mirror of
https://github.com/fluencelabs/redis
synced 2025-07-31 00:11:56 +00:00
dict.c clustered buckets.
This commit is contained in:
@@ -434,7 +434,7 @@ void debugCommand(client *c) {
|
||||
|
||||
if (getLongFromObjectOrReply(c, c->argv[2], &keys, NULL) != C_OK)
|
||||
return;
|
||||
dictExpand(c->db->dict,keys);
|
||||
dictExpandToOptimalSize(c->db->dict,keys);
|
||||
for (j = 0; j < keys; j++) {
|
||||
snprintf(buf,sizeof(buf),"%s:%lu",
|
||||
(c->argc == 3) ? "key" : (char*)c->argv[3]->ptr, j);
|
||||
|
329
src/dict.c
329
src/dict.c
@@ -60,7 +60,8 @@
|
||||
* prevented: a hash table is still allowed to grow if the ratio between
|
||||
* the number of elements and the buckets > dict_force_resize_ratio. */
|
||||
static int dict_can_resize = 1;
|
||||
static unsigned int dict_force_resize_ratio = 5;
|
||||
static unsigned int dict_resize_ratio = 20;
|
||||
static unsigned int dict_force_resize_ratio = 60;
|
||||
|
||||
/* -------------------------- private prototypes ---------------------------- */
|
||||
|
||||
@@ -71,18 +72,6 @@ static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
|
||||
|
||||
/* -------------------------- hash functions -------------------------------- */
|
||||
|
||||
/* Thomas Wang's 32 bit Mix Function */
|
||||
unsigned int dictIntHashFunction(unsigned int key)
|
||||
{
|
||||
key += ~(key << 15);
|
||||
key ^= (key >> 10);
|
||||
key += (key << 3);
|
||||
key ^= (key >> 6);
|
||||
key += ~(key << 11);
|
||||
key ^= (key >> 16);
|
||||
return key;
|
||||
}
|
||||
|
||||
static uint32_t dict_hash_function_seed = 5381;
|
||||
|
||||
void dictSetHashFunctionSeed(uint32_t seed) {
|
||||
@@ -158,6 +147,35 @@ unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
|
||||
|
||||
/* ----------------------------- API implementation ------------------------- */
|
||||
|
||||
dictEntry *dictPushEntry(dictEntryVector **table, unsigned int h, const void *key, const void *val)
|
||||
{
|
||||
dictEntryVector *dv = table[h];
|
||||
dictEntry *he;
|
||||
|
||||
if (dv == NULL) {
|
||||
dv = table[h] = zmalloc(sizeof(dictEntryVector)+sizeof(dictEntry));
|
||||
dv->used = 1;
|
||||
dv->free = 0;
|
||||
he = dv->entry;
|
||||
} else if (dv->free == 0) {
|
||||
dv = table[h] = zrealloc(table[h],sizeof(dictEntryVector)+sizeof(dictEntry)*(dv->used+1));
|
||||
he = dv->entry+dv->used;
|
||||
dv->used++;
|
||||
} else {
|
||||
uint32_t entries = dv->used+dv->free;
|
||||
uint32_t j;
|
||||
for (j = 0; j < entries; j++) {
|
||||
if (dv->entry[j].key == NULL) break;
|
||||
}
|
||||
he = dv->entry+j;
|
||||
dv->used++;
|
||||
dv->free--;
|
||||
}
|
||||
he->key = (void*) key;
|
||||
he->v.val = (void*) val;
|
||||
return he;
|
||||
}
|
||||
|
||||
/* Reset a hash table already initialized with ht_init().
