598 lines
26 KiB
TypeScript

/**
* Environment definitions for compiling AssemblyScript to JavaScript using tsc.
*
* Note that semantic differences require additional explicit conversions for full compatibility.
* For example, when casting an i32 to an u8, doing `<u8>(someI32 & 0xff)` will yield the same
* result when compiling to WebAssembly or JS while `<u8>someI32` alone does nothing in JS.
*
* Note that i64's are not portable (JS numbers are IEEE754 doubles with a maximum safe integer
* value of 2^53-1) and instead require a compatibility layer to work in JS as well, as for example
* {@link glue/js/i64} respectively {@link glue/wasm/i64}.
*
* @module std/portable
*//***/
/// <reference no-default-lib="true"/>
// Types
declare type i8 = number;
declare type i16 = number;
declare type i32 = number;
declare type isize = number;
declare type u8 = number;
declare type u16 = number;
declare type u32 = number;
declare type bool = boolean;
declare type usize = number;
declare type f32 = number;
declare type f64 = number;
// Compiler hints
/** Compiler target. 0 = JS, 1 = WASM32, 2 = WASM64. */
declare const ASC_TARGET: i32;
// Builtins
/** Performs the sign-agnostic count leading zero bits operation on a 32-bit integer. All zero bits are considered leading if the value is zero. */
declare function clz<T = i32>(value: T): T;
/** Performs the sign-agnostic count tailing zero bits operation on a 32-bit integer. All zero bits are considered trailing if the value is zero. */
declare function ctz<T = i32>(value: T): T;
/** Performs the sign-agnostic count number of one bits operation on a 32-bit integer. */
declare function popcnt<T = i32>(value: T): T;
/** Performs the sign-agnostic rotate left operation on a 32-bit integer. */
declare function rotl<T = i32>(value: T, shift: T): T;
/** Performs the sign-agnostic rotate right operation on a 32-bit integer. */
declare function rotr<T = i32>(value: T, shift: T): T;
/** Computes the absolute value of an integer or float. */
declare function abs<T = i32 | f32 | f64>(value: T): T;
/** Determines the maximum of two integers or floats. If either operand is `NaN`, returns `NaN`. */
declare function max<T = i32 | f32 | f64>(left: T, right: T): T;
/** Determines the minimum of two integers or floats. If either operand is `NaN`, returns `NaN`. */
declare function min<T = i32 | f32 | f64>(left: T, right: T): T;
/** Composes a 32-bit or 64-bit float from the magnitude of `x` and the sign of `y`. */
declare function copysign<T = f32 | f64>(x: T, y: T): T;
/** Performs the ceiling operation on a 32-bit or 64-bit float. */
declare function ceil<T = f32 | f64>(value: T): T;
/** Performs the floor operation on a 32-bit or 64-bit float. */
declare function floor<T = f32 | f64>(value: T): T;
/** Rounds to the nearest integer tied to even of a 32-bit or 64-bit float. */
declare function nearest<T = f32 | f64>(value: T): T;
/** Selects one of two pre-evaluated values depending on the condition. */
declare function select<T>(ifTrue: T, ifFalse: T, condition: bool): T;
/** Calculates the square root of a 32-bit or 64-bit float. */
declare function sqrt<T = f32 | f64>(value: T): T;
/** Rounds to the nearest integer towards zero of a 32-bit or 64-bit float. */
declare function trunc<T = f32 | f64>(value: T): T;
/** Loads a value of the specified type from memory. Type must be `u8`. */
declare function load<T = u8>(ptr: usize, constantOffset?: usize): T;
/** Stores a value of the specified type to memory. Type must be `u8`. */
declare function store<T = u8>(ptr: usize, value: T, constantOffset?: usize): void;
/** Emits an unreachable operation that results in a runtime error when executed. */
declare function unreachable(): any; // sic
/** NaN (not a number) as a 32-bit or 64-bit float depending on context. */
declare const NaN: f32 | f64;
/** Positive infinity as a 32-bit or 64-bit float depending on context. */
declare const Infinity: f32 | f64;
/** Changes the type of any value of `usize` kind to another one of `usize` kind. Useful for casting class instances to their pointer values and vice-versa. Beware that this is unsafe.*/
declare function changetype<T>(value: any): T;
