rust-libp2p/secio/src/handshake.rs

705 lines
31 KiB
Rust
Raw Normal View History

2017-10-30 10:22:38 +01:00
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use algo_support;
use bytes::BytesMut;
use codec::{full_codec, FullCodec};
use crypto::aes::{ctr, KeySize};
use error::SecioError;
use futures::Future;
use futures::future;
use futures::sink::Sink;
use futures::stream::Stream;
use keys_proto::{KeyType as KeyTypeProtobuf, PublicKey as PublicKeyProtobuf};
2017-10-30 10:22:38 +01:00
use protobuf::Message as ProtobufMessage;
2018-05-21 17:32:59 +02:00
use protobuf::parse_from_bytes as protobuf_parse_from_bytes;
2017-10-30 10:22:38 +01:00
use ring::agreement::EphemeralPrivateKey;
use ring::hmac::{SigningContext, SigningKey, VerificationKey};
2017-10-30 10:22:38 +01:00
use ring::rand::SecureRandom;
use ring::signature::verify as signature_verify;
use ring::signature::{RSASigningState, RSA_PKCS1_2048_8192_SHA256, RSA_PKCS1_SHA256, ED25519};
use ring::{agreement, digest, rand};
use secp256k1;
2017-10-30 10:22:38 +01:00
use std::cmp::{self, Ordering};
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::mem;
use structs_proto::{Exchange, Propose};
2017-10-30 10:22:38 +01:00
use tokio_io::codec::length_delimited;
use tokio_io::{AsyncRead, AsyncWrite};
2017-10-30 10:22:38 +01:00
use untrusted::Input as UntrustedInput;
use {SecioKeyPair, SecioKeyPairInner, SecioPublicKey};
2017-10-30 10:22:38 +01:00
/// Performs a handshake on the given socket.
///
/// This function expects that the remote is identified with `remote_public_key`, and the remote
/// will expect that we are identified with `local_key`.Any mismatch somewhere will produce a
/// `SecioError`.
2017-10-30 10:22:38 +01:00
///
/// On success, returns an object that implements the `Sink` and `Stream` trait whose items are
/// buffers of data, plus the public key of the remote.
pub fn handshake<'a, S: 'a>(
socket: S,
local_key: SecioKeyPair,
) -> Box<Future<Item = (FullCodec<S>, SecioPublicKey), Error = SecioError> + 'a>
where
S: AsyncRead + AsyncWrite,
2017-10-30 10:22:38 +01:00
{
// TODO: could be rewritten as a coroutine once coroutines land in stable Rust
// This struct contains the whole context of a handshake, and is filled progressively
// throughout the various parts of the handshake.
struct HandshakeContext {
// Filled with this function's parameters.
local_key: SecioKeyPair,
rng: rand::SystemRandom,
// Locally-generated random number. The array size can be changed without any repercussion.
local_nonce: [u8; 16],
// Our local proposition's raw bytes.
local_public_key_in_protobuf_bytes: Vec<u8>,
local_proposition_bytes: Vec<u8>,
// The remote proposition's raw bytes.
remote_proposition_bytes: BytesMut,
remote_public_key_in_protobuf_bytes: Vec<u8>,
remote_public_key: Option<SecioPublicKey>,
// The remote peer's version of `local_nonce`.
// If the NONCE size is actually part of the protocol, we can change this to a fixed-size
// array instead of a `Vec`.
remote_nonce: Vec<u8>,
// Set to `ordering(
// hash(concat(remote-pubkey, local-none)),
// hash(concat(local-pubkey, remote-none))
// )`.
// `Ordering::Equal` is an invalid value (as it would mean we're talking to ourselves).
//
// Since everything is symmetrical, this value is used to determine what should be ours
// and what should be the remote's.
hashes_ordering: Ordering,
// Crypto algorithms chosen for the communication.
chosen_exchange: Option<&'static agreement::Algorithm>,
// We only support AES for now, so store just a key size.
chosen_cipher: Option<KeySize>,
chosen_hash: Option<&'static digest::Algorithm>,
// Ephemeral key generated for the handshake and then thrown away.
