x12\
\x03\r!\"\n7\n\x04\x04\0\x02\x03\x12\x03\x10\x08%\x1a*\x20A\x20PKI\x20si\
gnature\x20for\x20the\x20key+value+author\n\n\x0c\n\x05\x04\0\x02\x03\
\x04\x12\x03\x10\x08\x10\n\x0c\n\x05\x04\0\x02\x03\x05\x12\x03\x10\x11\
\x16\n\x0c\n\x05\x04\0\x02\x03\x01\x12\x03\x10\x17\x20\n\x0c\n\x05\x04\0\
\x02\x03\x03\x12\x03\x10#$\n<\n\x04\x04\0\x02\x04\x12\x03\x13\x08)\x1a/\
\x20Time\x20the\x20record\x20was\x20received,\x20set\x20by\x20receiver\n\
\n\x0c\n\x05\x04\0\x02\x04\x04\x12\x03\x13\x08\x10\n\x0c\n\x05\x04\0\x02\
\x04\x05\x12\x03\x13\x11\x17\n\x0c\n\x05\x04\0\x02\x04\x01\x12\x03\x13\
\x18$\n\x0c\n\x05\x04\0\x02\x04\x03\x12\x03\x13'(\
";
static mut file_descriptor_proto_lazy: ::protobuf::lazy::Lazy<::protobuf::descriptor::FileDescriptorProto> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::descriptor::FileDescriptorProto,
};
fn parse_descriptor_proto() -> ::protobuf::descriptor::FileDescriptorProto {
::protobuf::parse_from_bytes(file_descriptor_proto_data).unwrap()
}
pub fn file_descriptor_proto() -> &'static ::protobuf::descriptor::FileDescriptorProto {
unsafe {
file_descriptor_proto_lazy.get(|| {
parse_descriptor_proto()
})
}
}

View File

@ -0,0 +1,381 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Provides the `KadMsg` enum of all the possible messages transmitted with the Kademlia protocol,
//! and the `KademliaProtocolConfig` connection upgrade whose output is a
//! `Stream<Item = KadMsg> + Sink<SinkItem = KadMsg>`.
//!
//! The `Stream` component is used to poll the underlying transport, and the `Sink` component is
//! used to send messages.
use bytes::{Bytes, BytesMut};
use futures::{future, sink, Sink, stream, Stream};
use libp2p_core::{ConnectionUpgrade, Endpoint, Multiaddr, PeerId};
use protobuf::{self, Message};
use protobuf_structs;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use tokio_codec::Framed;
use tokio_io::{AsyncRead, AsyncWrite};
use unsigned_varint::codec;
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum KadConnectionType {
/// Sender hasn't tried to connect to peer.
NotConnected = 0,
/// Sender is currently connected to peer.
Connected = 1,
/// Sender was recently connected to peer.
CanConnect = 2,
/// Sender tried to connect to peer but failed.
CannotConnect = 3,
}
impl From<protobuf_structs::dht::Message_ConnectionType> for KadConnectionType {
#[inline]
fn from(raw: protobuf_structs::dht::Message_ConnectionType) -> KadConnectionType {
use protobuf_structs::dht::Message_ConnectionType::*;
match raw {
NOT_CONNECTED => KadConnectionType::NotConnected,
CONNECTED => KadConnectionType::Connected,
CAN_CONNECT => KadConnectionType::CanConnect,
CANNOT_CONNECT => KadConnectionType::CannotConnect,
}
}
}
impl Into<protobuf_structs::dht::Message_ConnectionType> for KadConnectionType {
#[inline]
fn into(self) -> protobuf_structs::dht::Message_ConnectionType {
use protobuf_structs::dht::Message_ConnectionType::*;
match self {
KadConnectionType::NotConnected => NOT_CONNECTED,
KadConnectionType::Connected => CONNECTED,
KadConnectionType::CanConnect => CAN_CONNECT,
KadConnectionType::CannotConnect => CANNOT_CONNECT,
}
}
}
/// Information about a peer, as known by the sender.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct KadPeer {
pub node_id: PeerId,
/// The multiaddresses that are known for that peer.
pub multiaddrs: Vec<Multiaddr>,
pub connection_ty: KadConnectionType,
}
impl KadPeer {
// Builds a `KadPeer` from its raw protobuf equivalent.
// TODO: use TryFrom once stable
fn from_peer(peer: &mut protobuf_structs::dht::Message_Peer) -> Result<KadPeer, IoError> {
// TODO: this is in fact a CID ; not sure if this should be handled in `from_bytes` or
// as a special case here
let node_id = PeerId::from_bytes(peer.get_id().to_vec())
.map_err(|_| IoError::new(IoErrorKind::InvalidData, "invalid peer id"))?;
let mut addrs = Vec::with_capacity(peer.get_addrs().len());
for addr in peer.take_addrs().into_iter() {
let as_ma = Multiaddr::from_bytes(addr)
.map_err(|err| IoError::new(IoErrorKind::InvalidData, err))?;
addrs.push(as_ma);
}
debug_assert_eq!(addrs.len(), addrs.capacity());
let connection_ty = peer.get_connection().into();
Ok(KadPeer {
node_id: node_id,
multiaddrs: addrs,
connection_ty: connection_ty,
})
}
}
impl Into<protobuf_structs::dht::Message_Peer> for KadPeer {
fn into(self) -> protobuf_structs::dht::Message_Peer {
let mut out = protobuf_structs::dht::Message_Peer::new();
out.set_id(self.node_id.into_bytes());
for addr in self.multiaddrs {
out.mut_addrs().push(addr.into_bytes());
}
out.set_connection(self.connection_ty.into());
out
}
}
/// Configuration for a Kademlia connection upgrade. When applied to a connection, turns this
/// connection into a `Stream + Sink` whose items are of type `KadMsg`.
#[derive(Debug, Default, Copy, Clone)]
pub struct KademliaProtocolConfig;
impl<C, Maf> ConnectionUpgrade<C, Maf> for KademliaProtocolConfig
where
C: AsyncRead + AsyncWrite + 'static, // TODO: 'static :-/
{
type Output = KadStreamSink<C>;
type MultiaddrFuture = Maf;
type Future = future::FutureResult<(Self::Output, Self::MultiaddrFuture), IoError>;
type NamesIter = iter::Once<(Bytes, ())>;
type UpgradeIdentifier = ();
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once(("/ipfs/kad/1.0.0".into(), ()))
}
#[inline]
fn upgrade(self, incoming: C, _: (), _: Endpoint, addr: Maf) -> Self::Future {
future::ok((kademlia_protocol(incoming), addr))
}
}
type KadStreamSink<S> = stream::AndThen<sink::With<stream::FromErr<Framed<S, codec::UviBytes<Vec<u8>>>, IoError>, KadMsg, fn(KadMsg) -> Result<Vec<u8>, IoError>, Result<Vec<u8>, IoError>>, fn(BytesMut) -> Result<KadMsg, IoError>, Result<KadMsg, IoError>>;
// Upgrades a socket to use the Kademlia protocol.
fn kademlia_protocol<S>(
socket: S,
) -> KadStreamSink<S>
where
S: AsyncRead + AsyncWrite,
{
Framed::new(socket, codec::UviBytes::default())
.from_err::<IoError>()
.with::<_, fn(_) -> _, _>(|request| -> Result<_, IoError> {
let proto_struct = msg_to_proto(request);
Ok(proto_struct.write_to_bytes().unwrap()) // TODO: error?
})
.and_then::<fn(_) -> _, _>(|bytes| {
let response = protobuf::parse_from_bytes(&bytes)?;
proto_to_msg(response)
})
}
/// Message that we can send to a peer or received from a peer.
// TODO: document the rest
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum KadMsg {
/// Ping request or response.
Ping,
/// Target must save the given record, can be queried later with `GetValueReq`.
PutValue {
/// Identifier of the record.
key: Vec<u8>,
/// The record itself.
record: (), //record: protobuf_structs::record::Record, // TODO: no
},
GetValueReq {
/// Identifier of the record.
key: Vec<u8>,
},
GetValueRes {
/// Identifier of the returned record.
key: Vec<u8>,
record: (), //record: Option<protobuf_structs::record::Record>, // TODO: no
closer_peers: Vec<KadPeer>,
},
/// Request for the list of nodes whose IDs are the closest to `key`. The number of nodes
/// returned is not specified, but should be around 20.
FindNodeReq {
/// Identifier of the node.
key: Vec<u8>,
},
/// Response to a `FindNodeReq`.
FindNodeRes {
/// Results of the request.
closer_peers: Vec<KadPeer>,
},
}
// Turns a type-safe kadmelia message into the corresponding row protobuf message.
fn msg_to_proto(kad_msg: KadMsg) -> protobuf_structs::dht::Message {
match kad_msg {
KadMsg::Ping => {
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::PING);
msg
}
KadMsg::PutValue { key, .. } => {
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::PUT_VALUE);
msg.set_key(key);
//msg.set_record(record); // TODO:
msg
}
KadMsg::GetValueReq { key } => {
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::GET_VALUE);
msg.set_key(key);
msg.set_clusterLevelRaw(10);
msg
}
KadMsg::GetValueRes { .. } => unimplemented!(), // TODO:
KadMsg::FindNodeReq { key } => {
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::FIND_NODE);
msg.set_key(key);
msg.set_clusterLevelRaw(10);
msg
}
KadMsg::FindNodeRes { closer_peers } => {
// TODO: if empty, the remote will think it's a request
// TODO: not good, possibly exposed in the API
assert!(!closer_peers.is_empty());
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::FIND_NODE);
msg.set_clusterLevelRaw(9);
for peer in closer_peers {
msg.mut_closerPeers().push(peer.into());
}
msg
}
}
}
/// Turns a raw Kademlia message into a type-safe message.
fn proto_to_msg(mut message: protobuf_structs::dht::Message) -> Result<KadMsg, IoError> {
match message.get_field_type() {
protobuf_structs::dht::Message_MessageType::PING => Ok(KadMsg::Ping),
protobuf_structs::dht::Message_MessageType::PUT_VALUE => {
let key = message.take_key();
let _record = message.take_record();
Ok(KadMsg::PutValue {
key: key,
record: (),
})
}
protobuf_structs::dht::Message_MessageType::GET_VALUE => {
let key = message.take_key();
Ok(KadMsg::GetValueReq { key: key })
}
protobuf_structs::dht::Message_MessageType::FIND_NODE => {
if message.get_closerPeers().is_empty() {
Ok(KadMsg::FindNodeReq {
key: message.take_key(),
})
} else {
// TODO: for now we don't parse the peer properly, so it is possible that we get
// parsing errors for peers even when they are valid ; we ignore these
// errors for now, but ultimately we should just error altogether
let closer_peers = message.mut_closerPeers()
.iter_mut()
.filter_map(|peer| KadPeer::from_peer(peer).ok())
.collect::<Vec<_>>();
Ok(KadMsg::FindNodeRes {
closer_peers,
})
}
}
protobuf_structs::dht::Message_MessageType::GET_PROVIDERS
| protobuf_structs::dht::Message_MessageType::ADD_PROVIDER => {
// These messages don't seem to be used in the protocol in practice, so if we receive
// them we suppose that it's a mistake in the protocol usage.
Err(IoError::new(
IoErrorKind::InvalidData,
"received an unsupported kad message type",
))
}
}
}
#[cfg(test)]
mod tests {
extern crate libp2p_tcp_transport;
extern crate tokio_current_thread;
use self::libp2p_tcp_transport::TcpConfig;
use futures::{Future, Sink, Stream};
use libp2p_core::{Transport, PeerId, PublicKey};
use protocol::{KadConnectionType, KadMsg, KademliaProtocolConfig, KadPeer};
use std::sync::mpsc;
use std::thread;
#[test]
fn correct_transfer() {
// We open a server and a client, send a message between the two, and check that they were
// successfully received.
test_one(KadMsg::Ping);
test_one(KadMsg::PutValue {
key: vec![1, 2, 3, 4],
record: (),
});
test_one(KadMsg::GetValueReq {
key: vec![10, 11, 12],
});
test_one(KadMsg::FindNodeReq {
key: vec![9, 12, 0, 245, 245, 201, 28, 95],
});
test_one(KadMsg::FindNodeRes {
closer_peers: vec![
KadPeer {
node_id: PeerId::from_public_key(PublicKey::Rsa(vec![93, 80, 12, 250])),
multiaddrs: vec!["/ip4/100.101.102.103/tcp/20105".parse().unwrap()],
connection_ty: KadConnectionType::Connected,
},
],
});
// TODO: all messages
fn test_one(msg_server: KadMsg) {
let msg_client = msg_server.clone();
let (tx, rx) = mpsc::channel();
let bg_thread = thread::spawn(move || {
let transport = TcpConfig::new().with_upgrade(KademliaProtocolConfig);
let (listener, addr) = transport
.listen_on("/ip4/127.0.0.1/tcp/0".parse().unwrap())
.unwrap();
tx.send(addr).unwrap();
let future = listener
.into_future()
.map_err(|(err, _)| err)
.and_then(|(client, _)| client.unwrap().map(|v| v.0))
.and_then(|proto| proto.into_future().map_err(|(err, _)| err).map(|(v, _)| v))
.map(|recv_msg| {
assert_eq!(recv_msg.unwrap(), msg_server);
()
});
let _ = tokio_current_thread::block_on_all(future).unwrap();
});
let transport = TcpConfig::new().with_upgrade(KademliaProtocolConfig);
let future = transport
.dial(rx.recv().unwrap())
.unwrap_or_else(|_| panic!())
.and_then(|proto| proto.0.send(msg_client))
.map(|_| ());
let _ = tokio_current_thread::block_on_all(future).unwrap();
bg_thread.join().unwrap();
}
}
}