|
||||
* NOTE: This function should only be called by ht_destroy(). */
|
||||
static void _dictReset(dictht *ht)
|
||||
@@ -212,8 +230,7 @@ int dictExpand(dict *d, unsigned long size)
|
||||
|
||||
/* the size is invalid if it is smaller than the number of
|
||||
* elements already inside the hash table */
|
||||
if (dictIsRehashing(d) || d->ht[0].used > size)
|
||||
return DICT_ERR;
|
||||
if (dictIsRehashing(d)) return DICT_ERR;
|
||||
|
||||
/* Rehashing to the same table size is not useful. */
|
||||
if (realsize == d->ht[0].size) return DICT_ERR;
|
||||
@@ -221,7 +238,7 @@ int dictExpand(dict *d, unsigned long size)
|
||||
/* Allocate the new hash table and initialize all pointers to NULL */
|
||||
n.size = realsize;
|
||||
n.sizemask = realsize-1;
|
||||
n.table = zcalloc(realsize*sizeof(dictEntry*));
|
||||
n.table = zcalloc(realsize*sizeof(dictEntryVector*));
|
||||
n.used = 0;
|
||||
|
||||
/* Is this the first initialization? If so it's not really a rehashing
|
||||
@@ -237,6 +254,12 @@ int dictExpand(dict *d, unsigned long size)
|
||||
return DICT_OK;
|
||||
}
|
||||
|
||||
/* Expand the dictionary to the optimal number of elements needed to
|
||||
* hold 'entries' keys. */
|
||||
int dictExpandToOptimalSize(dict *d, unsigned long entries) {
|
||||
return dictExpand(d,entries/(dict_resize_ratio/2));
|
||||
}
|
||||
|
||||
/* Performs N steps of incremental rehashing. Returns 1 if there are still
|
||||
* keys to move from the old to the new hash table, otherwise 0 is returned.
|
||||
*
|
||||
@@ -251,7 +274,7 @@ int dictRehash(dict *d, int n) {
|
||||
if (!dictIsRehashing(d)) return 0;
|
||||
|
||||
while(n-- && d->ht[0].used != 0) {
|
||||
dictEntry *de, *nextde;
|
||||
dictEntryVector *dv;
|
||||
|
||||
/* Note that rehashidx can't overflow as we are sure there are more
|
||||
* elements because ht[0].used != 0 */
|
||||
@@ -260,20 +283,26 @@ int dictRehash(dict *d, int n) {
|
||||
d->rehashidx++;
|
||||
if (--empty_visits == 0) return 1;
|
||||
}
|
||||
de = d->ht[0].table[d->rehashidx];
|
||||
/* Move all the keys in this bucket from the old to the new hash HT */
|
||||
while(de) {
|
||||
dv = d->ht[0].table[d->rehashidx];
|
||||
/* Move all the keys in this bucket from the old to the new hash HT.
|
||||
* TODO: if the table we are rehasing to is smaller than the current
|
||||
* table, we can just move the whole entries vector from one table
|
||||
* to the next, since all the entries of this table will hash into
|
||||
* the same slot of the target table. */
|
||||
uint32_t entries = dv ? (dv->used + dv->free) : 0;
|
||||
uint32_t j;
|
||||
|
||||
for (j = 0; j < entries; j++) {
|
||||
unsigned int h;
|
||||
|
||||
nextde = de->next;
|
||||
/* Get the index in the new hash table */
|
||||
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
|
||||
de->next = d->ht[1].table[h];
|
||||
d->ht[1].table[h] = de;
|
||||
d->ht[0].used--;
|
||||
if (dv->entry[j].key == NULL) continue;
|
||||
h = dictHashKey(d, dv->entry[j].key) & d->ht[1].sizemask;
|
||||
dictPushEntry(d->ht[1].table,h,dv->entry[j].key,dv->entry[j].v.val);
|
||||
d->ht[1].used++;
|
||||
de = nextde;
|
||||
d->ht[0].used--;
|
||||
}
|
||||
zfree(dv);
|
||||
d->ht[0].table[d->rehashidx] = NULL;
|
||||
d->rehashidx++;
|
||||
}
|
||||
@@ -360,18 +389,11 @@ dictEntry *dictAddRaw(dict *d, void *key)
|
||||
if ((index = _dictKeyIndex(d, key)) == -1)
|
||||
return NULL;
|
||||
|
||||
/* Allocate the memory and store the new entry.