local_tmp_priv_key: Option<EphemeralPrivateKey>,
local_tmp_pub_key: [u8; agreement::PUBLIC_KEY_MAX_LEN],
}
let context = HandshakeContext {
local_key: local_key,
rng: rand::SystemRandom::new(),
local_nonce: Default::default(),
local_public_key_in_protobuf_bytes: Vec::new(),
local_proposition_bytes: Vec::new(),
remote_proposition_bytes: BytesMut::new(),
remote_public_key_in_protobuf_bytes: Vec::new(),
remote_public_key: None,
remote_nonce: Vec::new(),
hashes_ordering: Ordering::Equal,
chosen_exchange: None,
chosen_cipher: None,
chosen_hash: None,
local_tmp_priv_key: None,
local_tmp_pub_key: [0; agreement::PUBLIC_KEY_MAX_LEN],
};
// The handshake messages all start with a 4-bytes message length prefix.
let socket = length_delimited::Builder::new()
.big_endian()
.length_field_length(4)
.new_framed(socket);
let future = future::ok::<_, SecioError>(context)
// Generate our nonce.
.and_then(|mut context| {
context.rng.fill(&mut context.local_nonce)
.map_err(|_| SecioError::NonceGenerationFailed)?;
trace!("starting handshake ; local nonce = {:?}", context.local_nonce);
Ok(context)
})
// Send our proposition with our nonce, public key and supported protocols.
.and_then(|mut context| {
let mut public_key = PublicKeyProtobuf::new();
public_key.set_Data(context.local_key.to_public_key().into_raw().0);
match context.local_key.inner {
SecioKeyPairInner::Rsa { .. } => {
public_key.set_Type(KeyTypeProtobuf::RSA);
},
SecioKeyPairInner::Ed25519 { .. } => {
public_key.set_Type(KeyTypeProtobuf::Ed25519);
},
SecioKeyPairInner::Secp256k1 { .. } => {
public_key.set_Type(KeyTypeProtobuf::Secp256k1);
},
}
context.local_public_key_in_protobuf_bytes = public_key.write_to_bytes().unwrap();
let mut proposition = Propose::new();
proposition.set_rand(context.local_nonce.clone().to_vec());
proposition.set_pubkey(context.local_public_key_in_protobuf_bytes.clone());
proposition.set_exchanges(algo_support::exchanges::PROPOSITION_STRING.into());
proposition.set_ciphers(algo_support::ciphers::PROPOSITION_STRING.into());
proposition.set_hashes(algo_support::hashes::PROPOSITION_STRING.into());
let proposition_bytes = proposition.write_to_bytes().unwrap();
context.local_proposition_bytes = proposition_bytes.clone();
trace!("sending proposition to remote");
socket.send(BytesMut::from(proposition_bytes.clone()))
.from_err()
.map(|s| (s, context))
})
// Receive the remote's proposition.
.and_then(move |(socket, mut context)| {
socket.into_future()
.map_err(|(e, _)| e.into())
.and_then(move |(prop_raw, socket)| {
match prop_raw {
Some(p) => context.remote_proposition_bytes = p,
None => {
let err = IoError::new(IoErrorKind::BrokenPipe, "unexpected eof");
debug!("unexpected eof while waiting for remote's proposition");
return Err(err.into())
},
};
let mut prop = match protobuf_parse_from_bytes::<Propose>(
&context.remote_proposition_bytes
) {
Ok(prop) => prop,
Err(_) => {
debug!("failed to parse remote's proposition protobuf message");
return Err(SecioError::HandshakeParsingFailure);
}
};
context.remote_public_key_in_protobuf_bytes = prop.take_pubkey();
let mut pubkey = {
let bytes = &context.remote_public_key_in_protobuf_bytes;
match protobuf_parse_from_bytes::<PublicKeyProtobuf>(bytes) {
Ok(p) => p,
Err(_) => {
debug!("failed to parse remote's proposition's pubkey protobuf");
return Err(SecioError::HandshakeParsingFailure);
},
}
};
context.remote_nonce = prop.take_rand();
context.remote_public_key = Some(match pubkey.get_Type() {
KeyTypeProtobuf::RSA => {
SecioPublicKey::Rsa(pubkey.take_Data())
},
KeyTypeProtobuf::Ed25519 => {
SecioPublicKey::Ed25519(pubkey.take_Data())
},
KeyTypeProtobuf::Secp256k1 => {
SecioPublicKey::Secp256k1(pubkey.take_Data())
},
});
trace!("received proposition from remote ; pubkey = {:?} ; nonce = {:?}",
context.remote_public_key, context.remote_nonce);
Ok((prop, socket, context))
})
})
// Decide which algorithms to use (thanks to the remote's proposition).
