771 lines
32 KiB
Rust
Raw Normal View History

2017-10-30 10:22:38 +01:00
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use algo_support;
use bytes::BytesMut;
use codec::{full_codec, FullCodec, Hmac};
2018-09-05 02:15:16 +02:00
use stream_cipher::{Cipher, ctr};
use ed25519_dalek::{PublicKey as Ed25519PublicKey, Signature as Ed25519Signature};
2017-10-30 10:22:38 +01:00
use error::SecioError;
use exchange;
2017-10-30 10:22:38 +01:00
use futures::future;
use futures::sink::Sink;
use futures::stream::Stream;
use futures::Future;
use libp2p_core::PublicKey;
2018-05-21 17:32:59 +02:00
use protobuf::parse_from_bytes as protobuf_parse_from_bytes;
use protobuf::Message as ProtobufMessage;
use rand::{self, RngCore};
#[cfg(all(feature = "ring", not(target_os = "emscripten")))]
use ring::signature::{RSASigningState, RSA_PKCS1_2048_8192_SHA256, RSA_PKCS1_SHA256, verify as ring_verify};
#[cfg(all(feature = "ring", not(target_os = "emscripten")))]
use ring::rand::SystemRandom;
2018-06-22 13:07:57 +02:00
#[cfg(feature = "secp256k1")]
use secp256k1;
use sha2::{Digest as ShaDigestTrait, Sha256, Sha512};
2017-10-30 10:22:38 +01:00
use std::cmp::{self, Ordering};
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use structs_proto::{Exchange, Propose};
2017-10-30 10:22:38 +01:00
use tokio_io::codec::length_delimited;
use tokio_io::{AsyncRead, AsyncWrite};
#[cfg(all(feature = "ring", not(target_os = "emscripten")))]
2017-10-30 10:22:38 +01:00
use untrusted::Input as UntrustedInput;
use {KeyAgreement, SecioConfig, SecioKeyPairInner};
2017-10-30 10:22:38 +01:00
// This struct contains the whole context of a handshake, and is filled progressively
// throughout the various parts of the handshake.
struct HandshakeContext<T> {
config: SecioConfig,
state: T
}
// HandshakeContext<()> --with_local-> HandshakeContext<Local>
struct Local {
// Locally-generated random number. The array size can be changed without any repercussion.
nonce: [u8; 16],
// Our local public key protobuf structure encoded in bytes:
public_key_in_protobuf_bytes: Vec<u8>,
// Our local proposition's raw bytes:
proposition_bytes: Vec<u8>
}
// HandshakeContext<Local> --with_remote-> HandshakeContext<Remote>
struct Remote {
local: Local,
// The remote's proposition's raw bytes:
proposition_bytes: BytesMut,
// The remote's public key:
public_key: PublicKey,
// The remote's `nonce`.
// If the NONCE size is actually part of the protocol, we can change this to a fixed-size
// array instead of a `Vec`.
nonce: Vec<u8>,
// Set to `ordering(
// hash(concat(remote-pubkey, local-none)),
// hash(concat(local-pubkey, remote-none))
// )`.
// `Ordering::Equal` is an invalid value (as it would mean we're talking to ourselves).
//
// Since everything is symmetrical, this value is used to determine what should be ours
// and what should be the remote's.
hashes_ordering: Ordering,
// Crypto algorithms chosen for the communication:
chosen_exchange: KeyAgreement,
chosen_cipher: Cipher,
chosen_hash: algo_support::Digest,
}
// HandshakeContext<Remote> --with_ephemeral-> HandshakeContext<Ephemeral>
struct Ephemeral {
remote: Remote,
// Ephemeral keypair generated for the handshake:
local_tmp_priv_key: exchange::AgreementPrivateKey,
local_tmp_pub_key: Vec<u8>
}
// HandshakeContext<Ephemeral> --take_private_key-> HandshakeContext<PubEphemeral>
struct PubEphemeral {
remote: Remote,
local_tmp_pub_key: Vec<u8>
}
impl HandshakeContext<()> {
fn new(config: SecioConfig) -> Self {
HandshakeContext {
config,
state: ()
}
}
// Setup local proposition.