365
protocols/kad/src/query.rs Normal file
View File

@ -0,0 +1,365 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! This module handles performing iterative queries about the network.
use fnv::FnvHashSet;
use futures::{future, Future, stream, Stream};
use kbucket::KBucketsPeerId;
use libp2p_core::PeerId;
use multiaddr::{AddrComponent, Multiaddr};
use protocol;
use rand;
use smallvec::SmallVec;
use std::cmp::Ordering;
use std::io::Error as IoError;
use std::mem;
/// Parameters of a query. Allows plugging the query-related code with the rest of the
/// infrastructure.
pub struct QueryParams<FBuckets, FFindNode> {
/// Identifier of the local peer.
pub local_id: PeerId,
/// Called whenever we need to obtain the peers closest to a certain peer.
pub kbuckets_find_closest: FBuckets,
/// Level of parallelism for networking. If this is `N`, then we can dial `N` nodes at a time.
pub parallelism: usize,
/// Called whenever we want to send a `FIND_NODE` RPC query.
pub find_node: FFindNode,
}
/// Event that happens during a query.
#[derive(Debug, Clone)]
pub enum QueryEvent<TOut> {
/// Learned about new mutiaddresses for the given peers.
NewKnownMultiaddrs(Vec<(PeerId, Vec<Multiaddr>)>),
/// Finished the processing of the query. Contains the result.
Finished(TOut),
}
/// Starts a query for an iterative `FIND_NODE` request.
#[inline]
pub fn find_node<'a, FBuckets, FFindNode>(
query_params: QueryParams<FBuckets, FFindNode>,
searched_key: PeerId,
) -> Box<Stream<Item = QueryEvent<Vec<PeerId>>, Error = IoError> + 'a>
where
FBuckets: Fn(PeerId) -> Vec<PeerId> + 'a + Clone,
FFindNode: Fn(Multiaddr, PeerId) -> Box<Future<Item = Vec<protocol::Peer>, Error = IoError>> + 'a + Clone,
{
query(query_params, searched_key, 20) // TODO: constant
}
/// Refreshes a specific bucket by performing an iterative `FIND_NODE` on a random ID of this
/// bucket.
///
/// Returns a dummy no-op future if `bucket_num` is out of range.
pub fn refresh<'a, FBuckets, FFindNode>(
query_params: QueryParams<FBuckets, FFindNode>,
bucket_num: usize,
) -> Box<Stream<Item = QueryEvent<()>, Error = IoError> + 'a>
where
FBuckets: Fn(PeerId) -> Vec<PeerId> + 'a + Clone,
FFindNode: Fn(Multiaddr, PeerId) -> Box<Future<Item = Vec<protocol::Peer>, Error = IoError>> + 'a + Clone,
{
let peer_id = match gen_random_id(&query_params.local_id, bucket_num) {
Ok(p) => p,
Err(()) => return Box::new(stream::once(Ok(QueryEvent::Finished(())))),
};
let stream = find_node(query_params, peer_id).map(|event| {
match event {
QueryEvent::NewKnownMultiaddrs(peers) => QueryEvent::NewKnownMultiaddrs(peers),
QueryEvent::Finished(_) => QueryEvent::Finished(()),
}
});
Box::new(stream) as Box<_>
}
// Generates a random `PeerId` that belongs to the given bucket.
//
// Returns an error if `bucket_num` is out of range.
fn gen_random_id(my_id: &PeerId, bucket_num: usize) -> Result<PeerId, ()> {
let my_id_len = my_id.as_bytes().len();
// TODO: this 2 is magic here ; it is the length of the hash of the multihash
let bits_diff = bucket_num + 1;
if bits_diff > 8 * (my_id_len - 2) {
return Err(());
}
let mut random_id = [0; 64];
for byte in 0..my_id_len {
match byte.cmp(&(my_id_len - bits_diff / 8 - 1)) {
Ordering::Less => {
random_id[byte] = my_id.as_bytes()[byte];
}
Ordering::Equal => {
let mask: u8 = (1 << (bits_diff % 8)) - 1;
random_id[byte] = (my_id.as_bytes()[byte] & !mask) | (rand::random::<u8>() & mask);
}
Ordering::Greater => {
random_id[byte] = rand::random();
}
}
}
let peer_id = PeerId::from_bytes(random_id[..my_id_len].to_owned())
.expect("randomly-generated peer ID should always be valid");
Ok(peer_id)
}
// Generic query-performing function.
fn query<'a, FBuckets, FFindNode>(
query_params: QueryParams<FBuckets, FFindNode>,
searched_key: PeerId,
num_results: usize,
) -> Box<Stream<Item = QueryEvent<Vec<PeerId>>, Error = IoError> + 'a>
where
FBuckets: Fn(PeerId) -> Vec<PeerId> + 'a + Clone,
FFindNode: Fn(Multiaddr, PeerId) -> Box<Future<Item = Vec<protocol::Peer>, Error = IoError>> + 'a + Clone,
{
debug!("Start query for {:?} ; num results = {}", searched_key, num_results);
// State of the current iterative process.
struct State<'a> {
// At which stage we are.
stage: Stage,
// Final output of the iteration.
result: Vec<PeerId>,
// For each open connection, a future with the response of the remote.
// Note that don't use a `SmallVec` here because `select_all` produces a `Vec`.
current_attempts_fut: Vec<Box<Future<Item = Vec<protocol::Peer>, Error = IoError> + 'a>>,
// For each open connection, the peer ID that we are connected to.
// Must always have the same length as `current_attempts_fut`.
current_attempts_addrs: SmallVec<[PeerId; 32]>,
// Nodes that need to be attempted.
pending_nodes: Vec<PeerId>,
// Peers that we tried to contact but failed.
failed_to_contact: FnvHashSet<PeerId>,
}
// General stage of the state.
#[derive(Copy, Clone, PartialEq, Eq)]
enum Stage {
// We are still in the first step of the algorithm where we try to find the closest node.
FirstStep,
// We are contacting the k closest nodes in order to fill the list with enough results.
SecondStep,
// The results are complete, and the next stream iteration will produce the outcome.
FinishingNextIter,
// We are finished and the stream shouldn't return anything anymore.
Finished,
}
let initial_state = State {
stage: Stage::FirstStep,
result: Vec::with_capacity(num_results),
current_attempts_fut: Vec::new(),
current_attempts_addrs: SmallVec::new(),
pending_nodes: {
let kbuckets_find_closest = query_params.kbuckets_find_closest.clone();
kbuckets_find_closest(searched_key.clone()) // TODO: suboptimal
},
failed_to_contact: Default::default(),
};
let parallelism = query_params.parallelism;
// Start of the iterative process.
let stream = stream::unfold(initial_state, move |mut state| -> Option<_> {
match state.stage {
Stage::FinishingNextIter => {
let result = mem::replace(&mut state.result, Vec::new());
debug!("Query finished with {} results", result.len());
state.stage = Stage::Finished;
let future = future::ok((Some(QueryEvent::Finished(result)), state));
return Some(future::Either::A(future));
},
Stage::Finished => {
return None;
},
_ => ()
};
let searched_key = searched_key.clone();
let find_node_rpc = query_params.find_node.clone();
// Find out which nodes to contact at this iteration.
let to_contact = {
let wanted_len = if state.stage == Stage::FirstStep {
parallelism.saturating_sub(state.current_attempts_fut.len())
} else {
num_results.saturating_sub(state.current_attempts_fut.len())
};
let mut to_contact = SmallVec::<[_; 16]>::new();
while to_contact.len() < wanted_len && !state.pending_nodes.is_empty() {
// Move the first element of `pending_nodes` to `to_contact`, but ignore nodes that
// are already part of the results or of a current attempt or if we failed to
// contact it before.
let peer = state.pending_nodes.remove(0);
if state.result.iter().any(|p| p == &peer) {
continue;
}
if state.current_attempts_addrs.iter().any(|p| p == &peer) {
continue;
}
if state.failed_to_contact.iter().any(|p| p == &peer) {
continue;
}
to_contact.push(peer);
}
to_contact
};
debug!("New query round ; {} queries in progress ; contacting {} new peers",
state.current_attempts_fut.len(),
to_contact.len());
// For each node in `to_contact`, start an RPC query and a corresponding entry in the two
// `state.current_attempts_*` fields.
for peer in to_contact {
let multiaddr: Multiaddr = AddrComponent::P2P(peer.clone().into_bytes()).into();
let searched_key2 = searched_key.clone();
let current_attempt = find_node_rpc(multiaddr.clone(), searched_key2); // TODO: suboptimal
state.current_attempts_addrs.push(peer.clone());
state
.current_attempts_fut
.push(Box::new(current_attempt) as Box<_>);
}
debug_assert_eq!(
state.current_attempts_addrs.len(),
state.current_attempts_fut.len()
);
// Extract `current_attempts_fut` so that we can pass it to `select_all`. We will push the
// values back when inside the loop.
let current_attempts_fut = mem::replace(&mut state.current_attempts_fut, Vec::new());
if current_attempts_fut.is_empty() {
// If `current_attempts_fut` is empty, then `select_all` would panic. It happens
// when we have no additional node to query.
debug!("Finishing query early because no additional node available");
state.stage = Stage::FinishingNextIter;
let future = future::ok((None, state));
return Some(future::Either::A(future));
}
// This is the future that continues or breaks the `loop_fn`.
let future = future::select_all(current_attempts_fut.into_iter()).then(move |result| {
let (message, trigger_idx, other_current_attempts) = match result {
Err((err, trigger_idx, other_current_attempts)) => {
(Err(err), trigger_idx, other_current_attempts)
}
Ok((message, trigger_idx, other_current_attempts)) => {
(Ok(message), trigger_idx, other_current_attempts)
}
};
// Putting back the extracted elements in `state`.
let remote_id = state.current_attempts_addrs.remove(trigger_idx);
debug_assert!(state.current_attempts_fut.is_empty());
state.current_attempts_fut = other_current_attempts;
// `message` contains the reason why the current future was woken up.
let closer_peers = match message {
Ok(msg) => msg,
Err(err) => {
trace!("RPC query failed for {:?}: {:?}", remote_id, err);
state.failed_to_contact.insert(remote_id);
return future::ok((None, state));
}
};
// Inserting the node we received a response from into `state.result`.
// The code is non-trivial because `state.result` is ordered by distance and is limited
// by `num_results` elements.
if let Some(insert_pos) = state.result.iter().position(|e| {
e.distance_with(&searched_key) >= remote_id.distance_with(&searched_key)
}) {
if state.result[insert_pos] != remote_id {
if state.result.len() >= num_results {
state.result.pop();
}
state.result.insert(insert_pos, remote_id);
}
} else if state.result.len() < num_results {
state.result.push(remote_id);
}
// The loop below will set this variable to `true` if we find a new element to put at
// the top of the result. This would mean that we have to continue looping.
let mut local_nearest_node_updated = false;
// Update `state` with the actual content of the message.
let mut new_known_multiaddrs = Vec::with_capacity(closer_peers.len());
for mut peer in closer_peers {
// Update the peerstore with the information sent by
// the remote.
{
let multiaddrs = mem::replace(&mut peer.multiaddrs, Vec::new());
trace!("Reporting multiaddresses for {:?}: {:?}", peer.node_id, multiaddrs);
new_known_multiaddrs.push((peer.node_id.clone(), multiaddrs));
}
if peer.node_id.distance_with(&searched_key)
<= state.result[0].distance_with(&searched_key)
{
local_nearest_node_updated = true;
}
if state.result.iter().any(|ma| ma == &peer.node_id) {
continue;
}
// Insert the node into `pending_nodes` at the right position, or do not
// insert it if it is already in there.
if let Some(insert_pos) = state.pending_nodes.iter().position(|e| {
e.distance_with(&searched_key) >= peer.node_id.distance_with(&searched_key)
}) {
if state.pending_nodes[insert_pos] != peer.node_id {
state.pending_nodes.insert(insert_pos, peer.node_id.clone());
}
} else {
state.pending_nodes.push(peer.node_id.clone());
}
}
if state.result.len() >= num_results
|| (state.stage != Stage::FirstStep && state.current_attempts_fut.is_empty())
{
state.stage = Stage::FinishingNextIter;
} else {
if !local_nearest_node_updated {
trace!("Loop didn't update closer node ; jumping to step 2");
state.stage = Stage::SecondStep;
}
}
future::ok((Some(QueryEvent::NewKnownMultiaddrs(new_known_multiaddrs)), state))
});
Some(future::Either::B(future))
}).filter_map(|val| val);
Box::new(stream) as Box<_>
}

22
protocols/ping/Cargo.toml Normal file
View File

@ -0,0 +1,22 @@
[package]
name = "libp2p-ping"
version = "0.1.0"
authors = ["Parity Technologies <admin@parity.io>"]
license = "MIT"
[dependencies]
bytes = "0.4"
libp2p-core = { path = "../../core" }
log = "0.4.1"
multiaddr = { path = "../../misc/multiaddr" }
multistream-select = { path = "../../misc/multistream-select" }
futures = "0.1"
parking_lot = "0.6"
rand = "0.5"
tokio-codec = "0.1"
tokio-io = "0.1"
[dev-dependencies]
libp2p-tcp-transport = { path = "../../transports/tcp" }
tokio-current-thread = "0.1"
tokio-tcp = "0.1"