|
||||
* Insert the element in top, with the assumption that in a database
|
||||
* system it is more likely that recently added entries are accessed
|
||||
* more frequently. */
|
||||
/* Store the new entry: if we are rehashing all new entries go to
|
||||
* the new table. */
|
||||
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
|
||||
entry = zmalloc(sizeof(*entry));
|
||||
entry->next = ht->table[index];
|
||||
ht->table[index] = entry;
|
||||
entry = dictPushEntry(ht->table,index,key,NULL);
|
||||
ht->used++;
|
||||
|
||||
/* Set the hash entry fields. */
|
||||
dictSetKey(d, entry, key);
|
||||
return entry;
|
||||
}
|
||||
|
||||
@@ -413,10 +435,9 @@ dictEntry *dictReplaceRaw(dict *d, void *key) {
|
||||
}
|
||||
|
||||
/* Search and remove an element */
|
||||
static int dictGenericDelete(dict *d, const void *key, int nofree)
|
||||
{
|
||||
static int dictGenericDelete(dict *d, const void *key, int nofree) {
|
||||
unsigned int h, idx;
|
||||
dictEntry *he, *prevHe;
|
||||
dictEntryVector *dv;
|
||||
int table;
|
||||
|
||||
if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
|
||||
@@ -425,25 +446,36 @@ static int dictGenericDelete(dict *d, const void *key, int nofree)
|
||||
|
||||
for (table = 0; table <= 1; table++) {
|
||||
idx = h & d->ht[table].sizemask;
|
||||
he = d->ht[table].table[idx];
|
||||
prevHe = NULL;
|
||||
while(he) {
|
||||
if (key==he->key || dictCompareKeys(d, key, he->key)) {
|
||||
/* Unlink the element from the list */
|
||||
if (prevHe)
|
||||
prevHe->next = he->next;
|
||||
else
|
||||
d->ht[table].table[idx] = he->next;
|
||||
if (!nofree) {
|
||||
dictFreeKey(d, he);
|
||||
dictFreeVal(d, he);
|
||||
dv = d->ht[table].table[idx];
|
||||
if (dv != NULL) {
|
||||
uint32_t entries = dv->used + dv->free;
|
||||
uint32_t j;
|
||||
for (j = 0; j < entries; j++) {
|
||||
dictEntry *he = dv->entry+j;
|
||||
if (he->key == NULL) continue;
|
||||
if (key==he->key || dictCompareKeys(d, key, he->key)) {
|
||||
if (!nofree) {
|
||||
dictFreeKey(d, he);
|
||||
dictFreeVal(d, he);
|
||||
}
|
||||
he->key = NULL;
|
||||
he->v.val = NULL;
|
||||
d->ht[table].used--;
|
||||
dv->free++;
|
||||
dv->used--;
|
||||
|
||||
if (dv->used == 0) {
|
||||
zfree(dv);
|
||||
d->ht[table].table[idx] = NULL;
|
||||
}
|
||||
|
||||
/* TODO: Compact the entries vector if there are not
|
||||
* safe iterators active? Alternatively we could do it
|
||||
* in a single place when scanning entries for read
|
||||
* accesses. */
|
||||
return DICT_OK;
|
||||
}
|
||||
zfree(he);
|
||||
d->ht[table].used--;
|
||||
return DICT_OK;
|
||||
}
|
||||
prevHe = he;
|
||||
he = he->next;
|
||||
}
|
||||
if (!dictIsRehashing(d)) break;
|
||||
}
|
||||
@@ -464,21 +496,24 @@ int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
|
||||
|
||||
/* Free all the elements */