fn with_local(self) -> Result<HandshakeContext<Local>, SecioError> {
let mut nonce = [0; 16];
rand::thread_rng()
.try_fill_bytes(&mut nonce)
.map_err(|_| SecioError::NonceGenerationFailed)?;
let public_key_in_protobuf_bytes =
self.config.key.to_public_key().into_protobuf_encoding();
// Send our proposition with our nonce, public key and supported protocols.
let mut proposition = Propose::new();
proposition.set_rand(nonce.to_vec());
proposition.set_pubkey(public_key_in_protobuf_bytes.clone());
if let Some(ref p) = self.config.agreements_prop {
trace!("agreements proposition: {}", p);
proposition.set_exchanges(p.clone())
} else {
trace!("agreements proposition: {}", algo_support::DEFAULT_AGREEMENTS_PROPOSITION);
proposition.set_exchanges(algo_support::DEFAULT_AGREEMENTS_PROPOSITION.into())
}
if let Some(ref p) = self.config.ciphers_prop {
trace!("ciphers proposition: {}", p);
proposition.set_ciphers(p.clone())
} else {
trace!("ciphers proposition: {}", algo_support::DEFAULT_CIPHERS_PROPOSITION);
proposition.set_ciphers(algo_support::DEFAULT_CIPHERS_PROPOSITION.into())
}
if let Some(ref p) = self.config.digests_prop {
trace!("digests proposition: {}", p);
proposition.set_hashes(p.clone())
} else {
trace!("digests proposition: {}", algo_support::DEFAULT_DIGESTS_PROPOSITION);
proposition.set_hashes(algo_support::DEFAULT_DIGESTS_PROPOSITION.into())
}
let proposition_bytes = proposition.write_to_bytes()?;
Ok(HandshakeContext {
config: self.config,
state: Local {
nonce,
public_key_in_protobuf_bytes,
proposition_bytes
}
})
}
}
impl HandshakeContext<Local> {
// Process remote proposition.
fn with_remote(self, b: BytesMut) -> Result<HandshakeContext<Remote>, SecioError> {
let mut prop = match protobuf_parse_from_bytes::<Propose>(&b) {
Ok(prop) => prop,
Err(_) => {
debug!("failed to parse remote's proposition protobuf message");
return Err(SecioError::HandshakeParsingFailure);
}
};
let public_key_in_protobuf_bytes = prop.take_pubkey();
let nonce = prop.take_rand();
let pubkey = match PublicKey::from_protobuf_encoding(&public_key_in_protobuf_bytes) {
Ok(p) => p,
Err(_) => {
debug!("failed to parse remote's proposition's pubkey protobuf");
return Err(SecioError::HandshakeParsingFailure);
},
};
// In order to determine which protocols to use, we compute two hashes and choose
// based on which hash is larger.
let hashes_ordering = {
let oh1 = {
let mut ctx = Sha256::new();
ctx.input(&public_key_in_protobuf_bytes);
ctx.input(&self.state.nonce);
ctx.result()
};
let oh2 = {
let mut ctx = Sha256::new();
ctx.input(&self.state.public_key_in_protobuf_bytes);
ctx.input(&nonce);
ctx.result()
};
oh1.as_ref().cmp(&oh2.as_ref())
};
let chosen_exchange = {
let ours = self.config.agreements_prop.as_ref()
.map(|s| s.as_ref())
.unwrap_or(algo_support::DEFAULT_AGREEMENTS_PROPOSITION);
let theirs = &prop.get_exchanges();
match algo_support::select_agreement(hashes_ordering, ours, theirs) {
Ok(a) => a,
Err(err) => {
debug!("failed to select an exchange protocol");
return Err(err);
}
}
};
let chosen_cipher = {
let ours = self.config.ciphers_prop.as_ref()
.map(|s| s.as_ref())
.unwrap_or(algo_support::DEFAULT_CIPHERS_PROPOSITION);
let theirs = &prop.get_ciphers();
match algo_support::select_cipher(hashes_ordering, ours, theirs) {
Ok(a) => {
debug!("selected cipher: {:?}", a);
a
}
Err(err) => {
debug!("failed to select a cipher protocol");
return Err(err);
}
}
};
let chosen_hash = {
let ours = self.config.digests_prop.as_ref()
.map(|s| s.as_ref())