452
protocols/ping/src/lib.rs Normal file
View File

@ -0,0 +1,452 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Handles the `/ipfs/ping/1.0.0` protocol. This allows pinging a remote node and waiting for an
//! answer.
//!
//! # Usage
//!
//! Create a `Ping` struct, which implements the `ConnectionUpgrade` trait. When used as a
//! connection upgrade, it will produce a tuple of type `(Pinger, impl Future<Item = ()>)` which
//! are named the *pinger* and the *ponger*.
//!
//! The *pinger* has a method named `ping` which will send a ping to the remote, while the *ponger*
//! is a future that will process the data received on the socket and will be signalled only when
//! the connection closes.
//!
//! # About timeouts
//!
//! For technical reasons, this crate doesn't handle timeouts. The action of pinging returns a
//! future that is signalled only when the remote answers. If the remote is not responsive, the
//! future will never be signalled.
//!
//! For implementation reasons, resources allocated for a ping are only ever fully reclaimed after
//! a pong has been received by the remote. Therefore if you repeatidely ping a non-responsive
//! remote you will end up using more and memory memory (albeit the amount is very very small every
//! time), even if you destroy the future returned by `ping`.
//!
//! This is probably not a problem in practice, because the nature of the ping protocol is to
//! determine whether a remote is still alive, and any reasonable user of this crate will close
//! connections to non-responsive remotes.
//!
//! # Example
//!
//! ```no_run
//! extern crate futures;
//! extern crate libp2p_ping;
//! extern crate libp2p_core;
//! extern crate libp2p_tcp_transport;
//! extern crate tokio_current_thread;
//!
//! use futures::Future;
//! use libp2p_ping::{Ping, PingOutput};
//! use libp2p_core::Transport;
//!
//! # fn main() {
//! let ping_finished_future = libp2p_tcp_transport::TcpConfig::new()
//! .with_upgrade(Ping)
//! .dial("127.0.0.1:12345".parse::<libp2p_core::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
//! .and_then(|(out, _)| {
//! match out {
//! PingOutput::Ponger(processing) => Box::new(processing) as Box<Future<Item = _, Error = _>>,
//! PingOutput::Pinger { mut pinger, processing } => {
//! let f = pinger.ping().map_err(|_| panic!()).select(processing).map(|_| ()).map_err(|(err, _)| err);
//! Box::new(f) as Box<Future<Item = _, Error = _>>
//! },
//! }
//! });
//!
//! // Runs until the ping arrives.
//! tokio_current_thread::block_on_all(ping_finished_future).unwrap();
//! # }
//! ```
//!
extern crate bytes;
extern crate futures;
extern crate libp2p_core;
#[macro_use]
extern crate log;
extern crate multistream_select;
extern crate parking_lot;
extern crate rand;
extern crate tokio_codec;
extern crate tokio_io;
use bytes::{BufMut, Bytes, BytesMut};
use futures::future::{loop_fn, FutureResult, IntoFuture, Loop};
use futures::sync::{mpsc, oneshot};
use futures::{Future, Sink, Stream};
use libp2p_core::{ConnectionUpgrade, Endpoint};
use parking_lot::Mutex;
use rand::{distributions::Standard, prelude::*, rngs::EntropyRng};
use std::collections::HashMap;
use std::error::Error;
use std::io::Error as IoError;
use std::iter;
use std::sync::Arc;
use tokio_codec::{Decoder, Encoder, Framed};
use tokio_io::{AsyncRead, AsyncWrite};
/// Represents a prototype for an upgrade to handle the ping protocol.
///
/// According to the design of libp2p, this struct would normally contain the configuration options
/// for the protocol, but in the case of `Ping` no configuration is required.
#[derive(Debug, Copy, Clone, Default)]
pub struct Ping;
pub enum PingOutput {
/// We are on the dialer side.
Pinger {
/// Object to use in order to ping the remote.
pinger: Pinger,
/// Future that drives the processing of the pings.
processing: Box<Future<Item = (), Error = IoError>>,
},
/// We are on the listening side.
Ponger(Box<Future<Item = (), Error = IoError>>),
}
impl<C, Maf> ConnectionUpgrade<C, Maf> for Ping
where
C: AsyncRead + AsyncWrite + 'static,
{
type NamesIter = iter::Once<(Bytes, Self::UpgradeIdentifier)>;
type UpgradeIdentifier = ();
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once(("/ipfs/ping/1.0.0".into(), ()))
}
type Output = PingOutput;
type MultiaddrFuture = Maf;
type Future = FutureResult<(Self::Output, Self::MultiaddrFuture), IoError>;
#[inline]
fn upgrade(
self,
socket: C,
_: Self::UpgradeIdentifier,
endpoint: Endpoint,
remote_addr: Maf,
) -> Self::Future {
let out = match endpoint {
Endpoint::Dialer => upgrade_as_dialer(socket),
Endpoint::Listener => upgrade_as_listener(socket),
};
Ok((out, remote_addr)).into_future()
}
}
/// Upgrades a connection from the dialer side.
fn upgrade_as_dialer(socket: impl AsyncRead + AsyncWrite + 'static) -> PingOutput {
// # How does it work?
//
// All the actual processing is performed by the *ponger*.
// We use a channel in order to send ping requests from the pinger to the ponger.
let (tx, rx) = mpsc::channel(8);
// Ignore the errors if `tx` closed.
let rx = rx.then(|r| Ok(r.ok())).filter_map(|a| a);
let pinger = Pinger {
send: tx,
rng: EntropyRng::default(),
};
// Hashmap that associates outgoing payloads to one-shot senders.
// TODO: can't figure out how to make it work without using an Arc/Mutex
let expected_pongs = Arc::new(Mutex::new(HashMap::with_capacity(4)));
let sink_stream = Framed::new(socket, Codec).map(|msg| Message::Received(msg.freeze()));
let (sink, stream) = sink_stream.split();
let future = loop_fn((sink, stream.select(rx)), move |(sink, stream)| {
let expected_pongs = expected_pongs.clone();
stream
.into_future()
.map_err(|(err, _)| err)
.and_then(move |(message, stream)| {
let mut expected_pongs = expected_pongs.lock();
if let Some(message) = message {
match message {
Message::Ping(payload, finished) => {
// Ping requested by the user through the `Pinger`.
debug!("Sending ping with payload {:?}", payload);
expected_pongs.insert(payload.clone(), finished);
Box::new(
sink.send(payload)
.map(|sink| Loop::Continue((sink, stream))),
) as Box<Future<Item = _, Error = _>>
}
Message::Received(payload) => {
// Received a payload from the remote.
if let Some(fut) = expected_pongs.remove(&payload) {
// Payload was ours. Signalling future.
// Errors can happen if the user closed the receiving end of
// the future, which is fine to ignore.
debug!("Received pong (payload={:?}) ; ping fufilled", payload);
let _ = fut.send(());
Box::new(Ok(Loop::Continue((sink, stream))).into_future())
as Box<Future<Item = _, Error = _>>
} else {
// Payload was unexpected. Closing connection.
debug!("Received invalid payload ({:?}) ; closing", payload);
Box::new(Ok(Loop::Break(())).into_future())
as Box<Future<Item = _, Error = _>>
}
}
}
} else {
Box::new(Ok(Loop::Break(())).into_future()) as Box<Future<Item = _, Error = _>>
}
})
});
PingOutput::Pinger {
pinger,
processing: Box::new(future) as Box<_>,
}
}
/// Upgrades a connection from the listener side.
fn upgrade_as_listener(socket: impl AsyncRead + AsyncWrite + 'static) -> PingOutput {
let sink_stream = Framed::new(socket, Codec);
let (sink, stream) = sink_stream.split();
let future = loop_fn((sink, stream), move |(sink, stream)| {
stream
.into_future()
.map_err(|(err, _)| err)
.and_then(move |(payload, stream)| {
if let Some(payload) = payload {
// Received a payload from the remote.
debug!("Received ping (payload={:?}) ; sending back", payload);
Box::new(
sink.send(payload.freeze())
.map(|sink| Loop::Continue((sink, stream))),
) as Box<Future<Item = _, Error = _>>
} else {
// Connection was closed
Box::new(Ok(Loop::Break(())).into_future()) as Box<Future<Item = _, Error = _>>
}
})
});
PingOutput::Ponger(Box::new(future) as Box<_>)
}
/// Controller for the ping service. Makes it possible to send pings to the remote.
pub struct Pinger {
send: mpsc::Sender<Message>,
rng: EntropyRng,
}
impl Pinger {
/// Sends a ping. Returns a future that is signaled when a pong is received.
///
/// **Note**: Please be aware that there is no timeout on the ping. You should handle the
/// timeout yourself when you call this function.
pub fn ping(&mut self) -> Box<Future<Item = (), Error = Box<Error + Send + Sync>>> {
let (tx, rx) = oneshot::channel();
let payload: [u8; 32] = self.rng.sample(Standard);
debug!("Preparing for ping with payload {:?}", payload);
// Ignore errors if the ponger has been already destroyed. The returned future will never
// be signalled.
let fut = self
.send
.clone()
.send(Message::Ping(Bytes::from(payload.to_vec()), tx))
.from_err()
.and_then(|_| rx.from_err());
Box::new(fut) as Box<_>
}
}
impl Clone for Pinger {
fn clone(&self) -> Pinger {
Pinger {
send: self.send.clone(),
rng: EntropyRng::default(),
}
}
}
enum Message {
Ping(Bytes, oneshot::Sender<()>),
Received(Bytes),
}
// Implementation of the `Codec` trait of tokio-io. Splits frames into groups of 32 bytes.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
struct Codec;
impl Decoder for Codec {
type Item = BytesMut;
type Error = IoError;
#[inline]
fn decode(&mut self, buf: &mut BytesMut) -> Result<Option<BytesMut>, IoError> {
if buf.len() >= 32 {
Ok(Some(buf.split_to(32)))
} else {
Ok(None)
}
}
}
impl Encoder for Codec {
type Item = Bytes;
type Error = IoError;
#[inline]
fn encode(&mut self, mut data: Bytes, buf: &mut BytesMut) -> Result<(), IoError> {
if data.len() != 0 {
let split = 32 * (1 + ((data.len() - 1) / 32));
buf.reserve(split);
buf.put(data.split_to(split));
}
Ok(())
}
}
#[cfg(test)]
mod tests {
extern crate tokio_current_thread;
extern crate tokio_tcp;
use self::tokio_tcp::TcpListener;
use self::tokio_tcp::TcpStream;
use super::{Ping, PingOutput};
use futures::future::{self, join_all};
use futures::Future;
use futures::Stream;
use libp2p_core::{ConnectionUpgrade, Endpoint, Multiaddr};
use std::io::Error as IoError;
// TODO: rewrite tests with the MemoryTransport
#[test]
fn ping_pong() {
let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap();
let listener_addr = listener.local_addr().unwrap();
let server = listener
.incoming()
.into_future()
.map_err(|(e, _)| e.into())
.and_then(|(c, _)| {
Ping.upgrade(
c.unwrap(),
(),
Endpoint::Listener,
future::ok::<Multiaddr, IoError>("/ip4/127.0.0.1/tcp/10000".parse().unwrap()),
)
})
.and_then(|(out, _)| match out {
PingOutput::Ponger(service) => service,
_ => unreachable!(),
});
let client = TcpStream::connect(&listener_addr)
.map_err(|e| e.into())
.and_then(|c| {
Ping.upgrade(
c,
(),
Endpoint::Dialer,
future::ok::<Multiaddr, IoError>("/ip4/127.0.0.1/tcp/10000".parse().unwrap()),
)
})
.and_then(|(out, _)| match out {
PingOutput::Pinger {
mut pinger,
processing,
} => pinger
.ping()
.map_err(|_| panic!())
.select(processing)
.map_err(|_| panic!()),
_ => unreachable!(),
})
.map(|_| ());
tokio_current_thread::block_on_all(server.select(client).map_err(|_| panic!())).unwrap();
}
#[test]
fn multipings() {
// Check that we can send multiple pings in a row and it will still work.
let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap();
let listener_addr = listener.local_addr().unwrap();
let server = listener
.incoming()
.into_future()
.map_err(|(e, _)| e.into())
.and_then(|(c, _)| {
Ping.upgrade(
c.unwrap(),
(),
Endpoint::Listener,
future::ok::<Multiaddr, IoError>("/ip4/127.0.0.1/tcp/10000".parse().unwrap()),
)
})
.and_then(|(out, _)| match out {
PingOutput::Ponger(service) => service,
_ => unreachable!(),
});
let client = TcpStream::connect(&listener_addr)
.map_err(|e| e.into())
.and_then(|c| {
Ping.upgrade(
c,
(),
Endpoint::Dialer,
future::ok::<Multiaddr, IoError>("/ip4/127.0.0.1/tcp/10000".parse().unwrap()),
)
})
.and_then(|(out, _)| match out {
PingOutput::Pinger {
mut pinger,
processing,
} => {
let pings = (0..20).map(move |_| pinger.ping().map_err(|_| ()));
join_all(pings)
.map(|_| ())
.map_err(|_| panic!())
.select(processing)
.map(|_| ())
.map_err(|_| panic!())
}
_ => unreachable!(),
});
tokio_current_thread::block_on_all(server.select(client)).unwrap_or_else(|_| panic!());
}
}

View File

@ -0,0 +1,33 @@
[package]
name = "libp2p-secio"
version = "0.1.0"
authors = ["Parity Technologies <admin@parity.io>"]
license = "MIT"
[dependencies]
asn1_der = "0.5"
bytes = "0.4"
futures = "0.1"
libp2p-core = { path = "../../core" }
log = "0.4.1"
protobuf = "2.0.2"
rand = "0.3.17"
ring = { version = "0.13.2", features = ["rsa_signing"] }
aes-ctr = "0.1.0"
aesni = { version = "0.4.1", features = ["nocheck"], optional = true }
ctr = { version = "0.1", optional = true }
lazy_static = { version = "0.2.11", optional = true }
rw-stream-sink = { path = "../../misc/rw-stream-sink" }
eth-secp256k1 = { git = "https://github.com/paritytech/rust-secp256k1", optional = true }
tokio-io = "0.1.0"
untrusted = "0.6.2"
[features]
default = ["secp256k1"]
secp256k1 = ["eth-secp256k1"]
aes-all = ["ctr","aesni","lazy_static"]
[dev-dependencies]
libp2p-tcp-transport = { path = "../../transports/tcp" }
tokio-current-thread = "0.1"
tokio-tcp = "0.1"

View File

@ -0,0 +1,13 @@
#!/bin/sh
# This script regenerates the `src/structs_proto.rs` file from `structs.proto`.
sudo docker run --rm -v `pwd`:/usr/code:z -w /usr/code rust /bin/bash -c " \
apt-get update; \
apt-get install -y protobuf-compiler; \
cargo install --version 2.0.2 protobuf-codegen; \
protoc --rust_out . structs.proto"
sudo chown $USER:$USER *.rs
mv -f structs.rs ./src/structs_proto.rs

