/** * Environment definitions for compiling AssemblyScript to JavaScript using tsc. * * Note that semantic differences require additional explicit conversions for full compatibility. * For example, when casting an i32 to an u8, doing `(someI32 & 0xff)` will yield the same * result when compiling to WebAssembly or JS while `someI32` alone does nothing in JS. * * Note that i64's are not portable (JS numbers are IEEE754 doubles with a maximum safe integer * value of 2^53-1) and instead require a compatibility layer to work in JS as well, as for example * {@link glue/js/i64} respectively {@link glue/wasm/i64}. * * @module std/portable *//***/ /// // Types declare type i8 = number; declare type i16 = number; declare type i32 = number; declare type isize = number; declare type u8 = number; declare type u16 = number; declare type u32 = number; declare type bool = boolean; declare type usize = number; declare type f32 = number; declare type f64 = number; // Compiler hints /** Compiler target. 0 = JS, 1 = WASM32, 2 = WASM64. */ declare const ASC_TARGET: i32; // Builtins /** Performs the sign-agnostic count leading zero bits operation on a 32-bit integer. All zero bits are considered leading if the value is zero. */ declare function clz(value: T): T; /** Performs the sign-agnostic count tailing zero bits operation on a 32-bit integer. All zero bits are considered trailing if the value is zero. */ declare function ctz(value: T): T; /** Performs the sign-agnostic count number of one bits operation on a 32-bit integer. */ declare function popcnt(value: T): T; /** Performs the sign-agnostic rotate left operation on a 32-bit integer. */ declare function rotl(value: T, shift: T): T; /** Performs the sign-agnostic rotate right operation on a 32-bit integer. */ declare function rotr(value: T, shift: T): T; /** Computes the absolute value of an integer or float. */ declare function abs(value: T): T; /** Determines the maximum of two integers or floats. If either operand is `NaN`, returns `NaN`. */ declare function max(left: T, right: T): T; /** Determines the minimum of two integers or floats. If either operand is `NaN`, returns `NaN`. */ declare function min(left: T, right: T): T; /** Composes a 32-bit or 64-bit float from the magnitude of `x` and the sign of `y`. */ declare function copysign(x: T, y: T): T; /** Performs the ceiling operation on a 32-bit or 64-bit float. */ declare function ceil(value: T): T; /** Performs the floor operation on a 32-bit or 64-bit float. */ declare function floor(value: T): T; /** Rounds to the nearest integer tied to even of a 32-bit or 64-bit float. */ declare function nearest(value: T): T; /** Selects one of two pre-evaluated values depending on the condition. */ declare function select(ifTrue: T, ifFalse: T, condition: bool): T; /** Calculates the square root of a 32-bit or 64-bit float. */ declare function sqrt(value: T): T; /** Rounds to the nearest integer towards zero of a 32-bit or 64-bit float. */ declare function trunc(value: T): T; /** Loads a value of the specified type from memory. Type must be `u8`. */ declare function load(ptr: usize, constantOffset?: usize): T; /** Stores a value of the specified type to memory. Type must be `u8`. */ declare function store(ptr: usize, value: T, constantOffset?: usize): void; /** Emits an unreachable operation that results in a runtime error when executed. */ declare function unreachable(): any; // sic /** NaN (not a number) as a 32-bit or 64-bit float depending on context. */ declare const NaN: f32 | f64; /** Positive infinity as a 32-bit or 64-bit float depending on context. */ declare const Infinity: f32 | f64; /** Changes the type of any value of `usize` kind to another one of `usize` kind. Useful for casting class instances to their pointer values and vice-versa. Beware that this is unsafe.*/ declare function changetype(value: any): T; /** Explicitly requests no bounds checks on the provided expression. Useful for array accesses. */ declare function unchecked(value: T): T; /** Tests if a 32-bit or 64-bit float is `NaN`. */ declare function isNaN(value: T): bool; /** Tests if a 32-bit or 64-bit float is finite, that is not `NaN` or +/-`Infinity`. */ declare function isFinite(value: T): bool; /** Tests if the specified value is a valid integer. Can't distinguish an integer from an integral float. */ declare function isInteger(value: any): value is number; /** Tests if the specified value is a valid float. Can't distinguish a float from an integer. */ declare function isFloat(value: any): value is number; /** Tests if the specified value is of a reference type. */ declare function isReference(value: any): value is object | string; /** Tests if the specified value can be used as a string. */ declare function isString(value: any): value is string | String; /** Tests if the specified value can be used as an array. */ declare function isArray(value: any): value is Array; /** Traps if the specified value is not true-ish, otherwise returns the value. */ declare function assert(isTrueish: T | null, message?: string): T; /** Parses an integer string to a 64-bit float. */ declare function parseInt(str: string, radix?: i32): f64; /** Parses an integer string to a 32-bit integer. */ declare function parseI32(str: string, radix?: i32): i32; /** Parses a floating point string to a 64-bit float. */ declare function parseFloat(str: string): f64; /** Returns the 64-bit floating-point remainder of `x/y`. */ declare function fmod(x: f64, y: f64): f64; /** Returns the 32-bit floating-point remainder