.unwrap_or(algo_support::DEFAULT_DIGESTS_PROPOSITION);
let theirs = &prop.get_hashes();
match algo_support::select_digest(hashes_ordering, ours, theirs) {
Ok(a) => {
debug!("selected hash: {:?}", a);
a
}
Err(err) => {
debug!("failed to select a hash protocol");
return Err(err);
}
}
};
Ok(HandshakeContext {
config: self.config,
state: Remote {
local: self.state,
proposition_bytes: b,
public_key: pubkey,
nonce,
hashes_ordering,
chosen_exchange,
chosen_cipher,
chosen_hash
}
})
}
}
impl HandshakeContext<Remote> {
fn with_ephemeral(self, sk: exchange::AgreementPrivateKey, pk: Vec<u8>) -> HandshakeContext<Ephemeral> {
HandshakeContext {
config: self.config,
state: Ephemeral {
remote: self.state,
local_tmp_priv_key: sk,
local_tmp_pub_key: pk
}
}
}
}
impl HandshakeContext<Ephemeral> {
fn take_private_key(self) -> (HandshakeContext<PubEphemeral>, exchange::AgreementPrivateKey) {
let context = HandshakeContext {
config: self.config,
state: PubEphemeral {
remote: self.state.remote,
local_tmp_pub_key: self.state.local_tmp_pub_key
}
};
(context, self.state.local_tmp_priv_key)
}
}
2017-10-30 10:22:38 +01:00
/// Performs a handshake on the given socket.
///
/// This function expects that the remote is identified with `remote_public_key`, and the remote
/// will expect that we are identified with `local_key`.Any mismatch somewhere will produce a
/// `SecioError`.
2017-10-30 10:22:38 +01:00
///
/// On success, returns an object that implements the `Sink` and `Stream` trait whose items are
/// buffers of data, plus the public key of the remote, plus the ephemeral public key used during
/// negotiation.
2017-10-30 10:22:38 +01:00
pub fn handshake<'a, S: 'a>(
socket: S,
config: SecioConfig
2018-09-06 09:54:35 +02:00
) -> Box<Future<Item = (FullCodec<S>, PublicKey, Vec<u8>), Error = SecioError> + Send + 'a>
where
2018-09-06 09:54:35 +02:00
S: AsyncRead + AsyncWrite + Send,
2017-10-30 10:22:38 +01:00
{
// The handshake messages all start with a 4-bytes message length prefix.
let socket = length_delimited::Builder::new()
.big_endian()
.length_field_length(4)
.new_framed(socket);
let future = future::ok::<_, SecioError>(HandshakeContext::new(config))
.and_then(|context| {
// Generate our nonce.
let context = context.with_local()?;
trace!("starting handshake ; local nonce = {:?}", context.state.nonce);
Ok(context)
})
.and_then(|context| {
trace!("sending proposition to remote");
socket.send(BytesMut::from(context.state.proposition_bytes.clone()))
.from_err()
.map(|s| (s, context))
})
// Receive the remote's proposition.
.and_then(move |(socket, context)| {
socket.into_future()
.map_err(|(e, _)| e.into())
.and_then(move |(prop_raw, socket)| {
let context = match prop_raw {
Some(p) => context.with_remote(p)?,
None => {
let err = IoError::new(IoErrorKind::BrokenPipe, "unexpected eof");
debug!("unexpected eof while waiting for remote's proposition");
return Err(err.into())
},
};
trace!("received proposition from remote ; pubkey = {:?} ; nonce = {:?}",
context.state.public_key, context.state.nonce);
Ok((socket, context))
})
})
// Generate an ephemeral key for the negotiation.
.and_then(|(socket, context)| {
exchange::generate_agreement(context.state.chosen_exchange)
.map(move |(tmp_priv_key, tmp_pub_key)| (socket, context, tmp_priv_key, tmp_pub_key))
})
// Send the ephemeral pub key to the remote in an `Exchange` struct. The `Exchange` also
// contains a signature of the two propositions encoded with our static public key.