View File

@ -0,0 +1,95 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! This module contains some utilities for algorithm support exchange.
//!
//! One important part of the SECIO handshake is negotiating algorithms. This is what this module
//! helps you with.
macro_rules! supported_impl {
($mod_name:ident: $ty:ty, $($name:expr => $val:expr),*,) => (
pub mod $mod_name {
use std::cmp::Ordering;
#[allow(unused_imports)]
use stream_cipher::KeySize;
#[allow(unused_imports)]
use ring::{agreement, digest};
use error::SecioError;
/// String to advertise to the remote.
pub const PROPOSITION_STRING: &'static str = concat_comma!($($name),*);
/// Choose which algorithm to use based on the remote's advertised list.
pub fn select_best(hashes_ordering: Ordering, input: &str) -> Result<$ty, SecioError> {
match hashes_ordering {
Ordering::Less | Ordering::Equal => {
for second_elem in input.split(',') {
$(
if $name == second_elem {
return Ok($val);
}
)+
}
},
Ordering::Greater => {
$(
for second_elem in input.split(',') {
if $name == second_elem {
return Ok($val);
}
}
)+
},
};
Err(SecioError::NoSupportIntersection(PROPOSITION_STRING, input.to_owned()))
}
}
);
}
// Concatenates several strings with commas.
macro_rules! concat_comma {
($first:expr, $($rest:expr),*) => (
concat!($first $(, ',', $rest)*)
);
}
// TODO: there's no library in the Rust ecosystem that supports P-521, but the Go & JS
// implementations advertise it
supported_impl!(
exchanges: &'static agreement::Algorithm,
"P-256" => &agreement::ECDH_P256,
"P-384" => &agreement::ECDH_P384,
);
// TODO: the Go & JS implementations advertise Blowfish ; however doing so in Rust leads to
// runtime errors
supported_impl!(
ciphers: KeySize,
"AES-128" => KeySize::KeySize128,
"AES-256" => KeySize::KeySize256,
);
supported_impl!(
hashes: &'static digest::Algorithm,
"SHA256" => &digest::SHA256,
"SHA512" => &digest::SHA512,
);

View File

@ -0,0 +1,128 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Individual messages decoding.
use bytes::BytesMut;
use super::StreamCipher;
use error::SecioError;
use futures::sink::Sink;
use futures::stream::Stream;
use futures::Async;
use futures::Poll;
use futures::StartSend;
use ring::hmac;
/// Wraps around a `Stream<Item = BytesMut>`. The buffers produced by the underlying stream
/// are decoded using the cipher and hmac.
///
/// This struct implements `Stream`, whose stream item are frames of data without the length
/// prefix. The mechanism for removing the length prefix and splitting the incoming data into
/// frames isn't handled by this module.
///
/// Also implements `Sink` for convenience.
pub struct DecoderMiddleware<S> {
cipher_state: StreamCipher,
hmac_key: hmac::VerificationKey,
// TODO: when a new version of ring is released, we can use `hmac_key.digest_algorithm().output_len` instead
hmac_num_bytes: usize,
raw_stream: S,
}
impl<S> DecoderMiddleware<S> {
#[inline]
pub fn new(
raw_stream: S,
cipher: StreamCipher,
hmac_key: hmac::VerificationKey,
hmac_num_bytes: usize, // TODO: remove this parameter
) -> DecoderMiddleware<S> {
DecoderMiddleware {
cipher_state: cipher,
hmac_key,
raw_stream,
hmac_num_bytes,
}
}
}
impl<S> Stream for DecoderMiddleware<S>
where
S: Stream<Item = BytesMut>,
S::Error: Into<SecioError>,
{
type Item = Vec<u8>;
type Error = SecioError;
#[inline]
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
let frame = match self.raw_stream.poll() {
Ok(Async::Ready(Some(t))) => t,
Ok(Async::Ready(None)) => return Ok(Async::Ready(None)),
Ok(Async::NotReady) => return Ok(Async::NotReady),
Err(err) => return Err(err.into()),
};
// TODO: when a new version of ring is released, we can use `hmac_key.digest_algorithm().output_len` instead
let hmac_num_bytes = self.hmac_num_bytes;
if frame.len() < hmac_num_bytes {
debug!("frame too short when decoding secio frame");
return Err(SecioError::FrameTooShort);
}
let content_length = frame.len() - hmac_num_bytes;
{
let (crypted_data, expected_hash) = frame.split_at(content_length);
debug_assert_eq!(expected_hash.len(), hmac_num_bytes);
if hmac::verify(&self.hmac_key, crypted_data, expected_hash).is_err() {
debug!("hmac mismatch when decoding secio frame");
return Err(SecioError::HmacNotMatching);
}
}
let mut data_buf = frame.to_vec();
data_buf.truncate(content_length);
self.cipher_state
.try_apply_keystream(&mut data_buf)
.map_err::<SecioError,_>(|e|e.into())?;
Ok(Async::Ready(Some(data_buf)))
}
}
impl<S> Sink for DecoderMiddleware<S>
where
S: Sink,
{
type SinkItem = S::SinkItem;
type SinkError = S::SinkError;
#[inline]
fn start_send(&mut self, item: Self::SinkItem) -> StartSend<Self::SinkItem, Self::SinkError> {
self.raw_stream.start_send(item)
}
#[inline]
fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
self.raw_stream.poll_complete()
}
}

View File

@ -0,0 +1,93 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Individual messages encoding.
use bytes::BytesMut;
use super::StreamCipher;
use futures::sink::Sink;
use futures::stream::Stream;
use futures::Poll;
use futures::StartSend;
use ring::hmac;
/// Wraps around a `Sink`. Encodes the buffers passed to it and passes it to the underlying sink.
///
/// This struct implements `Sink`. It expects individual frames of data, and outputs individual
/// frames as well, most notably without the length prefix. The mechanism for adding the length
/// prefix is not covered by this module.
///
/// Also implements `Stream` for convenience.
pub struct EncoderMiddleware<S> {
cipher_state: StreamCipher,
hmac_key: hmac::SigningKey,
raw_sink: S,
}
impl<S> EncoderMiddleware<S> {
pub fn new(
raw_sink: S,
cipher: StreamCipher,
hmac_key: hmac::SigningKey,
) -> EncoderMiddleware<S> {
EncoderMiddleware {
cipher_state: cipher,
hmac_key,
raw_sink,
}
}
}
impl<S> Sink for EncoderMiddleware<S>
where
S: Sink<SinkItem = BytesMut>,
{
type SinkItem = BytesMut;
type SinkError = S::SinkError;
fn start_send(&mut self, mut data_buf: Self::SinkItem) -> StartSend<Self::SinkItem, Self::SinkError> {
// TODO if SinkError gets refactor to SecioError,
// then use try_apply_keystream
self.cipher_state.apply_keystream(&mut data_buf[..]);
let signature = hmac::sign(&self.hmac_key, &data_buf[..]);
data_buf.extend_from_slice(signature.as_ref());
self.raw_sink.start_send(data_buf)
}
#[inline]
fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
self.raw_sink.poll_complete()
}
}
impl<S> Stream for EncoderMiddleware<S>
where
S: Stream,
{
type Item = S::Item;
type Error = S::Error;
#[inline]
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
self.raw_sink.poll()
}
}

View File

@ -0,0 +1,172 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Individual messages encoding and decoding. Use this after the algorithms have been
//! successfully negotiated.
use self::decode::DecoderMiddleware;
use self::encode::EncoderMiddleware;
use aes_ctr::stream_cipher::StreamCipherCore;
use ring::hmac;
use tokio_io::codec::length_delimited;
use tokio_io::{AsyncRead, AsyncWrite};
mod decode;
mod encode;
/// Type returned by `full_codec`.
pub type FullCodec<S> = DecoderMiddleware<EncoderMiddleware<length_delimited::Framed<S>>>;
pub type StreamCipher = Box<dyn StreamCipherCore + Send>;
/// Takes control of `socket`. Returns an object that implements `future::Sink` and
/// `future::Stream`. The `Stream` and `Sink` produce and accept `BytesMut` objects.
///
/// The conversion between the stream/sink items and the socket is done with the given cipher and
/// hash algorithm (which are generally decided during the handshake).
pub fn full_codec<S>(
socket: length_delimited::Framed<S>,
cipher_encoding: StreamCipher,
encoding_hmac: hmac::SigningKey,
cipher_decoder: StreamCipher,
decoding_hmac: hmac::VerificationKey,
) -> FullCodec<S>
where
S: AsyncRead + AsyncWrite,
{
let hmac_num_bytes = encoding_hmac.digest_algorithm().output_len;
let encoder = EncoderMiddleware::new(socket, cipher_encoding, encoding_hmac);
DecoderMiddleware::new(encoder, cipher_decoder, decoding_hmac, hmac_num_bytes)
}
#[cfg(test)]
mod tests {
extern crate tokio_current_thread;
extern crate tokio_tcp;
use self::tokio_tcp::TcpListener;
use self::tokio_tcp::TcpStream;
use stream_cipher::{ctr, KeySize};
use super::full_codec;
use super::DecoderMiddleware;
use super::EncoderMiddleware;
use bytes::BytesMut;
use error::SecioError;
use futures::sync::mpsc::channel;
use futures::{Future, Sink, Stream};
use rand;
use ring::digest::SHA256;
use ring::hmac::SigningKey;
use ring::hmac::VerificationKey;
use std::io::Error as IoError;
use tokio_io::codec::length_delimited::Framed;
const NULL_IV : [u8; 16] = [0;16];
#[test]
fn raw_encode_then_decode() {
let (data_tx, data_rx) = channel::<BytesMut>(256);
let data_tx = data_tx.sink_map_err::<_, IoError>(|_| panic!());
let data_rx = data_rx.map_err::<IoError, _>(|_| panic!());
let cipher_key: [u8; 32] = rand::random();
let hmac_key: [u8; 32] = rand::random();
let encoder = EncoderMiddleware::new(
data_tx,
ctr(KeySize::KeySize256, &cipher_key, &NULL_IV[..]),
SigningKey::new(&SHA256, &hmac_key),
);
let decoder = DecoderMiddleware::new(
data_rx,
ctr(KeySize::KeySize256, &cipher_key, &NULL_IV[..]),
VerificationKey::new(&SHA256, &hmac_key),
32,
);
let data = b"hello world";
let data_sent = encoder.send(BytesMut::from(data.to_vec())).from_err();
let data_received = decoder.into_future().map(|(n, _)| n).map_err(|(e, _)| e);
let (_, decoded) = tokio_current_thread::block_on_all(data_sent.join(data_received))
.map_err(|_| ())
.unwrap();
assert_eq!(&decoded.unwrap()[..], &data[..]);
}
#[test]
fn full_codec_encode_then_decode() {
let cipher_key: [u8; 32] = rand::random();
let cipher_key_clone = cipher_key.clone();
let hmac_key: [u8; 32] = rand::random();
let hmac_key_clone = hmac_key.clone();
let data = b"hello world";
let data_clone = data.clone();
let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap();
let listener_addr = listener.local_addr().unwrap();
let server = listener.incoming().into_future().map_err(|(e, _)| e).map(
move |(connec, _)| {
let connec = Framed::new(connec.unwrap());
full_codec(
connec,
ctr(KeySize::KeySize256, &cipher_key, &NULL_IV[..]),
SigningKey::new(&SHA256, &hmac_key),
ctr(KeySize::KeySize256, &cipher_key, &NULL_IV[..]),
VerificationKey::new(&SHA256, &hmac_key),
)
},
);
let client = TcpStream::connect(&listener_addr)
.map_err(|e| e.into())
.map(move |stream| {
let stream = Framed::new(stream);
full_codec(
stream,
ctr(KeySize::KeySize256, &cipher_key_clone, &NULL_IV[..]),
SigningKey::new(&SHA256, &hmac_key_clone),
ctr(KeySize::KeySize256, &cipher_key_clone, &NULL_IV[..]),
VerificationKey::new(&SHA256, &hmac_key_clone),
)
});
let fin = server
.join(client)
.from_err::<SecioError>()
.and_then(|(server, client)| {
client
.send(BytesMut::from(&data_clone[..]))
.map(move |_| server)
.from_err()
})
.and_then(|server| server.into_future().map_err(|(e, _)| e.into()))
.map(|recved| recved.0.unwrap().to_vec());
let received = tokio_current_thread::block_on_all(fin).unwrap();
assert_eq!(received, data);
}
}

View File

@ -0,0 +1,126 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Defines the `SecioError` enum that groups all possible errors in SECIO.
use aes_ctr::stream_cipher::LoopError;
use std::error;
use std::fmt;
use std::io::Error as IoError;
/// Error at the SECIO layer communication.
#[derive(Debug)]
pub enum SecioError {
/// I/O error.
IoError(IoError),
/// Failed to parse one of the handshake protobuf messages.
HandshakeParsingFailure,
/// There is no protocol supported by both the local and remote hosts.
NoSupportIntersection(&'static str, String),
/// Failed to generate nonce.
NonceGenerationFailed,
/// Failed to generate ephemeral key.
EphemeralKeyGenerationFailed,
/// Failed to sign a message with our local private key.
SigningFailure,
/// The signature of the exchange packet doesn't verify the remote public key.
SignatureVerificationFailed,
/// Failed to generate the secret shared key from the ephemeral key.
SecretGenerationFailed,
/// The final check of the handshake failed.
NonceVerificationFailed,
/// Error with block cipher.
CipherError(LoopError),
/// The received frame was of invalid length.
FrameTooShort,
/// The hashes of the message didn't match.
HmacNotMatching,
}
impl error::Error for SecioError {
#[inline]
fn description(&self) -> &str {
match *self {
SecioError::IoError(_) => "I/O error",
SecioError::HandshakeParsingFailure => {
"Failed to parse one of the handshake protobuf messages"
}
SecioError::NoSupportIntersection(_, _) => {
"There is no protocol supported by both the local and remote hosts"
}
SecioError::NonceGenerationFailed => "Failed to generate nonce",
SecioError::EphemeralKeyGenerationFailed => "Failed to generate ephemeral key",
SecioError::SigningFailure => "Failed to sign a message with our local private key",
SecioError::SignatureVerificationFailed => {
"The signature of the exchange packet doesn't verify the remote public key"
}
SecioError::SecretGenerationFailed => {
"Failed to generate the secret shared key from the ephemeral key"
}
SecioError::NonceVerificationFailed => "The final check of the handshake failed",
SecioError::CipherError(_) => "Error while decoding/encoding data",
SecioError::FrameTooShort => "The received frame was of invalid length",
SecioError::HmacNotMatching => "The hashes of the message didn't match",
}
}
fn cause(&self) -> Option<&error::Error> {
match *self {
SecioError::IoError(ref err) => Some(err),
// TODO: The type doesn't implement `Error`
/*SecioError::CipherError(ref err) => {
Some(err)
},*/
_ => None,
}
}
}
impl fmt::Display for SecioError {
#[inline]
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(fmt, "{}", error::Error::description(self))
}
}
impl From<LoopError> for SecioError {
#[inline]
fn from(err: LoopError) -> SecioError {
SecioError::CipherError(err)
}
}
impl From<IoError> for SecioError {
#[inline]
fn from(err: IoError) -> SecioError {
SecioError::IoError(err)
}
}