/** Explicitly requests no bounds checks on the provided expression. Useful for array accesses. */
declare function unchecked<T>(value: T): T;
/** Tests if a 32-bit or 64-bit float is `NaN`. */
declare function isNaN<T = f32 | f64>(value: T): bool;
/** Tests if a 32-bit or 64-bit float is finite, that is not `NaN` or +/-`Infinity`. */
declare function isFinite<T = f32 | f64>(value: T): bool;
/** Tests if the specified value is a valid integer. Can't distinguish an integer from an integral float. */
declare function isInteger(value: any): value is number;
/** Tests if the specified value is a valid float. Can't distinguish a float from an integer. */
declare function isFloat(value: any): value is number;
/** Tests if the specified value is of a reference type. */
declare function isReference(value: any): value is object | string;
/** Tests if the specified value can be used as a string. */
declare function isString(value: any): value is string | String;
/** Tests if the specified value can be used as an array. */
declare function isArray(value: any): value is Array<any>;
/** Traps if the specified value is not true-ish, otherwise returns the value. */
declare function assert<T>(isTrueish: T | null, message?: string): T;
/** Parses an integer string to a 64-bit float. */
declare function parseInt(str: string, radix?: i32): f64;
/** Parses an integer string to a 32-bit integer. */
declare function parseI32(str: string, radix?: i32): i32;
/** Parses a floating point string to a 64-bit float. */
declare function parseFloat(str: string): f64;
/** Returns the 64-bit floating-point remainder of `x/y`. */
declare function fmod(x: f64, y: f64): f64;
/** Returns the 32-bit floating-point remainder of `x/y`. */
declare function fmodf(x: f32, y: f32): f32;
/** Converts any other numeric value to an 8-bit signed integer. */
declare function i8(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i8;
declare namespace i8 {
/** Smallest representable value. */
export const MIN_VALUE: i8;
/** Largest representable value. */
export const MAX_VALUE: i8;
/** Converts a string to a floating-point number and cast to target integer after. */
export function parseFloat(string: string): i8;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): i8;
}
/** Converts any other numeric value to a 16-bit signed integer. */
declare function i16(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i8;
declare namespace i16 {
/** Smallest representable value. */
export const MIN_VALUE: i16;
/** Largest representable value. */
export const MAX_VALUE: i16;
/** Converts a string to a floating-point number and cast to target integer after. */
export function parseFloat(string: string): i16;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): i16;
}
/** Converts any other numeric value to a 32-bit signed integer. */
declare function i32(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i32;
declare namespace i32 {
/** Smallest representable value. */
export const MIN_VALUE: i32;
/** Largest representable value. */
export const MAX_VALUE: i32;
/** Converts a string to a floating-point number and cast to target integer after. */
export function parseFloat(string: string): i32;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): i32;
}
/** Converts any other numeric value to a 32-bit (in WASM32) respectivel 64-bit (in WASM64) signed integer. */
declare function isize(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): isize;
declare namespace isize {
/** Smallest representable value. */
export const MIN_VALUE: isize;
/** Largest representable value. */
export const MAX_VALUE: isize;
/** Converts a string to a floating-point number and cast to target integer after. */
export function parseFloat(string: string): isize;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): isize;
}
/** Converts any other numeric value to an 8-bit unsigned integer. */
declare function u8(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i8;
declare namespace u8 {
/** Smallest representable value. */
export const MIN_VALUE: u8;
/** Largest representable value. */
export const MAX_VALUE: u8;
/** Converts a string to a floating-point number and cast to target integer after. */