|
||||
for (i = 0; i < ht->size && ht->used > 0; i++) {
|
||||
dictEntry *he, *nextHe;
|
||||
dictEntryVector *dv;
|
||||
|
||||
if (callback && (i & 65535) == 0) callback(d->privdata);
|
||||
|
||||
if ((he = ht->table[i]) == NULL) continue;
|
||||
while(he) {
|
||||
nextHe = he->next;
|
||||
if ((dv = ht->table[i]) == NULL) continue;
|
||||
uint32_t entries = dv->used + dv->free;
|
||||
uint32_t j;
|
||||
for (j = 0; j < entries; j++) {
|
||||
dictEntry *he = dv->entry+j;
|
||||
if (he->key == NULL) continue;
|
||||
dictFreeKey(d, he);
|
||||
dictFreeVal(d, he);
|
||||
zfree(he);
|
||||
ht->used--;
|
||||
he = nextHe;
|
||||
}
|
||||
zfree(dv);
|
||||
ht->table[i] = NULL;
|
||||
}
|
||||
/* Free the table and the allocated cache structure */
|
||||
/* Free the table itself. */
|
||||
zfree(ht->table);
|
||||
/* Re-initialize the table */
|
||||
_dictReset(ht);
|
||||
@@ -495,7 +530,7 @@ void dictRelease(dict *d)
|
||||
|
||||
dictEntry *dictFind(dict *d, const void *key)
|
||||
{
|
||||
dictEntry *he;
|
||||
dictEntryVector *dv;
|
||||
unsigned int h, idx, table;
|
||||
|
||||
if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
|
||||
@@ -503,11 +538,16 @@ dictEntry *dictFind(dict *d, const void *key)
|
||||
h = dictHashKey(d, key);
|
||||
for (table = 0; table <= 1; table++) {
|
||||
idx = h & d->ht[table].sizemask;
|
||||
he = d->ht[table].table[idx];
|
||||
while(he) {
|
||||
if (key==he->key || dictCompareKeys(d, key, he->key))
|
||||
return he;
|
||||
he = he->next;
|
||||
dv = d->ht[table].table[idx];
|
||||
if (dv != NULL) {
|
||||
uint32_t entries = dv->used + dv->free;
|
||||
uint32_t j;
|
||||
for (j = 0; j < entries; j++) {
|
||||
dictEntry *he = dv->entry+j;
|
||||
if (he->key == NULL) continue; /* Empty slot. */
|
||||
if (key==he->key || dictCompareKeys(d, key, he->key))
|
||||
return he;
|
||||
}
|
||||
}
|
||||
if (!dictIsRehashing(d)) return NULL;
|
||||
}
|
||||
@@ -523,8 +563,8 @@ void *dictFetchValue(dict *d, const void *key) {
|
||||
|
||||
/* A fingerprint is a 64 bit number that represents the state of the dictionary
|
||||
* at a given time, it's just a few dict properties xored together.
|
||||
* When an unsafe iterator is initialized, we get the dict fingerprint, and check
|
||||
* the fingerprint again when the iterator is released.
|
||||
* When an unsafe iterator is initialized, we get the dict fingerprint, and
|
||||
* check the fingerprint again when the iterator is released.
|
||||
* If the two fingerprints are different it means that the user of the iterator
|
||||
* performed forbidden operations against the dictionary while iterating. */
|
||||
long long dictFingerprint(dict *d) {
|
||||
@@ -543,8 +583,8 @@ long long dictFingerprint(dict *d) {
|
||||
*
|
||||
* Result = hash(hash(hash(int1)+int2)+int3) ...