View File

@ -0,0 +1,685 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use algo_support;
use bytes::BytesMut;
use codec::{full_codec, FullCodec};
use stream_cipher::{KeySize, ctr};
use error::SecioError;
use futures::future;
use futures::sink::Sink;
use futures::stream::Stream;
use futures::Future;
use libp2p_core::PublicKey;
use protobuf::parse_from_bytes as protobuf_parse_from_bytes;
use protobuf::Message as ProtobufMessage;
use ring::agreement::EphemeralPrivateKey;
use ring::hmac::{SigningContext, SigningKey, VerificationKey};
use ring::rand::SecureRandom;
use ring::signature::verify as signature_verify;
use ring::signature::{ED25519, RSASigningState, RSA_PKCS1_2048_8192_SHA256, RSA_PKCS1_SHA256};
use ring::{agreement, digest, rand};
#[cfg(feature = "secp256k1")]
use secp256k1;
use std::cmp::{self, Ordering};
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::mem;
use structs_proto::{Exchange, Propose};
use tokio_io::codec::length_delimited;
use tokio_io::{AsyncRead, AsyncWrite};
use untrusted::Input as UntrustedInput;
use {SecioKeyPair, SecioKeyPairInner};
/// Performs a handshake on the given socket.
///
/// This function expects that the remote is identified with `remote_public_key`, and the remote
/// will expect that we are identified with `local_key`.Any mismatch somewhere will produce a
/// `SecioError`.
///
/// On success, returns an object that implements the `Sink` and `Stream` trait whose items are
/// buffers of data, plus the public key of the remote, plus the ephemeral public key used during
/// negotiation.
pub fn handshake<'a, S: 'a>(
socket: S,
local_key: SecioKeyPair,
) -> Box<Future<Item = (FullCodec<S>, PublicKey, Vec<u8>), Error = SecioError> + 'a>
where
S: AsyncRead + AsyncWrite,
{
// TODO: could be rewritten as a coroutine once coroutines land in stable Rust
// This struct contains the whole context of a handshake, and is filled progressively
// throughout the various parts of the handshake.
struct HandshakeContext {
// Filled with this function's parameters.
local_key: SecioKeyPair,
rng: rand::SystemRandom,
// Locally-generated random number. The array size can be changed without any repercussion.
local_nonce: [u8; 16],
// Our local proposition's raw bytes.
local_public_key_in_protobuf_bytes: Vec<u8>,
local_proposition_bytes: Vec<u8>,
// The remote proposition's raw bytes.
remote_proposition_bytes: BytesMut,
remote_public_key_in_protobuf_bytes: Vec<u8>,
remote_public_key: Option<PublicKey>,
// The remote peer's version of `local_nonce`.
// If the NONCE size is actually part of the protocol, we can change this to a fixed-size
// array instead of a `Vec`.
remote_nonce: Vec<u8>,
// Set to `ordering(
// hash(concat(remote-pubkey, local-none)),
// hash(concat(local-pubkey, remote-none))
// )`.
// `Ordering::Equal` is an invalid value (as it would mean we're talking to ourselves).
//
// Since everything is symmetrical, this value is used to determine what should be ours
// and what should be the remote's.
hashes_ordering: Ordering,
// Crypto algorithms chosen for the communication.
chosen_exchange: Option<&'static agreement::Algorithm>,
// We only support AES for now, so store just a key size.
chosen_cipher: Option<KeySize>,
chosen_hash: Option<&'static digest::Algorithm>,
// Ephemeral key generated for the handshake and then thrown away.
local_tmp_priv_key: Option<EphemeralPrivateKey>,
local_tmp_pub_key: Vec<u8>,
}
let context = HandshakeContext {
local_key,
rng: rand::SystemRandom::new(),
local_nonce: Default::default(),
local_public_key_in_protobuf_bytes: Vec::new(),
local_proposition_bytes: Vec::new(),
remote_proposition_bytes: BytesMut::new(),
remote_public_key_in_protobuf_bytes: Vec::new(),
remote_public_key: None,
remote_nonce: Vec::new(),
hashes_ordering: Ordering::Equal,
chosen_exchange: None,
chosen_cipher: None,
chosen_hash: None,
local_tmp_priv_key: None,
local_tmp_pub_key: Vec::new(),
};
// The handshake messages all start with a 4-bytes message length prefix.
let socket = length_delimited::Builder::new()
.big_endian()
.length_field_length(4)
.new_framed(socket);
let future = future::ok::<_, SecioError>(context)
// Generate our nonce.
.and_then(|mut context| {
context.rng.fill(&mut context.local_nonce)
.map_err(|_| SecioError::NonceGenerationFailed)?;
trace!("starting handshake ; local nonce = {:?}", context.local_nonce);
Ok(context)
})
// Send our proposition with our nonce, public key and supported protocols.
.and_then(|mut context| {
context.local_public_key_in_protobuf_bytes = context.local_key.to_public_key().into_protobuf_encoding();
let mut proposition = Propose::new();
proposition.set_rand(context.local_nonce.to_vec());
proposition.set_pubkey(context.local_public_key_in_protobuf_bytes.clone());
proposition.set_exchanges(algo_support::exchanges::PROPOSITION_STRING.into());
proposition.set_ciphers(algo_support::ciphers::PROPOSITION_STRING.into());
proposition.set_hashes(algo_support::hashes::PROPOSITION_STRING.into());
let proposition_bytes = proposition.write_to_bytes().unwrap();
context.local_proposition_bytes = proposition_bytes.clone();
trace!("sending proposition to remote");
socket.send(BytesMut::from(proposition_bytes.clone()))
.from_err()
.map(|s| (s, context))
})
// Receive the remote's proposition.
.and_then(move |(socket, mut context)| {
socket.into_future()
.map_err(|(e, _)| e.into())
.and_then(move |(prop_raw, socket)| {
match prop_raw {
Some(p) => context.remote_proposition_bytes = p,
None => {
let err = IoError::new(IoErrorKind::BrokenPipe, "unexpected eof");
debug!("unexpected eof while waiting for remote's proposition");
return Err(err.into())
},
};
let mut prop = match protobuf_parse_from_bytes::<Propose>(
&context.remote_proposition_bytes
) {
Ok(prop) => prop,
Err(_) => {
debug!("failed to parse remote's proposition protobuf message");
return Err(SecioError::HandshakeParsingFailure);
}
};
context.remote_public_key_in_protobuf_bytes = prop.take_pubkey();
let pubkey = match PublicKey::from_protobuf_encoding(&context.remote_public_key_in_protobuf_bytes) {
Ok(p) => p,
Err(_) => {
debug!("failed to parse remote's proposition's pubkey protobuf");
return Err(SecioError::HandshakeParsingFailure);
},
};
context.remote_nonce = prop.take_rand();
context.remote_public_key = Some(pubkey);
trace!("received proposition from remote ; pubkey = {:?} ; nonce = {:?}",
context.remote_public_key, context.remote_nonce);
Ok((prop, socket, context))
})
})
// Decide which algorithms to use (thanks to the remote's proposition).
.and_then(move |(remote_prop, socket, mut context)| {
// In order to determine which protocols to use, we compute two hashes and choose
// based on which hash is larger.
context.hashes_ordering = {
let oh1 = {
let mut ctx = digest::Context::new(&digest::SHA256);
ctx.update(&context.remote_public_key_in_protobuf_bytes);
ctx.update(&context.local_nonce);
ctx.finish()
};
let oh2 = {
let mut ctx = digest::Context::new(&digest::SHA256);
ctx.update(&context.local_public_key_in_protobuf_bytes);
ctx.update(&context.remote_nonce);
ctx.finish()
};
oh1.as_ref().cmp(&oh2.as_ref())
};
context.chosen_exchange = {
let list = &remote_prop.get_exchanges();
Some(match algo_support::exchanges::select_best(context.hashes_ordering, list) {
Ok(a) => a,
Err(err) => {
debug!("failed to select an exchange protocol");
return Err(err);
}
})
};
context.chosen_cipher = {
let list = &remote_prop.get_ciphers();
Some(match algo_support::ciphers::select_best(context.hashes_ordering, list) {
Ok(a) => a,
Err(err) => {
debug!("failed to select a cipher protocol");
return Err(err);
}
})
};
context.chosen_hash = {
let list = &remote_prop.get_hashes();
Some(match algo_support::hashes::select_best(context.hashes_ordering, list) {
Ok(a) => a,
Err(err) => {
debug!("failed to select a hash protocol");
return Err(err);
}
})
};
Ok((socket, context))
})
// Generate an ephemeral key for the negotiation.
.and_then(|(socket, context)| {
match EphemeralPrivateKey::generate(context.chosen_exchange.as_ref().unwrap(), &context.rng) {
Ok(tmp_priv_key) => Ok((socket, context, tmp_priv_key)),
Err(_) => {
debug!("failed to generate ECDH key");
Err(SecioError::EphemeralKeyGenerationFailed)
},
}
})
// Send the ephemeral pub key to the remote in an `Exchange` struct. The `Exchange` also
// contains a signature of the two propositions encoded with our static public key.
.and_then(|(socket, mut context, tmp_priv)| {
let exchange = {
let mut local_tmp_pub_key: Vec<u8> = (0 .. tmp_priv.public_key_len()).map(|_| 0).collect();
tmp_priv.compute_public_key(&mut local_tmp_pub_key).unwrap();
context.local_tmp_priv_key = Some(tmp_priv);
let mut data_to_sign = context.local_proposition_bytes.clone();
data_to_sign.extend_from_slice(&context.remote_proposition_bytes);
data_to_sign.extend_from_slice(&local_tmp_pub_key);
let mut exchange = Exchange::new();
exchange.set_epubkey(local_tmp_pub_key.clone());
exchange.set_signature({
match context.local_key.inner {
SecioKeyPairInner::Rsa { ref private, .. } => {
let mut state = match RSASigningState::new(private.clone()) {
Ok(s) => s,
Err(_) => {
debug!("failed to sign local exchange");
return Err(SecioError::SigningFailure);
},
};
let mut signature = vec![0; private.public_modulus_len()];
match state.sign(&RSA_PKCS1_SHA256, &context.rng, &data_to_sign,
&mut signature)
{
Ok(_) => (),
Err(_) => {
debug!("failed to sign local exchange");
return Err(SecioError::SigningFailure);
},
};
signature
},
SecioKeyPairInner::Ed25519 { ref key_pair } => {
let signature = key_pair.sign(&data_to_sign);
signature.as_ref().to_owned()
},
#[cfg(feature = "secp256k1")]
SecioKeyPairInner::Secp256k1 { ref private } => {
let data_to_sign = digest::digest(&digest::SHA256, &data_to_sign);
let message = secp256k1::Message::from_slice(data_to_sign.as_ref())
.expect("digest output length doesn't match secp256k1 input length");
let secp256k1 = secp256k1::Secp256k1::with_caps(secp256k1::ContextFlag::SignOnly);
secp256k1
.sign(&message, private)
.expect("failed to sign message")
.serialize_der(&secp256k1)
},
}
});
exchange
};
let local_exch = exchange.write_to_bytes()
.expect("can only fail if the protobuf msg is malformed, which can't happen for \
this message in particular");
Ok((BytesMut::from(local_exch), socket, context))
})
// Send our local `Exchange`.
.and_then(|(local_exch, socket, context)| {
trace!("sending exchange to remote");
socket.send(local_exch)
