Benjamin Kampmann 2ea49718f3
Clean up directory structure (#426)
* Remove unused circular-buffer crate
* Move transports into subdirectory
* Move misc into subdirectory
* Move stores into subdirectory
* Move multiplexers
* Move protocols
* Move libp2p top layer
* Fix Test: skip doctest if secio isn't enabled
2018-08-29 11:24:44 +02:00

453 lines
16 KiB
Rust

// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Handles the `/ipfs/ping/1.0.0` protocol. This allows pinging a remote node and waiting for an
//! answer.
//!
//! # Usage
//!
//! Create a `Ping` struct, which implements the `ConnectionUpgrade` trait. When used as a
//! connection upgrade, it will produce a tuple of type `(Pinger, impl Future<Item = ()>)` which
//! are named the *pinger* and the *ponger*.
//!
//! The *pinger* has a method named `ping` which will send a ping to the remote, while the *ponger*
//! is a future that will process the data received on the socket and will be signalled only when
//! the connection closes.
//!
//! # About timeouts
//!
//! For technical reasons, this crate doesn't handle timeouts. The action of pinging returns a
//! future that is signalled only when the remote answers. If the remote is not responsive, the
//! future will never be signalled.
//!
//! For implementation reasons, resources allocated for a ping are only ever fully reclaimed after
//! a pong has been received by the remote. Therefore if you repeatidely ping a non-responsive
//! remote you will end up using more and memory memory (albeit the amount is very very small every
//! time), even if you destroy the future returned by `ping`.
//!
//! This is probably not a problem in practice, because the nature of the ping protocol is to
//! determine whether a remote is still alive, and any reasonable user of this crate will close
//! connections to non-responsive remotes.
//!
//! # Example
//!
//! ```no_run
//! extern crate futures;
//! extern crate libp2p_ping;
//! extern crate libp2p_core;
//! extern crate libp2p_tcp_transport;
//! extern crate tokio_current_thread;
//!
//! use futures::Future;
//! use libp2p_ping::{Ping, PingOutput};
//! use libp2p_core::Transport;
//!
//! # fn main() {
//! let ping_finished_future = libp2p_tcp_transport::TcpConfig::new()
//! .with_upgrade(Ping)
//! .dial("127.0.0.1:12345".parse::<libp2p_core::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
//! .and_then(|(out, _)| {
//! match out {
//! PingOutput::Ponger(processing) => Box::new(processing) as Box<Future<Item = _, Error = _>>,
//! PingOutput::Pinger { mut pinger, processing } => {
//! let f = pinger.ping().map_err(|_| panic!()).select(processing).map(|_| ()).map_err(|(err, _)| err);
//! Box::new(f) as Box<Future<Item = _, Error = _>>
//! },
//! }
//! });
//!
//! // Runs until the ping arrives.
//! tokio_current_thread::block_on_all(ping_finished_future).unwrap();
//! # }
//! ```
//!
extern crate bytes;
extern crate futures;
extern crate libp2p_core;
#[macro_use]
extern crate log;
extern crate multistream_select;
extern crate parking_lot;
extern crate rand;
extern crate tokio_codec;
extern crate tokio_io;
use bytes::{BufMut, Bytes, BytesMut};
use futures::future::{loop_fn, FutureResult, IntoFuture, Loop};
use futures::sync::{mpsc, oneshot};
use futures::{Future, Sink, Stream};
use libp2p_core::{ConnectionUpgrade, Endpoint};
use parking_lot::Mutex;
use rand::{distributions::Standard, prelude::*, rngs::EntropyRng};
use std::collections::HashMap;
use std::error::Error;
use std::io::Error as IoError;
use std::iter;
use std::sync::Arc;
use tokio_codec::{Decoder, Encoder, Framed};
use tokio_io::{AsyncRead, AsyncWrite};
/// Represents a prototype for an upgrade to handle the ping protocol.
///
/// According to the design of libp2p, this struct would normally contain the configuration options
/// for the protocol, but in the case of `Ping` no configuration is required.
#[derive(Debug, Copy, Clone, Default)]
pub struct Ping;
pub enum PingOutput {
/// We are on the dialer side.
Pinger {
/// Object to use in order to ping the remote.
pinger: Pinger,
/// Future that drives the processing of the pings.
processing: Box<Future<Item = (), Error = IoError>>,
},
/// We are on the listening side.