export function parseFloat(string: string): u8;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): u8;
}
/** Converts any other numeric value to a 16-bit unsigned integer. */
declare function u16(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i8;
declare namespace u16 {
/** Smallest representable value. */
export const MIN_VALUE: u16;
/** Largest representable value. */
export const MAX_VALUE: u16;
/** Converts a string to a floating-point number and cast to target integer after. */
export function parseFloat(string: string): u16;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): u16;
}
/** Converts any other numeric value to a 32-bit unsigned integer. */
declare function u32(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i32;
declare namespace u32 {
/** Smallest representable value. */
export const MIN_VALUE: u32;
/** Largest representable value. */
export const MAX_VALUE: u32;
/** Converts a string to a floating-point number and cast to target integer after. */
export function parseFloat(string: string): u32;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): u32;
}
/** Converts any other numeric value to a 32-bit (in WASM32) respectivel 64-bit (in WASM64) unsigned integer. */
declare function usize(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): isize;
declare namespace usize {
/** Smallest representable value. */
export const MIN_VALUE: usize;
/** Largest representable value. */
export const MAX_VALUE: usize;
/** Converts a string to a floating-point number and cast to target integer after. */
export function parseFloat(string: string): usize;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): usize;
}
/** Converts any other numeric value to a 1-bit unsigned integer. */
declare function bool(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): bool;
declare namespace bool {
/** Smallest representable value. */
export const MIN_VALUE: bool;
/** Largest representable value. */
export const MAX_VALUE: bool;
}
/** Converts any other numeric value to a 32-bit float. */
declare function f32(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): f32;
declare namespace f32 {
/** Smallest representable value. */
export const MIN_VALUE: f32;
/** Largest representable value. */
export const MAX_VALUE: f32;
/** Smallest normalized positive value. */
export const MIN_POSITIVE_VALUE: f32;
/** Smallest safely representable integer value. */
export const MIN_SAFE_INTEGER: f32;
/** Largest safely representable integer value. */
export const MAX_SAFE_INTEGER: f32;
/** Difference between 1 and the smallest representable value greater than 1. */
export const EPSILON: f32;
/** Returns a boolean value that indicates whether a value is the reserved value NaN (not a number). */
export function isNaN(value: f32): bool;
/** Returns true if passed value is finite. */
export function isFinite(value: f32): bool;
/** Returns true if the value passed is a safe integer. */
export function isSafeInteger(value: f32): bool;
/** Returns true if the value passed is an integer, false otherwise. */
export function isInteger(value: f32): bool;
/** Converts a string to a floating-point number. */
export function parseFloat(string: string): f32;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): f32;
}
/** Converts any other numeric value to a 64-bit float. */
declare function f64(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): f64;
declare namespace f64 {
/** Smallest representable value. */
export const MIN_VALUE: f64;
/** Largest representable value. */
export const MAX_VALUE: f64;
/** Smallest normalized positive value. */
export const MIN_POSITIVE_VALUE: f64;
/** Smallest safely representable integer value. */
export const MIN_SAFE_INTEGER: f64;
/** Largest safely representable integer value. */
export const MAX_SAFE_INTEGER: f64;
/** Difference between 1 and the smallest representable value greater than 1. */
export const EPSILON: f64;
/** Returns a boolean value that indicates whether a value is the reserved value NaN (not a number). */
export function isNaN(value: f32): bool;
/** Returns true if passed value is finite. */