.and_then(|(socket, context, tmp_priv, tmp_pub_key)| {
let context = context.with_ephemeral(tmp_priv, tmp_pub_key.clone());
let exchange = {
let mut data_to_sign = context.state.remote.local.proposition_bytes.clone();
data_to_sign.extend_from_slice(&context.state.remote.proposition_bytes);
data_to_sign.extend_from_slice(&tmp_pub_key);
let mut exchange = Exchange::new();
exchange.set_epubkey(tmp_pub_key);
exchange.set_signature({
match context.config.key.inner {
#[cfg(all(feature = "ring", not(target_os = "emscripten")))]
SecioKeyPairInner::Rsa { ref private, .. } => {
let mut state = match RSASigningState::new(private.clone()) {
Ok(s) => s,
Err(_) => {
debug!("failed to sign local exchange");
return Err(SecioError::SigningFailure);
},
};
let mut signature = vec![0; private.public_modulus_len()];
let rng = SystemRandom::new();
match state.sign(&RSA_PKCS1_SHA256, &rng, &data_to_sign, &mut signature) {
Ok(_) => (),
Err(_) => {
debug!("failed to sign local exchange");
return Err(SecioError::SigningFailure);
},
};
signature
},
SecioKeyPairInner::Ed25519 { ref key_pair } => {
let signature = key_pair.sign::<Sha512>(&data_to_sign);
signature.to_bytes().to_vec()
},
2018-06-22 13:07:57 +02:00
#[cfg(feature = "secp256k1")]
SecioKeyPairInner::Secp256k1 { ref private } => {
let data_to_sign = Sha256::digest(&data_to_sign);
let message = secp256k1::Message::from_slice(data_to_sign.as_ref())
.expect("digest output length doesn't match secp256k1 input length");
let secp256k1 = secp256k1::Secp256k1::with_caps(secp256k1::ContextFlag::SignOnly);
secp256k1
.sign(&message, private)
.expect("failed to sign message")
.serialize_der(&secp256k1)
},
}
});
exchange
};
let local_exch = exchange.write_to_bytes()?;
Ok((BytesMut::from(local_exch), socket, context))
})
// Send our local `Exchange`.
.and_then(|(local_exch, socket, context)| {
trace!("sending exchange to remote");
socket.send(local_exch)
.from_err()
.map(|s| (s, context))
})
// Receive the remote's `Exchange`.
.and_then(move |(socket, context)| {
socket.into_future()
.map_err(|(e, _)| e.into())
.and_then(move |(raw, socket)| {
let raw = match raw {
Some(r) => r,
None => {
let err = IoError::new(IoErrorKind::BrokenPipe, "unexpected eof");
debug!("unexpected eof while waiting for remote's exchange");
return Err(err.into())
},
};
let remote_exch = match protobuf_parse_from_bytes::<Exchange>(&raw) {
Ok(e) => e,
Err(err) => {
debug!("failed to parse remote's exchange protobuf ; {:?}", err);
return Err(SecioError::HandshakeParsingFailure);
}
};
trace!("received and decoded the remote's exchange");
Ok((remote_exch, socket, context))
})
})
// Check the validity of the remote's `Exchange`. This verifies that the remote was really
// the sender of its proposition, and that it is the owner of both its global and ephemeral
// keys.
.and_then(|(remote_exch, socket, context)| {
let mut data_to_verify = context.state.remote.proposition_bytes.clone();
data_to_verify.extend_from_slice(&context.state.remote.local.proposition_bytes);
data_to_verify.extend_from_slice(remote_exch.get_epubkey());
match context.state.remote.public_key {
#[cfg(all(feature = "ring", not(target_os = "emscripten")))]
PublicKey::Rsa(ref remote_public_key) => {
// TODO: The ring library doesn't like some stuff in our DER public key,
// therefore we scrap the first 24 bytes of the key. A proper fix would
// be to write a DER parser, but that's not trivial.