of `x/y`. */ declare function fmodf(x: f32, y: f32): f32; /** Converts any other numeric value to an 8-bit signed integer. */ declare function i8(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i8; declare namespace i8 { /** Smallest representable value. */ export const MIN_VALUE: i8; /** Largest representable value. */ export const MAX_VALUE: i8; /** Converts a string to a floating-point number and cast to target integer after. */ export function parseFloat(string: string): i8; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): i8; } /** Converts any other numeric value to a 16-bit signed integer. */ declare function i16(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i8; declare namespace i16 { /** Smallest representable value. */ export const MIN_VALUE: i16; /** Largest representable value. */ export const MAX_VALUE: i16; /** Converts a string to a floating-point number and cast to target integer after. */ export function parseFloat(string: string): i16; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): i16; } /** Converts any other numeric value to a 32-bit signed integer. */ declare function i32(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i32; declare namespace i32 { /** Smallest representable value. */ export const MIN_VALUE: i32; /** Largest representable value. */ export const MAX_VALUE: i32; /** Converts a string to a floating-point number and cast to target integer after. */ export function parseFloat(string: string): i32; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): i32; } /** Converts any other numeric value to a 32-bit (in WASM32) respectivel 64-bit (in WASM64) signed integer. */ declare function isize(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): isize; declare namespace isize { /** Smallest representable value. */ export const MIN_VALUE: isize; /** Largest representable value. */ export const MAX_VALUE: isize; /** Converts a string to a floating-point number and cast to target integer after. */ export function parseFloat(string: string): isize; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): isize; } /** Converts any other numeric value to an 8-bit unsigned integer. */ declare function u8(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i8; declare namespace u8 { /** Smallest representable value. */ export const MIN_VALUE: u8; /** Largest representable value. */ export const MAX_VALUE: u8; /** Converts a string to a floating-point number and cast to target integer after. */ export function parseFloat(string: string): u8; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): u8; } /** Converts any other numeric value to a 16-bit unsigned integer. */ declare function u16(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i8; declare namespace u16 { /** Smallest representable value. */ export const MIN_VALUE: u16; /** Largest representable value. */ export const MAX_VALUE: u16; /** Converts a string to a floating-point number and cast to target integer after. */ export function parseFloat(string: string): u16; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): u16; } /** Converts any other numeric value to a 32-bit unsigned integer. */ declare function u32(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): i32; declare namespace u32 { /** Smallest representable value. */ export const MIN_VALUE: u32; /** Largest representable value. */ export const MAX_VALUE: u32; /** Converts a string to a floating-point number and cast to target integer after. */ export function parseFloat(string: string): u32; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): u32; } /** Converts any other numeric value to a 32-bit (in WASM32) respectivel 64-bit (in WASM64) unsigned integer. */ declare function usize(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): isize; declare namespace usize { /** Smallest representable value. */ export const MIN_VALUE: usize; /** Largest representable value. */ export const MAX_VALUE: usize; /** Converts a string to a floating-point number and cast to target integer after. */ export function parseFloat(string: string): usize; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): usize; } /** Converts any other numeric value to a 1-bit unsigned integer. */ declare function bool(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): bool; declare namespace bool { /** Smallest representable value. */ export const MIN_VALUE: bool; /** Largest representable value. */ export const MAX_VALUE: bool; } /** Converts any other numeric value to a 32-bit float. */ declare function f32(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): f32; declare namespace f32 { /** Smallest representable value. */ export const MIN_VALUE: f32; /** Largest representable value. */ export const MAX_VALUE: f32; /** Smallest normalized positive value. */ export const MIN_POSITIVE_VALUE: f32; /** Smallest safely representable integer value. */ export const MIN_SAFE_INTEGER: f32; /** Largest safely representable integer value. */ export const MAX_SAFE_INTEGER: f32; /** Difference between 1 and the smallest representable value greater than 1. */ export const EPSILON: f32; /** Returns a boolean value that indicates whether a value is the reserved value NaN (not a number). */ export function isNaN(value: f32): bool; /** Returns true if passed value is finite. */ export function isFinite(value: f32): bool; /** Returns true if the value passed is a safe integer. */ export function isSafeInteger(value: f32): bool; /** Returns true if the value passed is an integer, false