export function isFinite(value: f32): bool;
/** Returns true if the value passed is a safe integer. */
export function isSafeInteger(value: f64): bool;
/** Returns true if the value passed is an integer, false otherwise. */
export function isInteger(value: f64): bool;
/** Converts a string to a floating-point number. */
export function parseFloat(string: string): f64;
/** Converts A string to an integer. */
export function parseInt(string: string, radix?: i32): f64;
}
// Polyfills
/** [Polyfill] Performs the sign-agnostic reverse bytes **/
declare function bswap<T = i32 | u32 | isize | usize>(value: T): T;
/** [Polyfill] Performs the sign-agnostic reverse bytes only for last 16-bit **/
declare function bswap16<T = i16 | u16 | i32 | u32>(value: T): T;
// Standard library
/** Memory operations. */
declare namespace memory {
/** Allocates a chunk of memory of the specified size and returns a pointer to it. */
function allocate(size: usize): usize;
/** Disposes a chunk of memory by its pointer. */
function free(ptr: usize): void;
/** Copies n bytes from the specified source to the specified destination in memory. These regions may overlap. */
function copy(dst: usize, src: usize, n: usize): void;
/** Resets the allocator to its initial state, if supported. */
function reset(): void;
}
/** Class representing a generic, fixed-length raw binary data buffer. */
declare class ArrayBuffer {
/** The size, in bytes, of the array. */
readonly byteLength: i32;
/** Constructs a new array buffer of the given length in bytes. */
constructor(length: i32);
/** Returns a copy of this array buffer's bytes from begin, inclusive, up to end, exclusive. */
slice(begin?: i32, end?: i32): ArrayBuffer;
/** Returns a string representation of ArrayBuffer. */
toString(): string;
}
/** The `DataView` view provides a low-level interface for reading and writing multiple number types in a binary `ArrayBuffer`, without having to care about the platform's endianness. */
declare class DataView {
/** The `buffer` accessor property represents the `ArrayBuffer` or `SharedArrayBuffer` referenced by the `DataView` at construction time. */
readonly buffer: ArrayBuffer;
/** The `byteLength` accessor property represents the length (in bytes) of this view from the start of its `ArrayBuffer` or `SharedArrayBuffer`. */
readonly byteLength: i32;
/** The `byteOffset` accessor property represents the offset (in bytes) of this view from the start of its `ArrayBuffer` or `SharedArrayBuffer`. */
readonly byteOffset: i32;
/** Constructs a new `DataView` with the given properties */
constructor(buffer: ArrayBuffer, byteOffset?: i32, byteLength?: i32);
/** The `getFloat32()` method gets a signed 32-bit float (float) at the specified byte offset from the start of the `DataView`. */
getFloat32(byteOffset: i32, littleEndian?: boolean): f32;
/** The `getFloat64()` method gets a signed 64-bit float (double) at the specified byte offset from the start of the `DataView`. */
getFloat64(byteOffset: i32, littleEndian?: boolean): f64;
/** The `getInt8()` method gets a signed 8-bit integer (byte) at the specified byte offset from the start of the `DataView`. */
getInt8(byteOffset: i32): i8;
/** The `getInt16()` method gets a signed 16-bit integer (short) at the specified byte offset from the start of the `DataView`. */
getInt16(byteOffset: i32, littleEndian?: boolean): i16;
/** The `getInt32()` method gets a signed 32-bit integer (long) at the specified byte offset from the start of the `DataView`. */
getInt32(byteOffset: i32, littleEndian?: boolean): i32;
/** The `getUint8()` method gets an unsigned 8-bit integer (unsigned byte) at the specified byte offset from the start of the `DataView`. */
getUint8(byteOffset: i32): u8;
/** The `getUint16()` method gets an unsigned 16-bit integer (unsigned short) at the specified byte offset from the start of the `DataView`. */
getUint16(byteOffset: i32, littleEndian?: boolean): u16;
/** The `getUint32()` method gets an unsigned 32-bit integer (unsigned long) at the specified byte offset from the start of the `DataView`. */
getUint32(byteOffset: i32, littleEndian?: boolean): u32;