match ring_verify(&RSA_PKCS1_2048_8192_SHA256,
UntrustedInput::from(&remote_public_key[24..]),
UntrustedInput::from(&data_to_verify),
UntrustedInput::from(remote_exch.get_signature()))
{
Ok(()) => (),
Err(_) => {
debug!("failed to verify the remote's signature");
return Err(SecioError::SignatureVerificationFailed)
},
}
},
PublicKey::Ed25519(ref remote_public_key) => {
let signature = Ed25519Signature::from_bytes(remote_exch.get_signature());
let pubkey = Ed25519PublicKey::from_bytes(remote_public_key);
if let (Ok(signature), Ok(pubkey)) = (signature, pubkey) {
match pubkey.verify::<Sha512>(&data_to_verify, &signature) {
Ok(()) => (),
Err(_) => {
debug!("failed to verify the remote's signature");
return Err(SecioError::SignatureVerificationFailed)
}
}
} else {
debug!("the remote's signature or publickey are in the wrong format");
return Err(SecioError::SignatureVerificationFailed)
}
},
2018-06-22 13:07:57 +02:00
#[cfg(feature = "secp256k1")]
PublicKey::Secp256k1(ref remote_public_key) => {
let data_to_verify = Sha256::digest(&data_to_verify);
let message = secp256k1::Message::from_slice(data_to_verify.as_ref())
.expect("digest output length doesn't match secp256k1 input length");
let secp256k1 = secp256k1::Secp256k1::with_caps(secp256k1::ContextFlag::VerifyOnly);
let signature = secp256k1::Signature::from_der(&secp256k1, remote_exch.get_signature());
let remote_public_key = secp256k1::key::PublicKey::from_slice(&secp256k1, remote_public_key);
if let (Ok(signature), Ok(remote_public_key)) = (signature, remote_public_key) {
match secp256k1.verify(&message, &signature, &remote_public_key) {
Ok(()) => (),
Err(_) => {
debug!("failed to verify the remote's signature");
return Err(SecioError::SignatureVerificationFailed)
},
}
} else {
debug!("remote's secp256k1 signature has wrong format");
return Err(SecioError::SignatureVerificationFailed)
}
},
#[cfg(not(all(feature = "ring", not(target_os = "emscripten"))))]
PublicKey::Rsa(_) => {
debug!("support for RSA was disabled at compile-time");
return Err(SecioError::SignatureVerificationFailed);
},
2018-06-22 13:07:57 +02:00
#[cfg(not(feature = "secp256k1"))]
PublicKey::Secp256k1(_) => {
2018-06-22 13:07:57 +02:00
debug!("support for secp256k1 was disabled at compile-time");
return Err(SecioError::SignatureVerificationFailed);
}
};
trace!("successfully verified the remote's signature");
Ok((remote_exch, socket, context))
})
// Generate a key from the local ephemeral private key and the remote ephemeral public key,
// derive from it a ciper key, an iv, and a hmac key, and build the encoder/decoder.
.and_then(|(remote_exch, socket, context)| {
let (context, local_priv_key) = context.take_private_key();
let key_size = context.state.remote.chosen_hash.num_bytes();
exchange::agree(context.state.remote.chosen_exchange, local_priv_key, remote_exch.get_epubkey(), key_size)
.map(move |key_material| (socket, context, key_material))
})
// Generate a key from the local ephemeral private key and the remote ephemeral public key,
// derive from it a ciper key, an iv, and a hmac key, and build the encoder/decoder.
.and_then(|(socket, context, key_material)| {
let chosen_cipher = context.state.remote.chosen_cipher;
let cipher_key_size = chosen_cipher.key_size();
let iv_size = chosen_cipher.iv_size();
let key = Hmac::from_key(context.state.remote.chosen_hash, &key_material);
let mut longer_key = vec![0u8; 2 * (iv_size + cipher_key_size + 20)];
stretch_key(key, &mut longer_key);
let (local_infos, remote_infos) = {
let (first_half, second_half) = longer_key.split_at(longer_key.len() / 2);
match context.state.remote.hashes_ordering {
Ordering::Equal => {
let msg = "equal digest of public key and nonce for local and remote";
return Err(SecioError::InvalidProposition(msg))
}
Ordering::Less => (second_half, first_half),
Ordering::Greater => (first_half, second_half),
}
};
let (encoding_cipher, encoding_hmac) = {
let (iv, rest) = local_infos.split_at(iv_size);
let (cipher_key, mac_key) = rest.split_at(cipher_key_size);
let hmac = Hmac::from_key(context.state.remote.chosen_hash.into(), mac_key);
let cipher = ctr(chosen_cipher, cipher_key, iv);
(cipher, hmac)
};
let (decoding_cipher, decoding_hmac) = {
let (iv, rest) = remote_infos.split_at(iv_size);
let (cipher_key, mac_key) = rest.split_at(cipher_key_size);
let hmac = Hmac::from_key(context.state.remote.chosen_hash.into(), mac_key);
let cipher = ctr(chosen_cipher, cipher_key, iv);
(cipher, hmac)
};
let codec = full_codec(socket, encoding_cipher, encoding_hmac, decoding_cipher, decoding_hmac);
Ok((codec, context))
})
// We send back their nonce to check if the connection works.