|
||||
*
|
||||
* This way the same set of integers in a different order will (likely) hash
|
||||
* to a different number. */
|
||||
* This way the same set of integers in a different order will (likely)
|
||||
* hash to a different number. */
|
||||
for (j = 0; j < 6; j++) {
|
||||
hash += integers[j];
|
||||
/* For the hashing step we use Tomas Wang's 64 bit integer hash. */
|
||||
@@ -567,8 +607,7 @@ dictIterator *dictGetIterator(dict *d)
|
||||
iter->table = 0;
|
||||
iter->index = -1;
|
||||
iter->safe = 0;
|
||||
iter->entry = NULL;
|
||||
iter->nextEntry = NULL;
|
||||
iter->entry = -1;
|
||||
return iter;
|
||||
}
|
||||
|
||||
@@ -579,10 +618,9 @@ dictIterator *dictGetSafeIterator(dict *d) {
|
||||
return i;
|
||||
}
|
||||
|
||||
dictEntry *dictNext(dictIterator *iter)
|
||||
{
|
||||
dictEntry *dictNext(dictIterator *iter) {
|
||||
while (1) {
|
||||
if (iter->entry == NULL) {
|
||||
if (iter->entry == -1) {
|
||||
dictht *ht = &iter->d->ht[iter->table];
|
||||
if (iter->index == -1 && iter->table == 0) {
|
||||
if (iter->safe)
|
||||
@@ -600,15 +638,17 @@ dictEntry *dictNext(dictIterator *iter)
|
||||
break;
|
||||
}
|
||||
}
|
||||
iter->entry = ht->table[iter->index];
|
||||
iter->entry = 0;
|
||||
} else {
|
||||
iter->entry = iter->nextEntry;
|
||||
iter->entry++;
|
||||
}
|
||||
if (iter->entry) {
|
||||
/* We need to save the 'next' here, the iterator user
|
||||
* may delete the entry we are returning. */
|
||||
iter->nextEntry = iter->entry->next;
|
||||
return iter->entry;
|
||||
|
||||
dictEntryVector *dv = iter->d->ht[iter->table].table[iter->index];
|
||||
if (dv == NULL || (unsigned)iter->entry >= (dv->used + dv->free))
|
||||
iter->entry = -1;
|
||||
|
||||
if (iter->entry >= 0 && dv->entry[iter->entry].key != NULL) {
|
||||
return dv->entry+iter->entry;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
@@ -629,9 +669,8 @@ void dictReleaseIterator(dictIterator *iter)
|
||||
* implement randomized algorithms */
|
||||
dictEntry *dictGetRandomKey(dict *d)
|
||||
{
|
||||
dictEntry *he, *orighe;
|
||||
dictEntryVector *dv;
|
||||
unsigned int h;
|
||||
int listlen, listele;
|
||||
|
||||
if (dictSize(d) == 0) return NULL;
|
||||
if (dictIsRehashing(d)) _dictRehashStep(d);
|
||||
@@ -642,29 +681,26 @@ dictEntry *dictGetRandomKey(dict *d)
|
||||
h = d->rehashidx + (random() % (d->ht[0].size +
|
||||
d->ht[1].size -
|
||||
d->rehashidx));
|
||||
he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
|
||||
d->ht[0].table[h];
|
||||
} while(he == NULL);
|
||||
dv = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
|
||||
d->ht[0].table[h];
|
||||
} while(dv == NULL);
|
||||
} else {
|
||||
do {
|
||||
h = random() & d->ht[0].sizemask;
|
||||
he = d->ht[0].table[h];
|
||||
} while(he == NULL);
|
||||
dv = d->ht[0].table[h];
|
||||
} while(dv == NULL);
|
||||
}
|
||||
|
||||
/* Now we found a non empty bucket, but it is a linked
|
||||
* list and we need to get a random element from the list.
|
||||
* The only sane way to do so is counting the elements and
|
||||
* select a random index. */
|
||||
listlen = 0;
|
||||
orighe = he;
|
||||
while(he) {
|
||||
he = he->next;
|
||||
listlen++;
|
||||
/* Now we found a non empty vector. We need to get a random element from
|
||||
* the vector now. */
|
||||
dictEntry *he = NULL;
|
||||
while(he == NULL) {
|
||||