.and_then(move |(remote_prop, socket, mut context)| {
// In order to determine which protocols to use, we compute two hashes and choose
// based on which hash is larger.
context.hashes_ordering = {
let oh1 = {
let mut ctx = digest::Context::new(&digest::SHA256);
ctx.update(&context.remote_public_key_in_protobuf_bytes);
ctx.update(&context.local_nonce);
ctx.finish()
};
let oh2 = {
let mut ctx = digest::Context::new(&digest::SHA256);
ctx.update(&context.local_public_key_in_protobuf_bytes);
ctx.update(&context.remote_nonce);
ctx.finish()
};
oh1.as_ref().cmp(&oh2.as_ref())
};
context.chosen_exchange = {
let list = &remote_prop.get_exchanges();
Some(match algo_support::exchanges::select_best(context.hashes_ordering, list) {
Ok(a) => a,
Err(err) => {
debug!("failed to select an exchange protocol");
return Err(err);
}
})
};
context.chosen_cipher = {
let list = &remote_prop.get_ciphers();
Some(match algo_support::ciphers::select_best(context.hashes_ordering, list) {
Ok(a) => a,
Err(err) => {
debug!("failed to select a cipher protocol");
return Err(err);
}
})
};
context.chosen_hash = {
let list = &remote_prop.get_hashes();
Some(match algo_support::hashes::select_best(context.hashes_ordering, list) {
Ok(a) => a,
Err(err) => {
debug!("failed to select a hash protocol");
return Err(err);
}
})
};
Ok((socket, context))
})
// Generate an ephemeral key for the negotiation.
.and_then(|(socket, context)| {
2018-06-19 13:57:47 +02:00
match EphemeralPrivateKey::generate(context.chosen_exchange.as_ref().unwrap(), &context.rng) {
Ok(tmp_priv_key) => Ok((socket, context, tmp_priv_key)),
Err(_) => {
debug!("failed to generate ECDH key");
Err(SecioError::EphemeralKeyGenerationFailed)
},
}
})
// Send the ephemeral pub key to the remote in an `Exchange` struct. The `Exchange` also
// contains a signature of the two propositions encoded with our static public key.
.and_then(|(socket, mut context, tmp_priv)| {
let exchange = {
let local_tmp_pub_key = &mut context.local_tmp_pub_key[..tmp_priv.public_key_len()];
tmp_priv.compute_public_key(local_tmp_pub_key).unwrap();
context.local_tmp_priv_key = Some(tmp_priv);
let mut data_to_sign = context.local_proposition_bytes.clone();
data_to_sign.extend_from_slice(&context.remote_proposition_bytes);
data_to_sign.extend_from_slice(local_tmp_pub_key);
let mut exchange = Exchange::new();
exchange.set_epubkey(local_tmp_pub_key.to_vec());
exchange.set_signature({
match context.local_key.inner {
SecioKeyPairInner::Rsa { ref private, .. } => {
let mut state = match RSASigningState::new(private.clone()) {
Ok(s) => s,
Err(_) => {
debug!("failed to sign local exchange");
return Err(SecioError::SigningFailure);
},
};
let mut signature = vec![0; private.public_modulus_len()];
match state.sign(&RSA_PKCS1_SHA256, &context.rng, &data_to_sign,
&mut signature)
{
Ok(_) => (),
Err(_) => {
debug!("failed to sign local exchange");
return Err(SecioError::SigningFailure);
},
};
signature
},
SecioKeyPairInner::Ed25519 { ref key_pair } => {
let signature = key_pair.sign(&data_to_sign);
signature.as_ref().to_owned()
},
SecioKeyPairInner::Secp256k1 { ref private } => {
let data_to_sign = digest::digest(&digest::SHA256, &data_to_sign);
let message = secp256k1::Message::from_slice(data_to_sign.as_ref())
.expect("digest output length doesn't match secp256k1 input length");
let secp256k1 = secp256k1::Secp256k1::with_caps(secp256k1::ContextFlag::SignOnly);
secp256k1
.sign(&message, private)
.expect("failed to sign message")
.serialize_der(&secp256k1)
},
}
});
exchange
};
let local_exch = exchange.write_to_bytes()
.expect("can only fail if the protobuf msg is malformed, which can't happen for \
this message in particular");
Ok((BytesMut::from(local_exch), socket, context))
})
// Send our local `Exchange`.