.from_err()
.map(|s| (s, context))
})
// Receive the remote's `Exchange`.
.and_then(move |(socket, context)| {
socket.into_future()
.map_err(|(e, _)| e.into())
.and_then(move |(raw, socket)| {
let raw = match raw {
Some(r) => r,
None => {
let err = IoError::new(IoErrorKind::BrokenPipe, "unexpected eof");
debug!("unexpected eof while waiting for remote's exchange");
return Err(err.into())
},
};
let remote_exch = match protobuf_parse_from_bytes::<Exchange>(&raw) {
Ok(e) => e,
Err(err) => {
debug!("failed to parse remote's exchange protobuf ; {:?}", err);
return Err(SecioError::HandshakeParsingFailure);
}
};
trace!("received and decoded the remote's exchange");
Ok((remote_exch, socket, context))
})
})
// Check the validity of the remote's `Exchange`. This verifies that the remote was really
// the sender of its proposition, and that it is the owner of both its global and ephemeral
// keys.
.and_then(|(remote_exch, socket, context)| {
let mut data_to_verify = context.remote_proposition_bytes.clone();
data_to_verify.extend_from_slice(&context.local_proposition_bytes);
data_to_verify.extend_from_slice(remote_exch.get_epubkey());
match context.remote_public_key {
Some(PublicKey::Rsa(ref remote_public_key)) => {
// TODO: The ring library doesn't like some stuff in our DER public key,
// therefore we scrap the first 24 bytes of the key. A proper fix would
// be to write a DER parser, but that's not trivial.
match signature_verify(&RSA_PKCS1_2048_8192_SHA256,
UntrustedInput::from(&remote_public_key[24..]),
UntrustedInput::from(&data_to_verify),
UntrustedInput::from(remote_exch.get_signature()))
{
Ok(()) => (),
Err(_) => {
debug!("failed to verify the remote's signature");
return Err(SecioError::SignatureVerificationFailed)
},
}
},
Some(PublicKey::Ed25519(ref remote_public_key)) => {
match signature_verify(&ED25519,
UntrustedInput::from(remote_public_key),
UntrustedInput::from(&data_to_verify),
UntrustedInput::from(remote_exch.get_signature()))
{
Ok(()) => (),
Err(_) => {
debug!("failed to verify the remote's signature");
return Err(SecioError::SignatureVerificationFailed)
},
}
},
#[cfg(feature = "secp256k1")]
Some(PublicKey::Secp256k1(ref remote_public_key)) => {
let data_to_verify = digest::digest(&digest::SHA256, &data_to_verify);
let message = secp256k1::Message::from_slice(data_to_verify.as_ref())
.expect("digest output length doesn't match secp256k1 input length");
let secp256k1 = secp256k1::Secp256k1::with_caps(secp256k1::ContextFlag::VerifyOnly);
let signature = secp256k1::Signature::from_der(&secp256k1, remote_exch.get_signature());
let remote_public_key = secp256k1::key::PublicKey::from_slice(&secp256k1, remote_public_key);
if let (Ok(signature), Ok(remote_public_key)) = (signature, remote_public_key) {
match secp256k1.verify(&message, &signature, &remote_public_key) {
Ok(()) => (),
Err(_) => {
debug!("failed to verify the remote's signature");
return Err(SecioError::SignatureVerificationFailed)
},
}
} else {
debug!("remote's secp256k1 signature has wrong format");
return Err(SecioError::SignatureVerificationFailed)
}
},
#[cfg(not(feature = "secp256k1"))]
Some(PublicKey::Secp256k1(_)) => {
debug!("support for secp256k1 was disabled at compile-time");
return Err(SecioError::SignatureVerificationFailed);
},
None => unreachable!("we store a Some in the remote public key before reaching \
this point")
};
trace!("successfully verified the remote's signature");
Ok((remote_exch, socket, context))
})
// Generate a key from the local ephemeral private key and the remote ephemeral public key,
// derive from it a ciper key, an iv, and a hmac key, and build the encoder/decoder.
.and_then(|(remote_exch, socket, mut context)| {
let local_priv_key = context.local_tmp_priv_key.take()
.expect("we filled this Option earlier, and extract it now");
let codec = agreement::agree_ephemeral(local_priv_key,
&context.chosen_exchange.unwrap(),
UntrustedInput::from(remote_exch.get_epubkey()),
SecioError::SecretGenerationFailed,
|key_material| {
let key = SigningKey::new(context.chosen_hash.unwrap(), key_material);
let chosen_cipher = context.chosen_cipher.unwrap();
let (cipher_key_size, iv_size) = match chosen_cipher {
KeySize::KeySize128 => (16, 16),
KeySize::KeySize256 => (32, 16),
};
let mut longer_key = vec![0u8; 2 * (iv_size + cipher_key_size + 20)];
stretch_key(&key, &mut longer_key);
let (local_infos, remote_infos) = {
let (first_half, second_half) = longer_key.split_at(longer_key.len() / 2);
match context.hashes_ordering {
Ordering::Equal => panic!(),
Ordering::Less => (second_half, first_half),
Ordering::Greater => (first_half, second_half),
}
};
let (encoding_cipher, encoding_hmac) = {
let (iv, rest) = local_infos.split_at(iv_size);
let (cipher_key, mac_key) = rest.split_at(cipher_key_size);
let hmac = SigningKey::new(&context.chosen_hash.unwrap(), mac_key);
let cipher = ctr(chosen_cipher, cipher_key, iv);
(cipher, hmac)
};
let (decoding_cipher, decoding_hmac) = {
let (iv, rest) = remote_infos.split_at(iv_size);
let (cipher_key, mac_key) = rest.split_at(cipher_key_size);
let hmac = VerificationKey::new(&context.chosen_hash.unwrap(), mac_key);
let cipher = ctr(chosen_cipher, cipher_key, iv);
(cipher, hmac)
};
Ok(full_codec(socket, encoding_cipher, encoding_hmac,
decoding_cipher, decoding_hmac))
});
match codec {
Ok(c) => Ok((c, context)),
Err(err) => {
debug!("failed to generate shared secret with remote");
Err(err)
},
}
})
// We send back their nonce to check if the connection works.
.and_then(|(codec, mut context)| {
let remote_nonce = mem::replace(&mut context.remote_nonce, Vec::new());
trace!("checking encryption by sending back remote's nonce");
codec.send(BytesMut::from(remote_nonce))
.map(|s| (s, context))
.from_err()
})
// Check that the received nonce is correct.
.and_then(|(codec, context)| {
codec.into_future()
.map_err(|(e, _)| e)
.and_then(move |(nonce, rest)| {
match nonce {
Some(ref n) if n == &context.local_nonce => {
trace!("secio handshake success");
Ok((rest, context.remote_public_key.expect("we stored a Some earlier"), context.local_tmp_pub_key))
},
None => {
debug!("unexpected eof during nonce check");
Err(IoError::new(IoErrorKind::BrokenPipe, "unexpected eof").into())
},
_ => {
debug!("failed nonce verification with remote");
Err(SecioError::NonceVerificationFailed)
}
}
})
});
Box::new(future)
}
// Custom algorithm translated from reference implementations. Needs to be the same algorithm
// amongst all implementations.
fn stretch_key(key: &SigningKey, result: &mut [u8]) {
const SEED: &[u8] = b"key expansion";
let mut init_ctxt = SigningContext::with_key(key);
init_ctxt.update(SEED);
let mut a = init_ctxt.sign();
let mut j = 0;
while j < result.len() {
let mut context = SigningContext::with_key(key);
context.update(a.as_ref());
context.update(SEED);
let b = context.sign();
let todo = cmp::min(b.as_ref().len(), result.len() - j);
result[j..j + todo].copy_from_slice(&b.as_ref()[..todo]);
j += todo;
let mut context = SigningContext::with_key(key);
context.update(a.as_ref());
a = context.sign();
}
}
#[cfg(test)]
mod tests {
extern crate tokio_current_thread;
extern crate tokio_tcp;
use self::tokio_tcp::TcpListener;
use self::tokio_tcp::TcpStream;
use super::handshake;
use super::stretch_key;
use futures::Future;
use futures::Stream;
use ring::digest::SHA256;
use ring::hmac::SigningKey;
use SecioKeyPair;
#[test]
fn handshake_with_self_succeeds_rsa() {
let key1 = {
let private = include_bytes!("../tests/test-rsa-private-key.pk8");
let public = include_bytes!("../tests/test-rsa-public-key.der").to_vec();
SecioKeyPair::rsa_from_pkcs8(private, public).unwrap()
};
let key2 = {
let private = include_bytes!("../tests/test-rsa-private-key-2.pk8");
let public = include_bytes!("../tests/test-rsa-public-key-2.der").to_vec();
SecioKeyPair::rsa_from_pkcs8(private, public).unwrap()
};
handshake_with_self_succeeds(key1, key2);
}
#[test]
fn handshake_with_self_succeeds_ed25519() {
let key1 = SecioKeyPair::ed25519_generated().unwrap();
let key2 = SecioKeyPair::ed25519_generated().unwrap();
handshake_with_self_succeeds(key1, key2);
}
#[test]
#[cfg(feature = "secp256k1")]
fn handshake_with_self_succeeds_secp256k1() {
let key1 = {
let key = include_bytes!("../tests/test-secp256k1-private-key.der");
SecioKeyPair::secp256k1_from_der(&key[..]).unwrap()
};
let key2 = {
let key = include_bytes!("../tests/test-secp256k1-private-key-2.der");
SecioKeyPair::secp256k1_from_der(&key[..]).unwrap()
};
handshake_with_self_succeeds(key1, key2);
}
fn handshake_with_self_succeeds(key1: SecioKeyPair, key2: SecioKeyPair) {
let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap();
let listener_addr = listener.local_addr().unwrap();
let server = listener
.incoming()
.into_future()
.map_err(|(e, _)| e.into())
.and_then(move |(connec, _)| handshake(connec.unwrap(), key1));
let client = TcpStream::connect(&listener_addr)
.map_err(|e| e.into())
.and_then(move |stream| handshake(stream, key2));
tokio_current_thread::block_on_all(server.join(client)).unwrap();
}
#[test]
fn stretch() {
let mut output = [0u8; 32];
let key1 = SigningKey::new(&SHA256, &[]);
stretch_key(&key1, &mut output);
assert_eq!(
&output,
&[
103, 144, 60, 199, 85, 145, 239, 71, 79, 198, 85, 164, 32, 53, 143, 205, 50, 48,
153, 10, 37, 32, 85, 1, 226, 61, 193, 1, 154, 120, 207, 80,
]
);
let key2 = SigningKey::new(
&SHA256,
&[
157, 166, 80, 144, 77, 193, 198, 6, 23, 220, 87, 220, 191, 72, 168, 197, 54, 33,
219, 225, 84, 156, 165, 37, 149, 224, 244, 32, 170, 79, 125, 35, 171, 26, 178, 176,
92, 168, 22, 27, 205, 44, 229, 61, 152, 21, 222, 81, 241, 81, 116, 236, 74, 166,
89, 145, 5, 162, 108, 230, 55, 54, 9, 17,
],
);
stretch_key(&key2, &mut output);
assert_eq!(
&output,
&[
39, 151, 182, 63, 180, 175, 224, 139, 42, 131, 130, 116, 55, 146, 62, 31, 157, 95,
217, 15, 73, 81, 10, 83, 243, 141, 64, 227, 103, 144, 99, 121,
]
);
let key3 = SigningKey::new(
&SHA256,
&[
98, 219, 94, 104, 97, 70, 139, 13, 185, 110, 56, 36, 66, 3, 80, 224, 32, 205, 102,
170, 59, 32, 140, 245, 86, 102, 231, 68, 85, 249, 227, 243, 57, 53, 171, 36, 62,
225, 178, 74, 89, 142, 151, 94, 183, 231, 208, 166, 244, 130, 130, 209, 248, 65,
19, 48, 127, 127, 55, 82, 117, 154, 124, 108,
],
);
stretch_key(&key3, &mut output);
assert_eq!(
&output,
&[
28, 39, 158, 206, 164, 16, 211, 194, 99, 43, 208, 36, 24, 141, 90, 93, 157, 236,
238, 111, 170, 0, 60, 11, 49, 174, 177, 121, 30, 12, 182, 25,
]
);
}
}