uint32_t r = random() % (dv->used + dv->free);
|
||||
if (dv->entry[r].key != NULL) {
|
||||
he = dv->entry+r;
|
||||
break;
|
||||
}
|
||||
}
|
||||
listele = random() % listlen;
|
||||
he = orighe;
|
||||
while(listele--) he = he->next;
|
||||
return he;
|
||||
}
|
||||
|
||||
@@ -729,11 +765,11 @@ unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
|
||||
continue;
|
||||
}
|
||||
if (i >= d->ht[j].size) continue; /* Out of range for this table. */
|
||||
dictEntry *he = d->ht[j].table[i];
|
||||
dictEntryVector *dv = d->ht[j].table[i];
|
||||
|
||||
/* Count contiguous empty buckets, and jump to other
|
||||
* locations if they reach 'count' (with a minimum of 5). */
|
||||
if (he == NULL) {
|
||||
if (dv == NULL) {
|
||||
emptylen++;
|
||||
if (emptylen >= 5 && emptylen > count) {
|
||||
i = random() & maxsizemask;
|
||||
@@ -741,14 +777,17 @@ unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
|
||||
}
|
||||
} else {
|
||||
emptylen = 0;
|
||||
while (he) {
|
||||
/* Collect all the elements of the buckets found non
|
||||
* empty while iterating. */
|
||||
*des = he;
|
||||
des++;
|
||||
he = he->next;
|
||||
stored++;
|
||||
if (stored == count) return stored;
|
||||
uint32_t entries = dv->used + dv->free;
|
||||
uint32_t j;
|
||||
for (j = 0; j < entries; j++) {
|
||||
if (dv->entry[j].key != NULL) {
|
||||
/* Collect all the elements of the buckets found non
|
||||
* empty while iterating. */
|
||||
*des = dv->entry+j;
|
||||
des++;
|
||||
stored++;
|
||||
if (stored == count) return stored;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -859,7 +898,8 @@ unsigned long dictScan(dict *d,
|
||||
void *privdata)
|
||||
{
|
||||
dictht *t0, *t1;
|
||||
const dictEntry *de, *next;
|
||||
const dictEntryVector *dv;
|
||||
uint32_t j;
|
||||
unsigned long m0, m1;
|
||||
|
||||
if (dictSize(d) == 0) return 0;
|
||||
@@ -869,13 +909,11 @@ unsigned long dictScan(dict *d,
|
||||
m0 = t0->sizemask;
|
||||
|
||||
/* Emit entries at cursor */
|
||||
de = t0->table[v & m0];
|
||||
while (de) {
|
||||
next = de->next;
|
||||
fn(privdata, de);
|
||||
de = next;
|
||||
dv = t0->table[v & m0];
|
||||
for (j = 0; dv && j < (dv->used+dv->free); j++) {
|
||||
if (dv->entry[j].key == NULL) continue;
|
||||
fn(privdata, dv->entry+j);
|
||||
}
|
||||
|
||||
} else {
|
||||
t0 = &d->ht[0];
|
||||
t1 = &d->ht[1];
|
||||
@@ -890,22 +928,20 @@ unsigned long dictScan(dict *d,
|
||||
m1 = t1->sizemask;
|
||||
|
||||
/* Emit entries at cursor */
|
||||
de = t0->table[v & m0];
|
||||
while (de) {
|
||||
next = de->next;
|
||||
fn(privdata, de);
|
||||
de = next;
|
||||
dv = t0->table[v & m0];
|
||||
for (j = 0; dv && j < (dv->used+dv->free); j++) {
|
||||
if (dv->entry[j].key == NULL) continue;
|
||||
fn(privdata, dv->entry+j);
|
||||
}
|
||||
|
||||
/* Iterate over indices in larger table that are the expansion
|
||||
* of the index pointed to by the cursor in the smaller table */
|
||||
do {
|
||||
/* Emit entries at cursor */
|
||||
de = t1->table[v & m1];
|
||||
while (de) {
|
||||
next = de->next;
|
||||
fn(privdata, de);
|
||||
de = next;
|
||||
dv = t1->table[v & m1];
|
||||
for (j = 0; dv && j < (dv->used+dv->free); j++) {
|
||||
if (dv->entry[j].key == NULL) continue;
|
||||
fn(privdata, dv->entry+j);
|
||||
}
|
||||
|
||||
/* Increment bits not covered by the smaller mask */
|
||||
@@ -942,11 +978,11 @@ static int _dictExpandIfNeeded(dict *d)