/** The `setFloat32()` method stores a signed 32-bit float (float) value at the specified byte offset from the start of the `DataView`. */
setFloat32(byteOffset: i32, value: f32, littleEndian?: boolean): void;
/** The `setFloat64()` method stores a signed 64-bit float (double) value at the specified byte offset from the start of the `DataView`. */
setFloat64(byteOffset: i32, value: f64, littleEndian?: boolean): void;
/** The `setInt8()` method stores a signed 8-bit integer (byte) value at the specified byte offset from the start of the `DataView`. */
setInt8(byteOffset: i32, value: i8): void;
/** The `setInt16()` method stores a signed 16-bit integer (short) value at the specified byte offset from the start of the `DataView`. */
setInt16(byteOffset: i32, value: i16, littleEndian?: boolean): void;
/** The `setInt32()` method stores a signed 32-bit integer (long) value at the specified byte offset from the start of the `DataView`. */
setInt32(byteOffset: i32, value: i32, littleEndian?: boolean): void;
/** The `setUint8()` method stores an unsigned 8-bit integer (byte) value at the specified byte offset from the start of the `DataView`. */
setUint8(byteOffset: i32, value: u8): void;
/** The `setUint16()` method stores an unsigned 16-bit integer (unsigned short) value at the specified byte offset from the start of the `DataView`. */
setUint16(byteOffset: i32, value: u16, littleEndian?: boolean): void;
/** The `setUint32()` method stores an unsigned 32-bit integer (unsigned long) value at the specified byte offset from the start of the `DataView`. */
setUint32(byteOffset: i32, value: u32, littleEndian?: boolean): void;
/** Returns a string representation of DataView. */
toString(): string;
}
declare class Array<T> {
static isArray<U>(value: any): value is Array<any>;
[key: number]: T;
length: i32;
constructor(capacity?: i32);
fill(value: T, start?: i32, end?: i32): this;
every(callbackfn: (element: T, index: i32, array?: Array<T>) => bool): bool;
findIndex(predicate: (element: T, index: i32, array?: Array<T>) => bool): i32;
includes(searchElement: T, fromIndex?: i32): bool;
indexOf(searchElement: T, fromIndex?: i32): i32;
lastIndexOf(searchElement: T, fromIndex?: i32): i32;
push(element: T): i32;
concat(items: T[]): T[];
copyWithin(target: i32, start: i32, end?: i32): this;
pop(): T;
forEach(callbackfn: (value: T, index: i32, array: Array<T>) => void): void;
map<U>(callbackfn: (value: T, index: i32, array: Array<T>) => U): Array<U>;
filter(callbackfn: (value: T, index: i32, array: Array<T>) => bool): Array<T>;
reduce<U>(callbackfn: (previousValue: U, currentValue: T, currentIndex: i32, array: Array<T>) => U, initialValue: U): U;
reduceRight<U>(callbackfn: (previousValue: U, currentValue: T, currentIndex: i32, array: Array<T>) => U, initialValue: U): U;
shift(): T;
some(callbackfn: (element: T, index: i32, array?: Array<T>) => bool): bool;
unshift(element: T): i32;
slice(from?: i32, to?: i32): Array<T>;
splice(start: i32, deleteCount?: i32): Array<T>;
sort(comparator?: (a: T, b: T) => i32): this;
join(separator?: string): string;
reverse(): T[];
toString(): string;
}
declare class Uint8Array extends Array<u8> {}
declare class Uint8ClampedArray extends Array<u8> {}
declare class Uint16Array extends Array<u16> {}
declare class Uint32Array extends Array<u32> {}
declare class Int8Array extends Array<i8> {}
declare class Int16Array extends Array<i16> {}
declare class Int32Array extends Array<i32> {}
declare class Float32Array extends Array<f32> {}
declare class Float64Array extends Array<f64> {}
declare class String {
static fromCharCode(ls: i32, hs?: i32): string;
static fromCharCodes(arr: u16[]): string;
static fromCodePoint(code: i32): string;
static fromCodePoints(arr: i32[]): string;
readonly length: i32;
private constructor();
charAt(index: i32): string;
charCodeAt(index: i32): i32;
concat(other: string): string;
indexOf(other: string, fromIndex?: i32): i32;
lastIndexOf(other: string, fromIndex?: i32): i32;
includes(other: string): bool;
startsWith(other: string): bool;
endsWith(other: string): bool;
substr(start: u32, length?: u32): string;
substring(from: i32, to?: i32): string;
trim(): string;
trimLeft(): string;
trimRight(): string;