394
protocols/secio/src/lib.rs Normal file
View File

@ -0,0 +1,394 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! The `secio` protocol is a middleware that will encrypt and decrypt communications going
//! through a socket (or anything that implements `AsyncRead + AsyncWrite`).
//!
//! # Connection upgrade
//!
//! The `SecioConfig` struct implements the `ConnectionUpgrade` trait. You can apply it over a
//! `Transport` by using the `with_upgrade` method. The returned object will also implement
//! `Transport` and will automatically apply the secio protocol over any connection that is opened
//! through it.
//!
//! ```no_run
//! extern crate futures;
//! extern crate tokio_current_thread;
//! extern crate tokio_io;
//! extern crate libp2p_core;
//! extern crate libp2p_secio;
//! extern crate libp2p_tcp_transport;
//!
//! # fn main() {
//! use futures::Future;
//! use libp2p_secio::{SecioConfig, SecioKeyPair, SecioOutput};
//! use libp2p_core::{Multiaddr, Transport, upgrade};
//! use libp2p_tcp_transport::TcpConfig;
//! use tokio_io::io::write_all;
//!
//! let transport = TcpConfig::new()
//! .with_upgrade({
//! # let private_key = b"";
//! //let private_key = include_bytes!("test-rsa-private-key.pk8");
//! # let public_key = vec![];
//! //let public_key = include_bytes!("test-rsa-public-key.der").to_vec();
//! let upgrade = SecioConfig {
//! // See the documentation of `SecioKeyPair`.
//! key: SecioKeyPair::rsa_from_pkcs8(private_key, public_key).unwrap(),
//! };
//!
//! upgrade::map(upgrade, |out: SecioOutput<_>| out.stream)
//! });
//!
//! let future = transport.dial("/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap())
//! .unwrap_or_else(|_| panic!("Unable to dial node"))
//! .and_then(|(connection, _)| {
//! // Sends "hello world" on the connection, will be encrypted.
//! write_all(connection, "hello world")
//! });
//!
//! tokio_current_thread::block_on_all(future).unwrap();
//! # }
//! ```
//!
//! # Manual usage
//!
//! > **Note**: You are encouraged to use `SecioConfig` as described above.
//!
//! You can add the `secio` layer over a socket by calling `SecioMiddleware::handshake()`. This
//! method will perform a handshake with the host, and return a future that corresponds to the
//! moment when the handshake succeeds or errored. On success, the future produces a
//! `SecioMiddleware` that implements `Sink` and `Stream` and can be used to send packets of data.
//!
extern crate aes_ctr;
#[cfg(feature = "secp256k1")]
extern crate asn1_der;
extern crate bytes;
extern crate futures;
extern crate libp2p_core;
#[macro_use]
extern crate log;
extern crate protobuf;
extern crate rand;
extern crate ring;
extern crate rw_stream_sink;
#[cfg(feature = "secp256k1")]
extern crate secp256k1;
extern crate tokio_io;
extern crate untrusted;
#[cfg(feature = "aes-all")]
#[macro_use]
extern crate lazy_static;
pub use self::error::SecioError;
#[cfg(feature = "secp256k1")]
use asn1_der::{traits::FromDerEncoded, traits::FromDerObject, DerObject};
use bytes::{Bytes, BytesMut};
use futures::stream::MapErr as StreamMapErr;
use futures::{Future, Poll, Sink, StartSend, Stream};
use libp2p_core::{PeerId, PublicKey};
use ring::rand::SystemRandom;
use ring::signature::{Ed25519KeyPair, RSAKeyPair};
use rw_stream_sink::RwStreamSink;
use std::error::Error;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use std::sync::Arc;
use tokio_io::{AsyncRead, AsyncWrite};
use untrusted::Input;
mod algo_support;
mod codec;
mod error;
mod handshake;
mod structs_proto;
mod stream_cipher;
/// Implementation of the `ConnectionUpgrade` trait of `libp2p_core`. Automatically applies
/// secio on any connection.
#[derive(Clone)]
pub struct SecioConfig {
/// Private and public keys of the local node.
pub key: SecioKeyPair,
}
/// Private and public keys of the local node.
///
/// # Generating offline keys with OpenSSL
///
/// ## RSA
///
/// Generating the keys:
///
/// ```ignore
/// openssl genrsa -out private.pem 2048
/// openssl rsa -in private.pem -outform DER -pubout -out public.der
/// openssl pkcs8 -in private.pem -topk8 -nocrypt -out private.pk8
/// rm private.pem # optional
/// ```
///
/// Loading the keys:
///
/// ```ignore
/// let key_pair = SecioKeyPair::rsa_from_pkcs8(include_bytes!("private.pk8"),
/// include_bytes!("public.der"));
/// ```
///
#[derive(Clone)]
pub struct SecioKeyPair {
inner: SecioKeyPairInner,
}
impl SecioKeyPair {
/// Builds a `SecioKeyPair` from a PKCS8 private key and public key.
pub fn rsa_from_pkcs8<P>(
private: &[u8],
public: P,
) -> Result<SecioKeyPair, Box<Error + Send + Sync>>
where
P: Into<Vec<u8>>,
{
let private = RSAKeyPair::from_pkcs8(Input::from(&private[..])).map_err(Box::new)?;
Ok(SecioKeyPair {
inner: SecioKeyPairInner::Rsa {
public: public.into(),
private: Arc::new(private),
},
})
}
/// Builds a `SecioKeyPair` from a PKCS8 ED25519 private key.
pub fn ed25519_from_pkcs8<K>(key: K) -> Result<SecioKeyPair, Box<Error + Send + Sync>>
where
K: AsRef<[u8]>,
{
let key_pair = Ed25519KeyPair::from_pkcs8(Input::from(key.as_ref())).map_err(Box::new)?;
Ok(SecioKeyPair {
inner: SecioKeyPairInner::Ed25519 {
key_pair: Arc::new(key_pair),
},
})
}
/// Generates a new Ed25519 key pair and uses it.
pub fn ed25519_generated() -> Result<SecioKeyPair, Box<Error + Send + Sync>> {
let rng = SystemRandom::new();
let gen = Ed25519KeyPair::generate_pkcs8(&rng).map_err(Box::new)?;
Ok(SecioKeyPair::ed25519_from_pkcs8(&gen[..])
.expect("failed to parse generated Ed25519 key"))
}
/// Builds a `SecioKeyPair` from a raw secp256k1 32 bytes private key.
#[cfg(feature = "secp256k1")]
pub fn secp256k1_raw_key<K>(key: K) -> Result<SecioKeyPair, Box<Error + Send + Sync>>
where
K: AsRef<[u8]>,
{
let secp = secp256k1::Secp256k1::with_caps(secp256k1::ContextFlag::None);
let private = secp256k1::key::SecretKey::from_slice(&secp, key.as_ref())?;
Ok(SecioKeyPair {
inner: SecioKeyPairInner::Secp256k1 { private },
})
}
/// Builds a `SecioKeyPair` from a secp256k1 private key in DER format.
#[cfg(feature = "secp256k1")]
pub fn secp256k1_from_der<K>(key: K) -> Result<SecioKeyPair, Box<Error + Send + Sync>>
where
K: AsRef<[u8]>,
{
// See ECPrivateKey in https://tools.ietf.org/html/rfc5915
let obj: Vec<DerObject> =
FromDerEncoded::with_der_encoded(key.as_ref()).map_err(|err| err.to_string())?;
let priv_key_obj = obj.into_iter()
.nth(1)
.ok_or_else(|| "Not enough elements in DER".to_string())?;
let private_key: Vec<u8> =
FromDerObject::from_der_object(priv_key_obj).map_err(|err| err.to_string())?;
SecioKeyPair::secp256k1_raw_key(&private_key)
}
/// Returns the public key corresponding to this key pair.
pub fn to_public_key(&self) -> PublicKey {
match self.inner {
SecioKeyPairInner::Rsa { ref public, .. } => PublicKey::Rsa(public.clone()),
SecioKeyPairInner::Ed25519 { ref key_pair } => {
PublicKey::Ed25519(key_pair.public_key_bytes().to_vec())
}
#[cfg(feature = "secp256k1")]
SecioKeyPairInner::Secp256k1 { ref private } => {
let secp = secp256k1::Secp256k1::with_caps(secp256k1::ContextFlag::SignOnly);
let pubkey = secp256k1::key::PublicKey::from_secret_key(&secp, private)
.expect("wrong secp256k1 private key ; type safety violated");
PublicKey::Secp256k1(pubkey.serialize_vec(&secp, true).to_vec())
}
}
}
/// Builds a `PeerId` corresponding to the public key of this key pair.
#[inline]
pub fn to_peer_id(&self) -> PeerId {
self.to_public_key().into_peer_id()
}
// TODO: method to save generated key on disk?
}
// Inner content of `SecioKeyPair`.
#[derive(Clone)]
enum SecioKeyPairInner {
Rsa {
public: Vec<u8>,
// We use an `Arc` so that we can clone the enum.
private: Arc<RSAKeyPair>,
},
Ed25519 {
// We use an `Arc` so that we can clone the enum.
key_pair: Arc<Ed25519KeyPair>,
},
#[cfg(feature = "secp256k1")]
Secp256k1 { private: secp256k1::key::SecretKey },
}
/// Output of the secio protocol.
pub struct SecioOutput<S>
where
S: AsyncRead + AsyncWrite,
{
/// The encrypted stream.
pub stream: RwStreamSink<StreamMapErr<SecioMiddleware<S>, fn(SecioError) -> IoError>>,
/// The public key of the remote.
pub remote_key: PublicKey,
/// Ephemeral public key used during the negotiation.
pub ephemeral_public_key: Vec<u8>,
}
impl<S, Maf> libp2p_core::ConnectionUpgrade<S, Maf> for SecioConfig
where
S: AsyncRead + AsyncWrite + 'static, // TODO: 'static :(
Maf: 'static, // TODO: 'static :(
{
type Output = SecioOutput<S>;
type MultiaddrFuture = Maf;
type Future = Box<Future<Item = (Self::Output, Maf), Error = IoError>>;
type NamesIter = iter::Once<(Bytes, ())>;
type UpgradeIdentifier = ();
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once(("/secio/1.0.0".into(), ()))
}
#[inline]
fn upgrade(
self,
incoming: S,
_: (),
_: libp2p_core::Endpoint,
remote_addr: Maf,
) -> Self::Future {
debug!("Starting secio upgrade");
let fut = SecioMiddleware::handshake(incoming, self.key);
let wrapped = fut.map(|(stream_sink, pubkey, ephemeral)| {
let mapped = stream_sink.map_err(map_err as fn(_) -> _);
SecioOutput {
stream: RwStreamSink::new(mapped),
remote_key: pubkey,
ephemeral_public_key: ephemeral,
}
}).map_err(map_err);
Box::new(wrapped.map(move |out| (out, remote_addr)))
}
}
#[inline]
fn map_err(err: SecioError) -> IoError {
debug!("error during secio handshake {:?}", err);
IoError::new(IoErrorKind::InvalidData, err)
}
/// Wraps around an object that implements `AsyncRead` and `AsyncWrite`.
///
/// Implements `Sink` and `Stream` whose items are frames of data. Each frame is encoded
/// individually, so you are encouraged to group data in few frames if possible.
pub struct SecioMiddleware<S> {
inner: codec::FullCodec<S>,
}
impl<S> SecioMiddleware<S>
where
S: AsyncRead + AsyncWrite,
{
/// Attempts to perform a handshake on the given socket.
///
/// On success, produces a `SecioMiddleware` that can then be used to encode/decode
/// communications, plus the public key of the remote, plus the ephemeral public key.
pub fn handshake<'a>(
socket: S,
key_pair: SecioKeyPair,
) -> Box<Future<Item = (SecioMiddleware<S>, PublicKey, Vec<u8>), Error = SecioError> + 'a>
where
S: 'a,
{
let fut = handshake::handshake(socket, key_pair).map(|(inner, pubkey, ephemeral)| {
let inner = SecioMiddleware { inner };
(inner, pubkey, ephemeral)
});
Box::new(fut)
}
}
impl<S> Sink for SecioMiddleware<S>
where
S: AsyncRead + AsyncWrite,
{
type SinkItem = BytesMut;
type SinkError = IoError;
#[inline]
fn start_send(&mut self, item: Self::SinkItem) -> StartSend<Self::SinkItem, Self::SinkError> {
self.inner.start_send(item)
}
#[inline]
fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
self.inner.poll_complete()
}
}
impl<S> Stream for SecioMiddleware<S>
where
S: AsyncRead + AsyncWrite,
{
type Item = Vec<u8>;
type Error = SecioError;
#[inline]
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
self.inner.poll()
}
}

View File

@ -0,0 +1,135 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use super::codec::StreamCipher;
use aes_ctr::stream_cipher::generic_array::GenericArray;
use aes_ctr::stream_cipher::NewFixStreamCipher;
use aes_ctr::{Aes128Ctr, Aes256Ctr};
#[derive(Clone, Copy)]
pub enum KeySize {
KeySize128,
KeySize256,
}
/// Returns your stream cipher depending on `KeySize`.
#[cfg(not(all(feature = "aes-all", any(target_arch = "x86_64", target_arch = "x86"))))]
pub fn ctr(key_size: KeySize, key: &[u8], iv: &[u8]) -> StreamCipher {
ctr_int(key_size, key, iv)
}
/// Returns your stream cipher depending on `KeySize`.
#[cfg(all(feature = "aes-all", any(target_arch = "x86_64", target_arch = "x86")))]
pub fn ctr(key_size: KeySize, key: &[u8], iv: &[u8]) -> StreamCipher {
if *aes_alt::AES_NI {
aes_alt::ctr_alt(key_size, key, iv)
} else {
ctr_int(key_size, key, iv)
}
}
#[cfg(all(feature = "aes-all", any(target_arch = "x86_64", target_arch = "x86")))]
mod aes_alt {
extern crate ctr;
extern crate aesni;
use ::codec::StreamCipher;
use self::ctr::Ctr128;
use self::aesni::{Aes128, Aes256};
use self::ctr::stream_cipher::NewFixStreamCipher;
use self::ctr::stream_cipher::generic_array::GenericArray;
use super::KeySize;
lazy_static! {
pub static ref AES_NI: bool = is_x86_feature_detected!("aes")
&& is_x86_feature_detected!("sse2")
&& is_x86_feature_detected!("sse3");
}
/// AES-128 in CTR mode
pub type Aes128Ctr = Ctr128<Aes128>;
/// AES-256 in CTR mode
pub type Aes256Ctr = Ctr128<Aes256>;
/// Returns alternate stream cipher if target functionalities does not allow standard one.
/// Eg : aes without sse
pub fn ctr_alt(key_size: KeySize, key: &[u8], iv: &[u8]) -> StreamCipher {
match key_size {
KeySize::KeySize128 => Box::new(Aes128Ctr::new(
GenericArray::from_slice(key),
GenericArray::from_slice(iv),
)),
KeySize::KeySize256 => Box::new(Aes256Ctr::new(
GenericArray::from_slice(key),
GenericArray::from_slice(iv),
)),
}
}
}
#[inline]
fn ctr_int(key_size: KeySize, key: &[u8], iv: &[u8]) -> StreamCipher {
match key_size {
KeySize::KeySize128 => Box::new(Aes128Ctr::new(
GenericArray::from_slice(key),
GenericArray::from_slice(iv),
)),
KeySize::KeySize256 => Box::new(Aes256Ctr::new(
GenericArray::from_slice(key),
GenericArray::from_slice(iv),
)),
}
}
#[cfg(all(
feature = "aes-all",
any(target_arch = "x86_64", target_arch = "x86"),
))]
#[cfg(test)]
mod tests {
use super::{KeySize, ctr};
#[test]
fn assert_non_native_run() {
// this test is for asserting aes unsuported opcode does not break on old cpu
let key = [0;16];
let iv = [0;16];
let mut aes = ctr(KeySize::KeySize128, &key, &iv);
let mut content = [0;16];
assert!(aes
.try_apply_keystream(&mut content).is_ok());
}
}
// aesni compile check for aes-all (aes-all import aesni through aes_ctr only if those checks pass)
#[cfg(all(
feature = "aes-all",
any(target_arch = "x86_64", target_arch = "x86"),
any(target_feature = "aes", target_feature = "ssse3"),
))]
compile_error!(
"aes-all must be compile without aes and sse3 flags : currently \
is_x86_feature_detected macro will not detect feature correctly otherwhise. \
RUSTFLAGS=\"-C target-feature=+aes,+ssse3\" enviromental variable. \
For x86 target arch additionally enable sse2 target feature."
);