.and_then(|(local_exch, socket, context)| {
trace!("sending exchange to remote");
socket.send(local_exch)
.from_err()
.map(|s| (s, context))
})
// Receive the remote's `Exchange`.
.and_then(move |(socket, context)| {
socket.into_future()
.map_err(|(e, _)| e.into())
.and_then(move |(raw, socket)| {
let raw = match raw {
Some(r) => r,
None => {
let err = IoError::new(IoErrorKind::BrokenPipe, "unexpected eof");
debug!("unexpected eof while waiting for remote's exchange");
return Err(err.into())
},
};
let remote_exch = match protobuf_parse_from_bytes::<Exchange>(&raw) {
Ok(e) => e,
Err(err) => {
debug!("failed to parse remote's exchange protobuf ; {:?}", err);
return Err(SecioError::HandshakeParsingFailure);
}
};
trace!("received and decoded the remote's exchange");
Ok((remote_exch, socket, context))
})
})
// Check the validity of the remote's `Exchange`. This verifies that the remote was really
// the sender of its proposition, and that it is the owner of both its global and ephemeral
// keys.
.and_then(|(remote_exch, socket, context)| {
let mut data_to_verify = context.remote_proposition_bytes.clone();
data_to_verify.extend_from_slice(&context.local_proposition_bytes);
data_to_verify.extend_from_slice(remote_exch.get_epubkey());
match context.remote_public_key {
Some(SecioPublicKey::Rsa(ref remote_public_key)) => {
// TODO: The ring library doesn't like some stuff in our DER public key,
// therefore we scrap the first 24 bytes of the key. A proper fix would
// be to write a DER parser, but that's not trivial.
match signature_verify(&RSA_PKCS1_2048_8192_SHA256,
UntrustedInput::from(&remote_public_key[24..]),
UntrustedInput::from(&data_to_verify),
UntrustedInput::from(remote_exch.get_signature()))
{
Ok(()) => (),
Err(_) => {
debug!("failed to verify the remote's signature");
return Err(SecioError::SignatureVerificationFailed)
},
}
},
Some(SecioPublicKey::Ed25519(ref remote_public_key)) => {
match signature_verify(&ED25519,
UntrustedInput::from(remote_public_key),
UntrustedInput::from(&data_to_verify),
UntrustedInput::from(remote_exch.get_signature()))
{
Ok(()) => (),
Err(_) => {
debug!("failed to verify the remote's signature");
return Err(SecioError::SignatureVerificationFailed)
},
}
},
Some(SecioPublicKey::Secp256k1(ref remote_public_key)) => {
let data_to_verify = digest::digest(&digest::SHA256, &data_to_verify);
let message = secp256k1::Message::from_slice(data_to_verify.as_ref())
.expect("digest output length doesn't match secp256k1 input length");
let secp256k1 = secp256k1::Secp256k1::with_caps(secp256k1::ContextFlag::VerifyOnly);
let signature = secp256k1::Signature::from_der(&secp256k1, remote_exch.get_signature());
let remote_public_key = secp256k1::key::PublicKey::from_slice(&secp256k1, remote_public_key);
if let (Ok(signature), Ok(remote_public_key)) = (signature, remote_public_key) {
match secp256k1.verify(&message, &signature, &remote_public_key) {
Ok(()) => (),
Err(_) => {
debug!("failed to verify the remote's signature");
return Err(SecioError::SignatureVerificationFailed)
},
}
} else {
debug!("remote's secp256k1 signature has wrong format");
return Err(SecioError::SignatureVerificationFailed)
}
},
None => unreachable!("we store a Some in the remote public key before reaching \
this point")
};
trace!("successfully verified the remote's signature");
Ok((remote_exch, socket, context))
})
// Generate a key from the local ephemeral private key and the remote ephemeral public key,
// derive from it a ciper key, an iv, and a hmac key, and build the encoder/decoder.