|
||||
* table (global setting) or we should avoid it but the ratio between
|
||||
* elements/buckets is over the "safe" threshold, we resize doubling
|
||||
* the number of buckets. */
|
||||
if (d->ht[0].used >= d->ht[0].size &&
|
||||
if (d->ht[0].used >= (d->ht[0].size * dict_resize_ratio) &&
|
||||
(dict_can_resize ||
|
||||
d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
|
||||
{
|
||||
return dictExpand(d, d->ht[0].used*2);
|
||||
return dictExpand(d, d->ht[0].used / (dict_resize_ratio/2));
|
||||
}
|
||||
return DICT_OK;
|
||||
}
|
||||
@@ -973,7 +1009,7 @@ static unsigned long _dictNextPower(unsigned long size)
|
||||
static int _dictKeyIndex(dict *d, const void *key)
|
||||
{
|
||||
unsigned int h, idx, table;
|
||||
dictEntry *he;
|
||||
dictEntryVector *dv;
|
||||
|
||||
/* Expand the hash table if needed */
|
||||
if (_dictExpandIfNeeded(d) == DICT_ERR)
|
||||
@@ -983,11 +1019,16 @@ static int _dictKeyIndex(dict *d, const void *key)
|
||||
for (table = 0; table <= 1; table++) {
|
||||
idx = h & d->ht[table].sizemask;
|
||||
/* Search if this slot does not already contain the given key */
|
||||
he = d->ht[table].table[idx];
|
||||
while(he) {
|
||||
if (key==he->key || dictCompareKeys(d, key, he->key))
|
||||
return -1;
|
||||
he = he->next;
|
||||
dv = d->ht[table].table[idx];
|
||||
if (dv != NULL) {
|
||||
uint32_t entries = dv->used + dv->free;
|
||||
uint32_t j;
|
||||
for (j = 0; j < entries; j++) {
|
||||
dictEntry *he = dv->entry+j;
|
||||
if (he->key == NULL) continue;
|
||||
if (key==he->key || dictCompareKeys(d, key, he->key))
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if (!dictIsRehashing(d)) break;
|
||||
}
|
||||
@@ -1026,20 +1067,14 @@ size_t _dictGetStatsHt(char *buf, size_t bufsize, dictht *ht, int tableid) {
|
||||
/* Compute stats. */
|
||||
for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
|
||||
for (i = 0; i < ht->size; i++) {
|
||||
dictEntry *he;
|
||||
|
||||
if (ht->table[i] == NULL) {
|
||||
clvector[0]++;
|
||||
continue;
|
||||
}
|
||||
slots++;
|
||||
/* For each hash entry on this slot... */
|
||||
chainlen = 0;
|
||||
he = ht->table[i];
|
||||
while(he) {
|
||||
chainlen++;
|
||||
he = he->next;
|
||||
}
|
||||
dictEntryVector *dv = ht->table[i];
|
||||
chainlen = dv->used;
|
||||
clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
|
||||
if (chainlen > maxchainlen) maxchainlen = chainlen;
|
||||
totchainlen += chainlen;
|
||||
|
14
src/dict.h
14
src/dict.h
@@ -54,10 +54,11 @@ typedef struct dictEntry {
|
||||
} v;
|
||||
} dictEntry;
|
||||
|
||||
typedef struct dictEntrySlot {
|
||||
unsigned long numentries;
|
||||
dictEntry *entries;
|
||||
} dictEntrySlot;
|
||||
typedef struct dictEntryVector {
|
||||
uint32_t used; /* Number of used entries. */
|
||||
uint32_t free; /* Number of free entries (with key field = NULL). */
|
||||
dictEntry entry[];
|
||||
} dictEntryVector;
|
||||
|
||||
typedef struct dictType {
|
||||
unsigned int (*hashFunction)(const void *key);
|
||||
@@ -71,7 +72,7 @@ typedef struct dictType {
|
||||
/* This is our hash table structure. Every dictionary has two of this as we
|
||||
* implement incremental rehashing, for the old to the new table. */
|
||||
typedef struct dictht {
|
||||
dictEntrySlot **table;
|
||||
dictEntryVector **table;
|
||||
unsigned long size;
|
||||
unsigned long sizemask;
