mirror of
https://github.com/fluencelabs/musl
synced 2025-06-27 21:52:02 +00:00
9bbddf730f7837cf87f4c789fbb41a312e295d6c
commitf3ddd17380
introduced early relocations and subsequent reprocessing as part of the dynamic linker bootstrap overhaul, to allow use of arbitrary libc functions before the main application and libraries are loaded, but only reprocessed GOT/PLT relocation types. commitc093e2e820
added reprocessing of non-GOT/PLT relocations to fix an actual regression that was observed on powerpc, but only for RELA format tables with out-of-line addends. REL table (inline addends at the relocation address) reprocessing is trickier because the first relocation pass clobbers the addends. this patch extends symbolic relocation reprocessing for libc/ldso to support all relocation types, whether REL or RELA format tables are used. it is believed not to alter behavior on any existing archs for the current dynamic linker and libc code. the motivations for this change are consistency and future-proofing. it ensures that behavior does not differ depending on whether REL or RELA tables are used, which could lead to undetected arch-specific bugs. it also ensures that, if in the future code depending on additional relocation types is added to libc.so, either at the source level or as part of the compiler runtime that gets pulled in (for example, soft-float with TLS for fenv), the new code will work properly. the implementation concept is simple: stage 2 of the dynamic linker counts the number of symbolic relocations in the libc/ldso REL table and allocates a VLA to save their addends into; stage 3 then uses the saved addends in place of the inline ones which were clobbered. for stack safety, a hard limit (currently 4k) is imposed on the number of such addends; this should be a couple orders of magnitude larger than the actual need. this number is not a runtime variable that could break fail-safety; it is constant for a given libc.so build.
musl libc musl, pronounced like the word "mussel", is an MIT-licensed implementation of the standard C library targetting the Linux syscall API, suitable for use in a wide range of deployment environments. musl offers efficient static and dynamic linking support, lightweight code and low runtime overhead, strong fail-safe guarantees under correct usage, and correctness in the sense of standards conformance and safety. musl is built on the principle that these goals are best achieved through simple code that is easy to understand and maintain. The 1.1 release series for musl features coverage for all interfaces defined in ISO C99 and POSIX 2008 base, along with a number of non-standardized interfaces for compatibility with Linux, BSD, and glibc functionality. For basic installation instructions, see the included INSTALL file. Information on full musl-targeted compiler toolchains, system bootstrapping, and Linux distributions built on musl can be found on the project website: http://www.musl-libc.org/
Description
Languages
C
92%
Assembly
4.2%
JavaScript
1.5%
C++
1%
Awk
0.4%
Other
0.9%