Ponger(Box<Future<Item = (), Error = IoError>>),
}
impl<C, Maf> ConnectionUpgrade<C, Maf> for Ping
where
C: AsyncRead + AsyncWrite + 'static,
{
type NamesIter = iter::Once<(Bytes, Self::UpgradeIdentifier)>;
type UpgradeIdentifier = ();
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once(("/ipfs/ping/1.0.0".into(), ()))
}
type Output = PingOutput;
type MultiaddrFuture = Maf;
type Future = FutureResult<(Self::Output, Self::MultiaddrFuture), IoError>;
#[inline]
fn upgrade(
self,
socket: C,
_: Self::UpgradeIdentifier,
endpoint: Endpoint,
remote_addr: Maf,
) -> Self::Future {
let out = match endpoint {
Endpoint::Dialer => upgrade_as_dialer(socket),
Endpoint::Listener => upgrade_as_listener(socket),
};
Ok((out, remote_addr)).into_future()
}
}
/// Upgrades a connection from the dialer side.
fn upgrade_as_dialer(socket: impl AsyncRead + AsyncWrite + 'static) -> PingOutput {
// # How does it work?
//
// All the actual processing is performed by the *ponger*.
// We use a channel in order to send ping requests from the pinger to the ponger.
let (tx, rx) = mpsc::channel(8);
// Ignore the errors if `tx` closed.
let rx = rx.then(|r| Ok(r.ok())).filter_map(|a| a);
let pinger = Pinger {
send: tx,
rng: EntropyRng::default(),
};
// Hashmap that associates outgoing payloads to one-shot senders.
// TODO: can't figure out how to make it work without using an Arc/Mutex
let expected_pongs = Arc::new(Mutex::new(HashMap::with_capacity(4)));
let sink_stream = Framed::new(socket, Codec).map(|msg| Message::Received(msg.freeze()));
let (sink, stream) = sink_stream.split();
let future = loop_fn((sink, stream.select(rx)), move |(sink, stream)| {
let expected_pongs = expected_pongs.clone();
stream
.into_future()
.map_err(|(err, _)| err)
.and_then(move |(message, stream)| {
let mut expected_pongs = expected_pongs.lock();
if let Some(message) = message {
match message {
Message::Ping(payload, finished) => {
// Ping requested by the user through the `Pinger`.
debug!("Sending ping with payload {:?}", payload);
expected_pongs.insert(payload.clone(), finished);
Box::new(
sink.send(payload)
.map(|sink| Loop::Continue((sink, stream))),
) as Box<Future<Item = _, Error = _>>
}
Message::Received(payload) => {
// Received a payload from the remote.
if let Some(fut) = expected_pongs.remove(&payload) {
// Payload was ours. Signalling future.
// Errors can happen if the user closed the receiving end of
// the future, which is fine to ignore.
debug!("Received pong (payload={:?}) ; ping fufilled", payload);
let _ = fut.send(());
Box::new(Ok(Loop::Continue((sink, stream))).into_future())
as Box<Future<Item = _, Error = _>>
} else {
// Payload was unexpected. Closing connection.
debug!("Received invalid payload ({:?}) ; closing", payload);
Box::new(Ok(Loop::Break(())).into_future())
as Box<Future<Item = _, Error = _>>
}
}
}
} else {
Box::new(Ok(Loop::Break(())).into_future()) as Box<Future<Item = _, Error = _>>
}
})
});
PingOutput::Pinger {
pinger,
processing: Box::new(future) as Box<_>,
}
}
/// Upgrades a connection from the listener side.
fn upgrade_as_listener(socket: impl AsyncRead + AsyncWrite + 'static) -> PingOutput {
let sink_stream = Framed::new(socket, Codec);
let (sink, stream) = sink_stream.split();
let future = loop_fn((sink, stream), move |(sink, stream)| {
stream
.into_future()
.map_err(|(err, _)| err)
.and_then(move |(payload, stream)| {
if let Some(payload) = payload {
// Received a payload from the remote.
debug!("Received ping (payload={:?}) ; sending back", payload);
Box::new(
sink.send(payload.freeze())
.map(|sink| Loop::Continue((sink, stream))),
) as Box<Future<Item = _, Error = _>>
} else {
// Connection was closed
Box::new(Ok(Loop::Break(())).into_future()) as Box<Future<Item = _, Error = _>>
}
})
});
PingOutput::Ponger(Box::new(future) as Box<_>)
}
/// Controller for the ping service. Makes it possible to send pings to the remote.
pub struct Pinger {
send: mpsc::Sender<Message>,
rng: EntropyRng,
}
impl Pinger {
/// Sends a ping. Returns a future that is signaled when a pong is received.