.and_then(|(remote_exch, socket, mut context)| {
let local_priv_key = context.local_tmp_priv_key.take()
.expect("we filled this Option earlier, and extract it now");
let codec = agreement::agree_ephemeral(local_priv_key,
&context.chosen_exchange.clone().unwrap(),
UntrustedInput::from(remote_exch.get_epubkey()),
SecioError::SecretGenerationFailed,
|key_material| {
let key = SigningKey::new(context.chosen_hash.unwrap(), key_material);
let chosen_cipher = context.chosen_cipher.unwrap();
let (cipher_key_size, iv_size) = match chosen_cipher {
KeySize::KeySize128 => (16, 16),
KeySize::KeySize256 => (32, 16),
_ => panic!()
};
let mut longer_key = vec![0u8; 2 * (iv_size + cipher_key_size + 20)];
stretch_key(&key, &mut longer_key);
let (local_infos, remote_infos) = {
let (first_half, second_half) = longer_key.split_at(longer_key.len() / 2);
match context.hashes_ordering {
Ordering::Equal => panic!(),
Ordering::Less => (second_half, first_half),
Ordering::Greater => (first_half, second_half),
}
};
let (encoding_cipher, encoding_hmac) = {
let (iv, rest) = local_infos.split_at(iv_size);
let (cipher_key, mac_key) = rest.split_at(cipher_key_size);
let hmac = SigningKey::new(&context.chosen_hash.clone().unwrap(), mac_key);
let cipher = ctr(chosen_cipher, cipher_key, iv);
(cipher, hmac)
};
let (decoding_cipher, decoding_hmac) = {
let (iv, rest) = remote_infos.split_at(iv_size);
let (cipher_key, mac_key) = rest.split_at(cipher_key_size);
let hmac = VerificationKey::new(&context.chosen_hash.clone().unwrap(), mac_key);
let cipher = ctr(chosen_cipher, cipher_key, iv);
(cipher, hmac)
};
Ok(full_codec(socket, Box::new(encoding_cipher), encoding_hmac,
Box::new(decoding_cipher), decoding_hmac))
});
match codec {
Ok(c) => Ok((c, context)),
Err(err) => {
debug!("failed to generate shared secret with remote");
return Err(err);
},
}
})
// We send back their nonce to check if the connection works.
.and_then(|(codec, mut context)| {
let remote_nonce = mem::replace(&mut context.remote_nonce, Vec::new());
trace!("checking encryption by sending back remote's nonce");
codec.send(BytesMut::from(remote_nonce))
.map(|s| (s, context))
.from_err()
})
// Check that the received nonce is correct.
.and_then(|(codec, context)| {
codec.into_future()
.map_err(|(e, _)| e)
.and_then(move |(nonce, rest)| {
match nonce {
Some(ref n) if n == &context.local_nonce => {
trace!("secio handshake success");
Ok((rest, context.remote_public_key.expect("we stored a Some earlier")))
},
None => {
debug!("unexpected eof during nonce check");
Err(IoError::new(IoErrorKind::BrokenPipe, "unexpected eof").into())
},
_ => {
debug!("failed nonce verification with remote");
Err(SecioError::NonceVerificationFailed)
}
}
})
});
Box::new(future)
2017-10-30 10:22:38 +01:00
}
// Custom algorithm translated from reference implementations. Needs to be the same algorithm
// amongst all implementations.
fn stretch_key(key: &SigningKey, result: &mut [u8]) {
const SEED: &'static [u8] = b"key expansion";
2017-10-30 10:22:38 +01:00
let mut init_ctxt = SigningContext::with_key(key);
init_ctxt.update(SEED);
let mut a = init_ctxt.sign();
2017-10-30 10:22:38 +01:00
let mut j = 0;
while j < result.len() {
let mut context = SigningContext::with_key(key);
context.update(a.as_ref());
context.update(SEED);
let b = context.sign();
2017-10-30 10:22:38 +01:00
let todo = cmp::min(b.as_ref().len(), result.len() - j);
2017-10-30 10:22:38 +01:00
result[j..j + todo].copy_from_slice(&b.as_ref()[..todo]);
2017-10-30 10:22:38 +01:00
j += todo;
2017-10-30 10:22:38 +01:00
