During an auditing Apple found that the "struct" Lua package
we ship with Redis (http://www.inf.puc-rio.br/~roberto/struct/) contains
a security problem. A bound-checking statement fails because of integer
overflow. The bug exists since we initially integrated this package with
Lua, when scripting was introduced, so every version of Redis with
EVAL/EVALSHA capabilities exposed is affected.
Instead of just fixing the bug, the library was updated to the latest
version shipped by the author.
During an auditing effort, the Apple Vulnerability Research team discovered
a critical Redis security issue affecting the Lua scripting part of Redis.
-- Description of the problem
Several years ago I merged a pull request including many small changes at
the Lua MsgPack library (that originally I authored myself). The Pull
Request entered Redis in commit 90b6337c1, in 2014.
Unfortunately one of the changes included a variadic Lua function that
lacked the check for the available Lua C stack. As a result, calling the
"pack" MsgPack library function with a large number of arguments, results
into pushing into the Lua C stack a number of new values proportional to
the number of arguments the function was called with. The pushed values,
moreover, are controlled by untrusted user input.
This in turn causes stack smashing which we believe to be exploitable,
while not very deterministic, but it is likely that an exploit could be
created targeting specific versions of Redis executables. However at its
minimum the issue results in a DoS, crashing the Redis server.
-- Versions affected
Versions greater or equal to Redis 2.8.18 are affected.
-- Reproducing
Reproduce with this (based on the original reproduction script by
Apple security team):
https://gist.github.com/antirez/82445fcbea6d9b19f97014cc6cc79f8a
-- Verification of the fix
The fix was tested in the following way:
1) I checked that the problem is no longer observable running the trigger.
2) The Lua code was analyzed to understand the stack semantics, and that
actually enough stack is allocated in all the cases of mp_pack() calls.
3) The mp_pack() function was modified in order to show exactly what items
in the stack were being set, to make sure that there is no silent overflow
even after the fix.
-- Credits
Thank you to the Apple team and to the other persons that helped me
checking the patch and coordinating this communication.
AE_BARRIER was implemented like:
- Fire the readable event.
- Do not fire the writabel event if the readable fired.
However this may lead to the writable event to never be called if the
readable event is always fired. There is an alterantive, we can just
invert the sequence of the calls in case AE_BARRIER is set. This commit
does that.
In case the write handler is already installed, it could happen that we
serve the reply of a query in the same event loop cycle we received it,
preventing beforeSleep() from guaranteeing that we do the AOF fsync
before sending the reply to the client.
The AE_BARRIER mechanism, introduced in a previous commit, prevents this
problem. This commit makes actual use of this new feature to fix the
bug.
Add AE_BARRIER to the writable event loop so that slaves requesting
votes can't be served before we re-enter the event loop in the next
iteration, so clusterBeforeSleep() will fsync to disk in time.
Also add the call to explicitly fsync, given that we modified the last
vote epoch variable.
AOF fsync=always, and certain Redis Cluster bus operations, require to
fsync data on disk before replying with an acknowledge.
In such case, in order to implement Group Commits, we want to be sure
that queries that are read in a given cycle of the event loop, are never
served to clients in the same event loop iteration. This way, by using
the event loop "before sleep" callback, we can fsync the information
just one time before returning into the event loop for the next cycle.
This is much more efficient compared to calling fsync() multiple times.
Unfortunately because of a bug, this was not always guaranteed: the
actual way the events are installed was the sole thing that could
control. Normally this problem is hard to trigger when AOF is enabled
with fsync=always, because we try to flush the output buffers to the
socekt directly in the beforeSleep() function of Redis. However if the
output buffers are full, we actually install a write event, and in such
a case, this bug could happen.
This change to ae.c modifies the event loop implementation to make this
concept explicit. Write events that are registered with:
AE_WRITABLE|AE_BARRIER
Are guaranteed to never fire after the readable event was fired for the
same file descriptor. In this way we are sure that data is persisted to
disk before the client performing the operation receives an
acknowledged.
However note that this semantics does not provide all the guarantees
that one may believe are automatically provided. Take the example of the
blocking list operations in Redis.
With AOF and fsync=always we could have:
Client A doing: BLPOP myqueue 0
Client B doing: RPUSH myqueue a b c
In this scenario, Client A will get the "a" elements immediately after
the Client B RPUSH will be executed, even before the operation is persisted.
However when Client B will get the acknowledge, it can be sure that
"b,c" are already safe on disk inside the list.
What to note here is that it cannot be assumed that Client A receiving
the element is a guaranteed that the operation succeeded from the point
of view of Client B.
This is due to the fact that the barrier exists within the same socket,
and not between different sockets. However in the case above, the
element "a" was not going to be persisted regardless, so it is a pretty
synthetic argument.
Normally in modern Redis you can't create zero-len lists, however it's
possible to load them from old RDB files generated, for instance, using
Redis 2.8 (see issue #4409). The "Right Thing" would be not loading such
lists at all, but this requires to hook in rdb.c random places in a not
great way, for a problem that is at this point, at best, minor.
Here in this commit instead I just fix the fact that zero length lists,
materialized as quicklists with the first node set to NULL, were
iterated in the wrong way while they are saved, leading to a crash.
The other parts of the list implementation are apparently able to deal
with empty lists correctly, even if they are no longer a thing.
There was not enough sanity checking in the code loading the slots of
Redis Cluster from the nodes.conf file, this resulted into the
attacker's ability to write data at random addresses in the process
memory, by manipulating the index of the array. The bug seems
exploitable using the following techique: the config file may be altered so
that one of the nodes gets, as node ID (which is the first field inside the
structure) some data that is actually executable: then by writing this
address in selected places, this node ID part can be executed after a
jump. So it is mostly just a matter of effort in order to exploit the
bug. In practice however the issue is not very critical because the
bug requires an unprivileged user to be able to modify the Redis cluster
nodes configuration, and at the same time this should result in some
gain. However Redis normally is unprivileged as well. Yet much better to
have this fixed indeed.
Fix#4278.
when SHUTDOWN command is recived it is possible that some of the recent
command were not yet flushed from the AOF buffer, and the server
experiences data loss at shutdown.
This function failed when an internal-only flag was set as an only flag
in a node: the string was trimmed expecting a final comma before
exiting the function, causing a crash. See issue #4142.
Moreover generation of flags representation only needed at DEBUG log
level was always performed: a waste of CPU time. This is fixed as well
by this commit.
Issue #4084 shows how for a design error, GEORADIUS is a write command
because of the STORE option. Because of this it does not work
on readonly slaves, gets redirected to masters in Redis Cluster even
when the connection is in READONLY mode and so forth.
To break backward compatibility at this stage, with Redis 4.0 to be in
advanced RC state, is problematic for the user base. The API can be
fixed into the unstable branch soon if we'll decide to do so in order to
be more consistent, and reease Redis 5.0 with this incompatibility in
the future. This is still unclear.
However, the ability to scale GEO queries in slaves easily is too
important so this commit adds two read-only variants to the GEORADIUS
and GEORADIUSBYMEMBER command: GEORADIUS_RO and GEORADIUSBYMEMBER_RO.
The commands are exactly as the original commands, but they do not
accept the STORE and STOREDIST options.
1. brpop last key index, thus checking all keys for slots.
2. Memory leak in clusterRedirectBlockedClientIfNeeded.
3. Remove while loop in clusterRedirectBlockedClientIfNeeded.
And many other related Github issues... all reporting the same problem.
There was probably just not enough backlog in certain unlucky runs.
I'll ask people that can reporduce if they see now this as fixed as
well.