///
/// **Note**: Please be aware that there is no timeout on the ping. You should handle the
/// timeout yourself when you call this function.
pub fn ping(&mut self) -> Box<Future<Item = (), Error = Box<Error + Send + Sync>>> {
let (tx, rx) = oneshot::channel();
let payload: [u8; 32] = self.rng.sample(Standard);
debug!("Preparing for ping with payload {:?}", payload);
// Ignore errors if the ponger has been already destroyed. The returned future will never
// be signalled.
let fut = self
.send
.clone()
.send(Message::Ping(Bytes::from(payload.to_vec()), tx))
.from_err()
.and_then(|_| rx.from_err());
Box::new(fut) as Box<_>
}
}
impl Clone for Pinger {
fn clone(&self) -> Pinger {
Pinger {
send: self.send.clone(),
rng: EntropyRng::default(),
}
}
}
enum Message {
Ping(Bytes, oneshot::Sender<()>),
Received(Bytes),
}
// Implementation of the `Codec` trait of tokio-io. Splits frames into groups of 32 bytes.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
struct Codec;
impl Decoder for Codec {
type Item = BytesMut;
type Error = IoError;
#[inline]
fn decode(&mut self, buf: &mut BytesMut) -> Result<Option<BytesMut>, IoError> {
if buf.len() >= 32 {
Ok(Some(buf.split_to(32)))
} else {
Ok(None)
}
}
}
impl Encoder for Codec {
type Item = Bytes;
type Error = IoError;
#[inline]
fn encode(&mut self, mut data: Bytes, buf: &mut BytesMut) -> Result<(), IoError> {
if data.len() != 0 {
let split = 32 * (1 + ((data.len() - 1) / 32));
buf.reserve(split);
buf.put(data.split_to(split));
}
Ok(())
}
}
#[cfg(test)]
mod tests {
extern crate tokio_current_thread;
extern crate tokio_tcp;
use self::tokio_tcp::TcpListener;
use self::tokio_tcp::TcpStream;
use super::{Ping, PingOutput};
use futures::future::{self, join_all};
use futures::Future;
use futures::Stream;
use libp2p_core::{ConnectionUpgrade, Endpoint, Multiaddr};
use std::io::Error as IoError;
// TODO: rewrite tests with the MemoryTransport
#[test]
fn ping_pong() {
let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap();
let listener_addr = listener.local_addr().unwrap();
let server = listener
.incoming()
.into_future()
.map_err(|(e, _)| e.into())
.and_then(|(c, _)| {
Ping.upgrade(
c.unwrap(),
(),
Endpoint::Listener,
future::ok::<Multiaddr, IoError>("/ip4/127.0.0.1/tcp/10000".parse().unwrap()),
)
})
.and_then(|(out, _)| match out {
PingOutput::Ponger(service) => service,
_ => unreachable!(),
});
let client = TcpStream::connect(&listener_addr)
.map_err(|e| e.into())
.and_then(|c| {
Ping.upgrade(
c,
(),
Endpoint::Dialer,
future::ok::<Multiaddr, IoError>("/ip4/127.0.0.1/tcp/10000".parse().unwrap()),
)
})
.and_then(|(out, _)| match out {
PingOutput::Pinger {
mut pinger,
processing,
} => pinger
.ping()
.map_err(|_| panic!())
.select(processing)
.map_err(|_| panic!()),
_ => unreachable!(),
})
.map(|_| ());
tokio_current_thread::block_on_all(server.select(client).map_err(|_| panic!())).unwrap();
}
#[test]
fn multipings() {
// Check that we can send multiple pings in a row and it will still work.
let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap();
let listener_addr = listener.local_addr().unwrap();
let server = listener
.incoming()
.into_future()
.map_err(|(e, _)| e.into())
.and_then(|(c, _)| {
Ping.upgrade(
c.unwrap(),
(),
Endpoint::Listener,
future::ok::<Multiaddr, IoError>("/ip4/127.0.0.1/tcp/10000".parse().unwrap()),
)
})
.and_then(|(out, _)| match out {
PingOutput::Ponger(service) => service,
_ => unreachable!(),
});
let client = TcpStream::connect(&listener_addr)
.map_err(|e| e.into())
.and_then(|c| {
Ping.upgrade(
c,
(),
Endpoint::Dialer,
future::ok::<Multiaddr, IoError>("/ip4/127.0.0.1/tcp/10000".parse().unwrap()),
)
})
.and_then(|(out, _)| match out {
PingOutput::Pinger {
mut pinger,
processing,
} => {
let pings = (0..20).map(move |_| pinger.ping().map_err(|_| ()));
join_all(pings)
.map(|_| ())
.map_err(|_| panic!())
.select(processing)
.map(|_| ())
.map_err(|_| panic!())
}
_ => unreachable!(),
});
tokio_current_thread::block_on_all(server.select(client)).unwrap_or_else(|_| panic!());
}
}