|
||||
unsigned long used;
|
||||
@@ -93,7 +94,7 @@ typedef struct dictIterator {
|
||||
dict *d;
|
||||
long index;
|
||||
int table, safe;
|
||||
dictEntry *entry, *nextEntry;
|
||||
long entry; /* Current entry position in the cluster. */
|
||||
/* unsafe iterator fingerprint for misuse detection. */
|
||||
long long fingerprint;
|
||||
} dictIterator;
|
||||
@@ -153,6 +154,7 @@ typedef void (dictScanFunction)(void *privdata, const dictEntry *de);
|
||||
/* API */
|
||||
dict *dictCreate(dictType *type, void *privDataPtr);
|
||||
int dictExpand(dict *d, unsigned long size);
|
||||
int dictExpandToOptimalSize(dict *d, unsigned long entries);
|
||||
int dictAdd(dict *d, void *key, void *val);
|
||||
dictEntry *dictAddRaw(dict *d, void *key);
|
||||
int dictReplace(dict *d, void *key, void *val);
|
||||
|
@@ -1086,7 +1086,7 @@ robj *rdbLoadObject(int rdbtype, rio *rdb) {
|
||||
/* It's faster to expand the dict to the right size asap in order
|
||||
* to avoid rehashing */
|
||||
if (len > DICT_HT_INITIAL_SIZE)
|
||||
dictExpand(o->ptr,len);
|
||||
dictExpandToOptimalSize(o->ptr,len);
|
||||
} else {
|
||||
o = createIntsetObject();
|
||||
}
|
||||
@@ -1105,7 +1105,7 @@ robj *rdbLoadObject(int rdbtype, rio *rdb) {
|
||||
o->ptr = intsetAdd(o->ptr,llval,NULL);
|
||||
} else {
|
||||
setTypeConvert(o,OBJ_ENCODING_HT);
|
||||
dictExpand(o->ptr,len);
|
||||
dictExpandToOptimalSize(o->ptr,len);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1452,8 +1452,8 @@ int rdbLoad(char *filename) {
|
||||
goto eoferr;
|
||||
if ((expires_size = rdbLoadLen(&rdb,NULL)) == RDB_LENERR)
|
||||
goto eoferr;
|
||||
dictExpand(db->dict,db_size);
|
||||
dictExpand(db->expires,expires_size);
|
||||
dictExpandToOptimalSize(db->dict,db_size);
|
||||
dictExpandToOptimalSize(db->expires,expires_size);
|
||||
continue; /* Read type again. */
|
||||
} else if (type == RDB_OPCODE_AUX) {
|
||||
/* AUX: generic string-string fields. Use to add state to RDB
|
||||
|
@@ -243,7 +243,7 @@ void setTypeConvert(robj *setobj, int enc) {
|
||||
sds element;
|
||||
|
||||
/* Presize the dict to avoid rehashing */
|
||||
dictExpand(d,intsetLen(setobj->ptr));
|
||||
dictExpandToOptimalSize(d,intsetLen(setobj->ptr));
|
||||
|
||||
/* To add the elements we extract integers and create redis objects */
|
||||
si = setTypeInitIterator(setobj);
|
||||
|
@@ -2268,7 +2268,7 @@ void zunionInterGenericCommand(client *c, robj *dstkey, int op) {
|
||||
if (setnum) {
|
||||
/* Our union is at least as large as the largest set.
|
||||
* Resize the dictionary ASAP to avoid useless rehashing. */
|
||||
dictExpand(accumulator,zuiLength(&src[setnum-1]));
|
||||
dictExpandToOptimalSize(accumulator,zuiLength(&src[setnum-1]));
|
||||
}
|
||||
|
||||
/* Step 1: Create a dictionary of elements -> aggregated-scores
|
||||
@@ -2313,7 +2313,7 @@ void zunionInterGenericCommand(client *c, robj *dstkey, int op) {
|
||||
/* We now are aware of the final size of the resulting sorted set,
|
||||
* let's resize the dictionary embedded inside the sorted set to the
|
||||
* right size, in order to save rehashing time. */
|
||||
dictExpand(dstzset->dict,dictSize(accumulator));
|
||||
dictExpandToOptimalSize(dstzset->dict,dictSize(accumulator));
|
||||
|
||||
while((de = dictNext(di)) != NULL) {
|
||||
sds ele = dictGetKey(de);
|
||||
|
Reference in New Issue
Block a user