let mut context = SigningContext::with_key(key);
context.update(a.as_ref());
a = context.sign();
}
2017-10-30 10:22:38 +01:00
}
#[cfg(test)]
mod tests {
extern crate tokio_core;
use self::tokio_core::net::TcpListener;
use self::tokio_core::net::TcpStream;
use self::tokio_core::reactor::Core;
use super::handshake;
use super::stretch_key;
use futures::Future;
use futures::Stream;
use ring::digest::SHA256;
use ring::hmac::SigningKey;
use SecioKeyPair;
#[test]
fn handshake_with_self_succeeds_rsa() {
let key1 = {
let private = include_bytes!("../tests/test-rsa-private-key.pk8");
let public = include_bytes!("../tests/test-rsa-public-key.der").to_vec();
SecioKeyPair::rsa_from_pkcs8(private, public).unwrap()
};
let key2 = {
let private = include_bytes!("../tests/test-rsa-private-key-2.pk8");
let public = include_bytes!("../tests/test-rsa-public-key-2.der").to_vec();
SecioKeyPair::rsa_from_pkcs8(private, public).unwrap()
};
handshake_with_self_succeeds(key1, key2);
}
#[test]
fn handshake_with_self_succeeds_ed25519() {
let key1 = SecioKeyPair::ed25519_generated().unwrap();
let key2 = SecioKeyPair::ed25519_generated().unwrap();
handshake_with_self_succeeds(key1, key2);
}
#[test]
fn handshake_with_self_succeeds_secp256k1() {
let key1 = {
let key = include_bytes!("../tests/test-secp256k1-private-key.der");
SecioKeyPair::secp256k1_from_der(&key[..]).unwrap()
};
let key2 = {
let key = include_bytes!("../tests/test-secp256k1-private-key-2.der");
SecioKeyPair::secp256k1_from_der(&key[..]).unwrap()
};
handshake_with_self_succeeds(key1, key2);
}
fn handshake_with_self_succeeds(key1: SecioKeyPair, key2: SecioKeyPair) {
let mut core = Core::new().unwrap();
let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap(), &core.handle()).unwrap();
let listener_addr = listener.local_addr().unwrap();
let server = listener
.incoming()
.into_future()
.map_err(|(e, _)| e.into())
.and_then(move |(connec, _)| handshake(connec.unwrap().0, key1));
let client = TcpStream::connect(&listener_addr, &core.handle())
.map_err(|e| e.into())
.and_then(move |stream| handshake(stream, key2));
core.run(server.join(client)).unwrap();
}
#[test]
fn stretch() {
let mut output = [0u8; 32];
let key1 = SigningKey::new(&SHA256, &[]);
stretch_key(&key1, &mut output);
assert_eq!(
&output,
&[
103, 144, 60, 199, 85, 145, 239, 71, 79, 198, 85, 164, 32, 53, 143, 205, 50, 48,
153, 10, 37, 32, 85, 1, 226, 61, 193, 1, 154, 120, 207, 80,
]
);
let key2 = SigningKey::new(
&SHA256,
&[
157, 166, 80, 144, 77, 193, 198, 6, 23, 220, 87, 220, 191, 72, 168, 197, 54, 33,
219, 225, 84, 156, 165, 37, 149, 224, 244, 32, 170, 79, 125, 35, 171, 26, 178, 176,
92, 168, 22, 27, 205, 44, 229, 61, 152, 21, 222, 81, 241, 81, 116, 236, 74, 166,
89, 145, 5, 162, 108, 230, 55, 54, 9, 17,
],
);
stretch_key(&key2, &mut output);
assert_eq!(
&output,
&[
39, 151, 182, 63, 180, 175, 224, 139, 42, 131, 130, 116, 55, 146, 62, 31, 157, 95,
217, 15, 73, 81, 10, 83, 243, 141, 64, 227, 103, 144, 99, 121,
]
);
let key3 = SigningKey::new(
&SHA256,
&[
98, 219, 94, 104, 97, 70, 139, 13, 185, 110, 56, 36, 66, 3, 80, 224, 32, 205, 102,
170, 59, 32, 140, 245, 86, 102, 231, 68, 85, 249, 227, 243, 57, 53, 171, 36, 62,
225, 178, 74, 89, 142, 151, 94, 183, 231, 208, 166, 244, 130, 130, 209, 248, 65,
19, 48, 127, 127, 55, 82, 117, 154, 124, 108,
],
);
stretch_key(&key3, &mut output);
assert_eq!(
&output,
&[
28, 39, 158, 206, 164, 16, 211, 194, 99, 43, 208, 36, 24, 141, 90, 93, 157, 236,
238, 111, 170, 0, 60, 11, 49, 174, 177, 121, 30, 12, 182, 25,
]
);
}
2017-10-30 10:22:38 +01:00
}