View File

@ -0,0 +1,681 @@
// This file is generated by rust-protobuf 2.0.2. Do not edit
// @generated
// https://github.com/Manishearth/rust-clippy/issues/702
#![allow(unknown_lints)]
#![allow(clippy)]
#![cfg_attr(rustfmt, rustfmt_skip)]
#![allow(box_pointers)]
#![allow(dead_code)]
#![allow(missing_docs)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(trivial_casts)]
#![allow(unsafe_code)]
#![allow(unused_imports)]
#![allow(unused_results)]
use protobuf::Message as Message_imported_for_functions;
use protobuf::ProtobufEnum as ProtobufEnum_imported_for_functions;
#[derive(PartialEq,Clone,Default)]
pub struct Propose {
// message fields
rand: ::protobuf::SingularField<::std::vec::Vec<u8>>,
pubkey: ::protobuf::SingularField<::std::vec::Vec<u8>>,
exchanges: ::protobuf::SingularField<::std::string::String>,
ciphers: ::protobuf::SingularField<::std::string::String>,
hashes: ::protobuf::SingularField<::std::string::String>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
impl Propose {
pub fn new() -> Propose {
::std::default::Default::default()
}
// optional bytes rand = 1;
pub fn clear_rand(&mut self) {
self.rand.clear();
}
pub fn has_rand(&self) -> bool {
self.rand.is_some()
}
// Param is passed by value, moved
pub fn set_rand(&mut self, v: ::std::vec::Vec<u8>) {
self.rand = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_rand(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.rand.is_none() {
self.rand.set_default();
}
self.rand.as_mut().unwrap()
}
// Take field
pub fn take_rand(&mut self) -> ::std::vec::Vec<u8> {
self.rand.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_rand(&self) -> &[u8] {
match self.rand.as_ref() {
Some(v) => &v,
None => &[],
}
}
// optional bytes pubkey = 2;
pub fn clear_pubkey(&mut self) {
self.pubkey.clear();
}
pub fn has_pubkey(&self) -> bool {
self.pubkey.is_some()
}
// Param is passed by value, moved
pub fn set_pubkey(&mut self, v: ::std::vec::Vec<u8>) {
self.pubkey = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_pubkey(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.pubkey.is_none() {
self.pubkey.set_default();
}
self.pubkey.as_mut().unwrap()
}
// Take field
pub fn take_pubkey(&mut self) -> ::std::vec::Vec<u8> {
self.pubkey.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_pubkey(&self) -> &[u8] {
match self.pubkey.as_ref() {
Some(v) => &v,
None => &[],
}
}
// optional string exchanges = 3;
pub fn clear_exchanges(&mut self) {
self.exchanges.clear();
}
pub fn has_exchanges(&self) -> bool {
self.exchanges.is_some()
}
// Param is passed by value, moved
pub fn set_exchanges(&mut self, v: ::std::string::String) {
self.exchanges = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_exchanges(&mut self) -> &mut ::std::string::String {
if self.exchanges.is_none() {
self.exchanges.set_default();
}
self.exchanges.as_mut().unwrap()
}
// Take field
pub fn take_exchanges(&mut self) -> ::std::string::String {
self.exchanges.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_exchanges(&self) -> &str {
match self.exchanges.as_ref() {
Some(v) => &v,
None => "",
}
}
// optional string ciphers = 4;
pub fn clear_ciphers(&mut self) {
self.ciphers.clear();
}
pub fn has_ciphers(&self) -> bool {
self.ciphers.is_some()
}
// Param is passed by value, moved
pub fn set_ciphers(&mut self, v: ::std::string::String) {
self.ciphers = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_ciphers(&mut self) -> &mut ::std::string::String {
if self.ciphers.is_none() {
self.ciphers.set_default();
}
self.ciphers.as_mut().unwrap()
}
// Take field
pub fn take_ciphers(&mut self) -> ::std::string::String {
self.ciphers.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_ciphers(&self) -> &str {
match self.ciphers.as_ref() {
Some(v) => &v,
None => "",
}
}
// optional string hashes = 5;
pub fn clear_hashes(&mut self) {
self.hashes.clear();
}
pub fn has_hashes(&self) -> bool {
self.hashes.is_some()
}
// Param is passed by value, moved
pub fn set_hashes(&mut self, v: ::std::string::String) {
self.hashes = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_hashes(&mut self) -> &mut ::std::string::String {
if self.hashes.is_none() {
self.hashes.set_default();
}
self.hashes.as_mut().unwrap()
}
// Take field
pub fn take_hashes(&mut self) -> ::std::string::String {
self.hashes.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_hashes(&self) -> &str {
match self.hashes.as_ref() {
Some(v) => &v,
None => "",
}
}
}
impl ::protobuf::Message for Propose {
fn is_initialized(&self) -> bool {
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
1 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.rand)?;
},
2 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.pubkey)?;
},
3 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.exchanges)?;
},
4 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.ciphers)?;
},
5 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.hashes)?;
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(ref v) = self.rand.as_ref() {
my_size += ::protobuf::rt::bytes_size(1, &v);
}
if let Some(ref v) = self.pubkey.as_ref() {
my_size += ::protobuf::rt::bytes_size(2, &v);
}
if let Some(ref v) = self.exchanges.as_ref() {
my_size += ::protobuf::rt::string_size(3, &v);
}
if let Some(ref v) = self.ciphers.as_ref() {
my_size += ::protobuf::rt::string_size(4, &v);
}
if let Some(ref v) = self.hashes.as_ref() {
my_size += ::protobuf::rt::string_size(5, &v);
}
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(ref v) = self.rand.as_ref() {
os.write_bytes(1, &v)?;
}
if let Some(ref v) = self.pubkey.as_ref() {
os.write_bytes(2, &v)?;
}
if let Some(ref v) = self.exchanges.as_ref() {
os.write_string(3, &v)?;
}
if let Some(ref v) = self.ciphers.as_ref() {
os.write_string(4, &v)?;
}
if let Some(ref v) = self.hashes.as_ref() {
os.write_string(5, &v)?;
}
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
Self::descriptor_static()
}
fn new() -> Propose {
Propose::new()
}
fn descriptor_static() -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"rand",
|m: &Propose| { &m.rand },
|m: &mut Propose| { &mut m.rand },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"pubkey",
|m: &Propose| { &m.pubkey },
|m: &mut Propose| { &mut m.pubkey },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"exchanges",
|m: &Propose| { &m.exchanges },
|m: &mut Propose| { &mut m.exchanges },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"ciphers",
|m: &Propose| { &m.ciphers },
|m: &mut Propose| { &mut m.ciphers },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"hashes",
|m: &Propose| { &m.hashes },
|m: &mut Propose| { &mut m.hashes },
));
::protobuf::reflect::MessageDescriptor::new::<Propose>(
"Propose",
fields,
file_descriptor_proto()
)
})
}
}
fn default_instance() -> &'static Propose {
static mut instance: ::protobuf::lazy::Lazy<Propose> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Propose,
};
unsafe {
instance.get(Propose::new)
}
}
}
impl ::protobuf::Clear for Propose {
fn clear(&mut self) {
self.clear_rand();
self.clear_pubkey();
self.clear_exchanges();
self.clear_ciphers();
self.clear_hashes();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Propose {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Propose {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
#[derive(PartialEq,Clone,Default)]
pub struct Exchange {
// message fields
epubkey: ::protobuf::SingularField<::std::vec::Vec<u8>>,
signature: ::protobuf::SingularField<::std::vec::Vec<u8>>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
impl Exchange {
pub fn new() -> Exchange {
::std::default::Default::default()
}
// optional bytes epubkey = 1;
pub fn clear_epubkey(&mut self) {
self.epubkey.clear();
}
pub fn has_epubkey(&self) -> bool {
self.epubkey.is_some()
}
// Param is passed by value, moved
pub fn set_epubkey(&mut self, v: ::std::vec::Vec<u8>) {
self.epubkey = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_epubkey(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.epubkey.is_none() {
self.epubkey.set_default();
}
self.epubkey.as_mut().unwrap()
}
// Take field
pub fn take_epubkey(&mut self) -> ::std::vec::Vec<u8> {
self.epubkey.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_epubkey(&self) -> &[u8] {
match self.epubkey.as_ref() {
Some(v) => &v,
None => &[],
}
}
// optional bytes signature = 2;
pub fn clear_signature(&mut self) {
self.signature.clear();
}
pub fn has_signature(&self) -> bool {
self.signature.is_some()
}
// Param is passed by value, moved
pub fn set_signature(&mut self, v: ::std::vec::Vec<u8>) {
self.signature = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_signature(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.signature.is_none() {
self.signature.set_default();
}
self.signature.as_mut().unwrap()
}
// Take field
pub fn take_signature(&mut self) -> ::std::vec::Vec<u8> {
self.signature.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_signature(&self) -> &[u8] {
match self.signature.as_ref() {
Some(v) => &v,
None => &[],
}
}
}
impl ::protobuf::Message for Exchange {
fn is_initialized(&self) -> bool {
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
1 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.epubkey)?;
},
2 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.signature)?;
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(ref v) = self.epubkey.as_ref() {
my_size += ::protobuf::rt::bytes_size(1, &v);
}
if let Some(ref v) = self.signature.as_ref() {
my_size += ::protobuf::rt::bytes_size(2, &v);
}
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(ref v) = self.epubkey.as_ref() {
os.write_bytes(1, &v)?;
}
if let Some(ref v) = self.signature.as_ref() {
os.write_bytes(2, &v)?;
}
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
Self::descriptor_static()
}
fn new() -> Exchange {
Exchange::new()
}
fn descriptor_static() -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"epubkey",
|m: &Exchange| { &m.epubkey },
|m: &mut Exchange| { &mut m.epubkey },
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"signature",
|m: &Exchange| { &m.signature },
|m: &mut Exchange| { &mut m.signature },
));
::protobuf::reflect::MessageDescriptor::new::<Exchange>(
"Exchange",
fields,
file_descriptor_proto()
)
})
}
}
fn default_instance() -> &'static Exchange {
static mut instance: ::protobuf::lazy::Lazy<Exchange> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Exchange,
};
unsafe {
instance.get(Exchange::new)
}
}
}
impl ::protobuf::Clear for Exchange {
fn clear(&mut self) {
self.clear_epubkey();
self.clear_signature();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Exchange {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Exchange {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
static file_descriptor_proto_data: &'static [u8] = b"\
\n\rstructs.proto\x12\x08spipe.pb\"\x85\x01\n\x07Propose\x12\x12\n\x04ra\
nd\x18\x01\x20\x01(\x0cR\x04rand\x12\x16\n\x06pubkey\x18\x02\x20\x01(\
\x0cR\x06pubkey\x12\x1c\n\texchanges\x18\x03\x20\x01(\tR\texchanges\x12\
\x18\n\x07ciphers\x18\x04\x20\x01(\tR\x07ciphers\x12\x16\n\x06hashes\x18\
\x05\x20\x01(\tR\x06hashes\"B\n\x08Exchange\x12\x18\n\x07epubkey\x18\x01\
\x20\x01(\x0cR\x07epubkey\x12\x1c\n\tsignature\x18\x02\x20\x01(\x0cR\tsi\
gnatureJ\xa5\x04\n\x06\x12\x04\0\0\r\x01\n\x08\n\x01\x02\x12\x03\0\x08\
\x10\n\n\n\x02\x04\0\x12\x04\x02\0\x08\x01\n\n\n\x03\x04\0\x01\x12\x03\
\x02\x08\x0f\n\x0b\n\x04\x04\0\x02\0\x12\x03\x03\x08\x20\n\x0c\n\x05\x04\
\0\x02\0\x04\x12\x03\x03\x08\x10\n\x0c\n\x05\x04\0\x02\0\x05\x12\x03\x03\
\x11\x16\n\x0c\n\x05\x04\0\x02\0\x01\x12\x03\x03\x17\x1b\n\x0c\n\x05\x04\
\0\x02\0\x03\x12\x03\x03\x1e\x1f\n\x0b\n\x04\x04\0\x02\x01\x12\x03\x04\
\x08\"\n\x0c\n\x05\x04\0\x02\x01\x04\x12\x03\x04\x08\x10\n\x0c\n\x05\x04\
\0\x02\x01\x05\x12\x03\x04\x11\x16\n\x0c\n\x05\x04\0\x02\x01\x01\x12\x03\
\x04\x17\x1d\n\x0c\n\x05\x04\0\x02\x01\x03\x12\x03\x04\x20!\n\x0b\n\x04\
\x04\0\x02\x02\x12\x03\x05\x08&\n\x0c\n\x05\x04\0\x02\x02\x04\x12\x03\
\x05\x08\x10\n\x0c\n\x05\x04\0\x02\x02\x05\x12\x03\x05\x11\x17\n\x0c\n\
\x05\x04\0\x02\x02\x01\x12\x03\x05\x18!\n\x0c\n\x05\x04\0\x02\x02\x03\
\x12\x03\x05$%\n\x0b\n\x04\x04\0\x02\x03\x12\x03\x06\x08$\n\x0c\n\x05\
\x04\0\x02\x03\x04\x12\x03\x06\x08\x10\n\x0c\n\x05\x04\0\x02\x03\x05\x12\
\x03\x06\x11\x17\n\x0c\n\x05\x04\0\x02\x03\x01\x12\x03\x06\x18\x1f\n\x0c\
\n\x05\x04\0\x02\x03\x03\x12\x03\x06\"#\n\x0b\n\x04\x04\0\x02\x04\x12\
\x03\x07\x08#\n\x0c\n\x05\x04\0\x02\x04\x04\x12\x03\x07\x08\x10\n\x0c\n\
\x05\x04\0\x02\x04\x05\x12\x03\x07\x11\x17\n\x0c\n\x05\x04\0\x02\x04\x01\
\x12\x03\x07\x18\x1e\n\x0c\n\x05\x04\0\x02\x04\x03\x12\x03\x07!\"\n\n\n\
\x02\x04\x01\x12\x04\n\0\r\x01\n\n\n\x03\x04\x01\x01\x12\x03\n\x08\x10\n\
\x0b\n\x04\x04\x01\x02\0\x12\x03\x0b\x08#\n\x0c\n\x05\x04\x01\x02\0\x04\
\x12\x03\x0b\x08\x10\n\x0c\n\x05\x04\x01\x02\0\x05\x12\x03\x0b\x11\x16\n\
\x0c\n\x05\x04\x01\x02\0\x01\x12\x03\x0b\x17\x1e\n\x0c\n\x05\x04\x01\x02\
\0\x03\x12\x03\x0b!\"\n\x0b\n\x04\x04\x01\x02\x01\x12\x03\x0c\x08%\n\x0c\
\n\x05\x04\x01\x02\x01\x04\x12\x03\x0c\x08\x10\n\x0c\n\x05\x04\x01\x02\
\x01\x05\x12\x03\x0c\x11\x16\n\x0c\n\x05\x04\x01\x02\x01\x01\x12\x03\x0c\
\x17\x20\n\x0c\n\x05\x04\x01\x02\x01\x03\x12\x03\x0c#$\
";
static mut file_descriptor_proto_lazy: ::protobuf::lazy::Lazy<::protobuf::descriptor::FileDescriptorProto> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::descriptor::FileDescriptorProto,
};
fn parse_descriptor_proto() -> ::protobuf::descriptor::FileDescriptorProto {
::protobuf::parse_from_bytes(file_descriptor_proto_data).unwrap()
}
pub fn file_descriptor_proto() -> &'static ::protobuf::descriptor::FileDescriptorProto {
unsafe {
file_descriptor_proto_lazy.get(|| {
parse_descriptor_proto()
})
}
}

View File

@ -0,0 +1,14 @@
package spipe.pb;
message Propose {
optional bytes rand = 1;
optional bytes pubkey = 2;
optional string exchanges = 3;
optional string ciphers = 4;
optional string hashes = 5;
}
message Exchange {
optional bytes epubkey = 1;
optional bytes signature = 2;
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.