.and_then(|(codec, context)| {
let remote_nonce = context.state.remote.nonce.clone();
trace!("checking encryption by sending back remote's nonce");
codec.send(BytesMut::from(remote_nonce))
.map(|s| (s, context))
.from_err()
})
// Check that the received nonce is correct.
.and_then(|(codec, context)| {
codec.into_future()
.map_err(|(e, _)| e)
.and_then(move |(nonce, rest)| {
match nonce {
Some(ref n) if n == &context.state.remote.local.nonce => {
trace!("secio handshake success");
Ok((rest, context.state.remote.public_key, context.state.local_tmp_pub_key))
},
None => {
debug!("unexpected eof during nonce check");
Err(IoError::new(IoErrorKind::BrokenPipe, "unexpected eof").into())
},
_ => {
debug!("failed nonce verification with remote");
Err(SecioError::NonceVerificationFailed)
}
}
})
});
Box::new(future)
2017-10-30 10:22:38 +01:00
}
/// Custom algorithm translated from reference implementations. Needs to be the same algorithm
/// amongst all implementations.
fn stretch_key(hmac: Hmac, result: &mut [u8]) {
match hmac {
Hmac::Sha256(hmac) => stretch_key_inner(hmac, result),
Hmac::Sha512(hmac) => stretch_key_inner(hmac, result),
}
}
fn stretch_key_inner<D: ::hmac::digest::Digest + Clone>(hmac: ::hmac::Hmac<D>, result: &mut [u8])
where ::hmac::Hmac<D>: Clone {
use ::hmac::Mac;
const SEED: &[u8] = b"key expansion";
2017-10-30 10:22:38 +01:00
let mut init_ctxt = hmac.clone();
init_ctxt.input(SEED);
let mut a = init_ctxt.result().code();
2017-10-30 10:22:38 +01:00
let mut j = 0;
while j < result.len() {
let mut context = hmac.clone();
context.input(a.as_ref());
context.input(SEED);
let b = context.result().code();
2017-10-30 10:22:38 +01:00
let todo = cmp::min(b.as_ref().len(), result.len() - j);
2017-10-30 10:22:38 +01:00
result[j..j + todo].copy_from_slice(&b.as_ref()[..todo]);
2017-10-30 10:22:38 +01:00
j += todo;
2017-10-30 10:22:38 +01:00
let mut context = hmac.clone();
context.input(a.as_ref());
a = context.result().code();
}
2017-10-30 10:22:38 +01:00
}
#[cfg(test)]
mod tests {
extern crate tokio;
2018-07-16 12:15:27 +02:00
extern crate tokio_tcp;
use self::tokio::runtime::current_thread::Runtime;
2018-07-16 12:15:27 +02:00
use self::tokio_tcp::TcpListener;
use self::tokio_tcp::TcpStream;
use super::handshake;
use super::stretch_key;
use algo_support::Digest;
use codec::Hmac;
use futures::Future;
use futures::Stream;
use {SecioConfig, SecioKeyPair};
#[test]
#[cfg(all(feature = "ring", not(target_os = "emscripten")))]
fn handshake_with_self_succeeds_rsa() {
let key1 = {
let private = include_bytes!("../tests/test-rsa-private-key.pk8");
let public = include_bytes!("../tests/test-rsa-public-key.der").to_vec();
SecioKeyPair::rsa_from_pkcs8(private, public).unwrap()
};
let key2 = {
let private = include_bytes!("../tests/test-rsa-private-key-2.pk8");
let public = include_bytes!("../tests/test-rsa-public-key-2.der").to_vec();