trimStart(): string;
trimEnd(): string;
padStart(targetLength: i32, padString?: string): string;
padEnd(targetLength: i32, padString?: string): string;
replace(search: string, replacement: string): string;
repeat(count?: i32): string;
split(separator?: string, limit?: i32): string[];
toString(): string;
}
interface Boolean {}
declare class Number {
private constructor();
toString(radix?: i32): string;
}
interface Object {}
interface Function {}
interface RegExp {}
interface IArguments {}
/** Class for representing a runtime error. Base class of all errors. */
declare class Error {
/** Error name. */
name: string;
/** Message provided on construction. */
message: string;
/** Stack trace. */
stack?: string;
/** Constructs a new error, optionally with a message. */
constructor(message?: string);
/** Method returns a string representing the specified Error class. */
toString(): string;
}
/** Class for indicating an error when a value is not in the set or range of allowed values. */
declare class RangeError extends Error { }
/** Class for indicating an error when a value is not of the expected type. */
declare class TypeError extends Error { }
/** Class for indicating an error when trying to interpret syntactically invalid code. */
declare class SyntaxError extends Error { }
declare class Set<T> {
constructor(entries?: T[]);
readonly size: i32;
has(value: T): bool;
add(value: T): void;
delete(value: T): bool;
clear(): void;
toString(): string;
[Symbol.iterator](): Iterator<T>;
}
declare class Map<K,V> {
constructor(entries?: [K, V][]);
readonly size: i32;
set(key: K, value: V): void;
has(key: K): bool;
get(key: K): V | null;
clear(): void;
entries(): Iterable<[K, V]>;
keys(): Iterable<K>;
values(): Iterable<V>;
delete(key: K): bool;
toString(): string;
[Symbol.iterator](): Iterator<[K,V]>;
}
interface SymbolConstructor {
readonly hasInstance: symbol;
readonly isConcatSpreadable: symbol;
readonly isRegExp: symbol;
readonly iterator: symbol;
readonly match: symbol;
readonly replace: symbol;
readonly search: symbol;
readonly species: symbol;
readonly split: symbol;
readonly toPrimitive: symbol;
readonly toStringTag: symbol;
readonly unscopables: symbol;
(description?: string | null): symbol;
for(key: string): symbol;
keyFor(sym: symbol): string | null;
}
declare const Symbol: SymbolConstructor;
interface Iterable<T> {
[Symbol.iterator](): Iterator<T>;
}
interface Iterator<T> {}
interface IMath {
readonly E: f64;
readonly LN2: f64;
readonly LN10: f64;
readonly LOG2E: f64;
readonly LOG10E: f64;
readonly PI: f64;
readonly SQRT1_2: f64;
readonly SQRT2: f64;
abs(x: f64): f64;
acos(x: f64): f64;
acosh(x: f64): f64;
asin(x: f64): f64;
asinh(x: f64): f64;
atan(x: f64): f64;
atan2(y: f64, x: f64): f64;
atanh(x: f64): f64;
cbrt(x: f64): f64;
ceil(x: f64): f64;
clz32(x: f64): i32;
cos(x: f64): f64;
cosh(x: f64): f64;
exp(x: f64): f64;
expm1(x: f64): f64;
floor(x: f64): f64;
fround(x: f64): f32;
hypot(value1: f64, value2: f64): f64; // TODO: see std/math
imul(a: f64, b: f64): i32;
log(x: f64): f64;
log10(x: f64): f64;
log1p(x: f64): f64;
log2(x: f64): f64;
max(value1: f64, value2: f64): f64; // TODO: see std/math
min(value1: f64, value2: f64): f64; // TODO: see std/math
pow(base: f64, exponent: f64): f64;
random(): f64;
round(x: f64): f64;
sign(x: f64): f64;
signbit(x: f64): bool;
sin(x: f64): f64;
sinh(x: f64): f64;
sqrt(x: f64): f64;
tan(x: f64): f64;
tanh(x: f64): f64;
trunc(x: f64): f64;
}
declare const Math: IMath;
declare const Mathf: IMath;
declare const JSMath: IMath;
declare class Date {
/** Returns the UTC timestamp in milliseconds of the specified date. */
static UTC(
year: i32,
month: i32,
day: i32,
hour: i32,
minute: i32,
second: i32,
millisecond: i32
): number;
/** Returns the current UTC timestamp in milliseconds. */
static now(): number;
/** Constructs a new date object from an UTC timestamp in milliseconds. */
constructor(value: number);
/** Returns the UTC timestamp of this date in milliseconds. */
getTime(): number;
/** Sets the UTC timestamp of this date in milliseconds. */
setTime(value: number): number;
}
declare namespace console {
/** @deprecated */
function log(message: string): void;
}