SecioKeyPair::rsa_from_pkcs8(private, public).unwrap()
};
handshake_with_self_succeeds(SecioConfig::new(key1), SecioConfig::new(key2));
}
#[test]
fn handshake_with_self_succeeds_ed25519() {
let key1 = SecioKeyPair::ed25519_generated().unwrap();
let key2 = SecioKeyPair::ed25519_generated().unwrap();
handshake_with_self_succeeds(SecioConfig::new(key1), SecioConfig::new(key2));
}
#[test]
2018-06-22 13:07:57 +02:00
#[cfg(feature = "secp256k1")]
fn handshake_with_self_succeeds_secp256k1() {
let key1 = {
let key = include_bytes!("../tests/test-secp256k1-private-key.der");
SecioKeyPair::secp256k1_from_der(&key[..]).unwrap()
};
let key2 = {
let key = include_bytes!("../tests/test-secp256k1-private-key-2.der");
SecioKeyPair::secp256k1_from_der(&key[..]).unwrap()
};
handshake_with_self_succeeds(SecioConfig::new(key1), SecioConfig::new(key2));
}
fn handshake_with_self_succeeds(key1: SecioConfig, key2: SecioConfig) {
2018-07-16 12:15:27 +02:00
let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap();
let listener_addr = listener.local_addr().unwrap();
let server = listener
.incoming()
.into_future()
.map_err(|(e, _)| e.into())
2018-07-16 12:15:27 +02:00
.and_then(move |(connec, _)| handshake(connec.unwrap(), key1));
2018-07-16 12:15:27 +02:00
let client = TcpStream::connect(&listener_addr)
.map_err(|e| e.into())
.and_then(move |stream| handshake(stream, key2));
let mut rt = Runtime::new().unwrap();
let _ = rt.block_on(server.join(client)).unwrap();
}
#[test]
fn stretch() {
let mut output = [0u8; 32];
let key1 = Hmac::from_key(Digest::Sha256, &[]);
stretch_key(key1, &mut output);
assert_eq!(
&output,
&[
103, 144, 60, 199, 85, 145, 239, 71, 79, 198, 85, 164, 32, 53, 143, 205, 50, 48,
153, 10, 37, 32, 85, 1, 226, 61, 193, 1, 154, 120, 207, 80,
]
);
let key2 = Hmac::from_key(
Digest::Sha256,
&[
157, 166, 80, 144, 77, 193, 198, 6, 23, 220, 87, 220, 191, 72, 168, 197, 54, 33,
219, 225, 84, 156, 165, 37, 149, 224, 244, 32, 170, 79, 125, 35, 171, 26, 178, 176,
92, 168, 22, 27, 205, 44, 229, 61, 152, 21, 222, 81, 241, 81, 116, 236, 74, 166,
89, 145, 5, 162, 108, 230, 55, 54, 9, 17,
],
);
stretch_key(key2, &mut output);
assert_eq!(
&output,
&[
39, 151, 182, 63, 180, 175, 224, 139, 42, 131, 130, 116, 55, 146, 62, 31, 157, 95,
217, 15, 73, 81, 10, 83, 243, 141, 64, 227, 103, 144, 99, 121,
]
);
let key3 = Hmac::from_key(
Digest::Sha256,
&[
98, 219, 94, 104, 97, 70, 139, 13, 185, 110, 56, 36, 66, 3, 80, 224, 32, 205, 102,
170, 59, 32, 140, 245, 86, 102, 231, 68, 85, 249, 227, 243, 57, 53, 171, 36, 62,
225, 178, 74, 89, 142, 151, 94, 183, 231, 208, 166, 244, 130, 130, 209, 248, 65,
19, 48, 127, 127, 55, 82, 117, 154, 124, 108,
],
);
stretch_key(key3, &mut output);
assert_eq!(
&output,
&[
28, 39, 158, 206, 164, 16, 211, 194, 99, 43, 208, 36, 24, 141, 90, 93, 157, 236,
238, 111, 170, 0, 60, 11, 49, 174, 177, 121, 30, 12, 182, 25,
]
);
}
2017-10-30 10:22:38 +01:00
}