otherwise. */ export function isInteger(value: f32): bool; /** Converts a string to a floating-point number. */ export function parseFloat(string: string): f32; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): f32; } /** Converts any other numeric value to a 64-bit float. */ declare function f64(value: i8 | i16 | i32 | isize | u8 | u16 | u32 | usize | bool | f32 | f64): f64; declare namespace f64 { /** Smallest representable value. */ export const MIN_VALUE: f64; /** Largest representable value. */ export const MAX_VALUE: f64; /** Smallest normalized positive value. */ export const MIN_POSITIVE_VALUE: f64; /** Smallest safely representable integer value. */ export const MIN_SAFE_INTEGER: f64; /** Largest safely representable integer value. */ export const MAX_SAFE_INTEGER: f64; /** Difference between 1 and the smallest representable value greater than 1. */ export const EPSILON: f64; /** Returns a boolean value that indicates whether a value is the reserved value NaN (not a number). */ export function isNaN(value: f32): bool; /** Returns true if passed value is finite. */ export function isFinite(value: f32): bool; /** Returns true if the value passed is a safe integer. */ export function isSafeInteger(value: f64): bool; /** Returns true if the value passed is an integer, false otherwise. */ export function isInteger(value: f64): bool; /** Converts a string to a floating-point number. */ export function parseFloat(string: string): f64; /** Converts A string to an integer. */ export function parseInt(string: string, radix?: i32): f64; } // Polyfills /** [Polyfill] Performs the sign-agnostic reverse bytes **/ declare function bswap(value: T): T; /** [Polyfill] Performs the sign-agnostic reverse bytes only for last 16-bit **/ declare function bswap16(value: T): T; // Standard library /** Memory operations. */ declare namespace memory { /** Allocates a chunk of memory of the specified size and returns a pointer to it. */ function allocate(size: usize): usize; /** Disposes a chunk of memory by its pointer. */ function free(ptr: usize): void; /** Copies n bytes from the specified source to the specified destination in memory. These regions may overlap. */ function copy(dst: usize, src: usize, n: usize): void; /** Resets the allocator to its initial state, if supported. */ function reset(): void; } /** Class representing a generic, fixed-length raw binary data buffer. */ declare class ArrayBuffer { /** The size, in bytes, of the array. */ readonly byteLength: i32; /** Constructs a new array buffer of the given length in bytes. */ constructor(length: i32); /** Returns a copy of this array buffer's bytes from begin, inclusive, up to end, exclusive. */ slice(begin?: i32, end?: i32): ArrayBuffer; /** Returns a string representation of ArrayBuffer. */ toString(): string; } /** The `DataView` view provides a low-level interface for reading and writing multiple number types in a binary `ArrayBuffer`, without having to care about the platform's endianness. */ declare class DataView { /** The `buffer` accessor property represents the `ArrayBuffer` or `SharedArrayBuffer` referenced by the `DataView` at construction time. */ readonly buffer: ArrayBuffer; /** The `byteLength` accessor property represents the length (in bytes) of this view from the start of its `ArrayBuffer` or `SharedArrayBuffer`. */ readonly byteLength: i32; /** The `byteOffset` accessor property represents the offset (in bytes) of this view from the start of its `ArrayBuffer` or `SharedArrayBuffer`. */ readonly byteOffset: i32; /** Constructs a new `DataView` with the given properties */ constructor(buffer: ArrayBuffer, byteOffset?: i32, byteLength?: i32); /** The `getFloat32()` method gets a signed 32-bit float (float) at the specified byte offset from the start of the `DataView`. */ getFloat32(byteOffset: i32, littleEndian?: boolean): f32; /** The `getFloat64()` method gets a signed 64-bit float (double) at the specified byte offset from the start of the `DataView`. */ getFloat64(byteOffset: i32, littleEndian?: boolean): f64; /** The `getInt8()` method gets a signed 8-bit integer (byte) at the specified byte offset from the start of the `DataView`. */ getInt8(byteOffset: i32): i8; /** The `getInt16()` method gets a signed 16-bit integer (short) at the specified byte offset from the start of the `DataView`. */ getInt16(byteOffset: i32, littleEndian?: boolean): i16; /** The `getInt32()` method gets a signed 32-bit integer (long) at the specified byte offset from the start of the `DataView`. */ getInt32(byteOffset: i32, littleEndian?: boolean): i32; /** The `getUint8()` method gets an unsigned 8-bit integer (unsigned byte) at the specified byte offset from the start of the `DataView`. */ getUint8(byteOffset: i32): u8; /** The `getUint16()` method gets an unsigned 16-bit integer (unsigned short) at the specified byte offset from the start of the `DataView`. */ getUint16(byteOffset: i32, littleEndian?: boolean): u16; /** The `getUint32()` method gets an unsigned 32-bit integer (unsigned long) at the specified byte offset from the start of the `DataView`. */ getUint32(byteOffset: i32, littleEndian?: boolean): u32; /** The `setFloat32()` method stores a signed 32-bit float (float) value at the specified byte offset from the start of the `DataView`. */ setFloat32(byteOffset: i32, value: f32, littleEndian?: boolean): void; /** The `setFloat64()` method stores a signed 64-bit float (double) value at the specified byte offset from the start of the `DataView`. */ setFloat64(byteOffset: i32, value: f64, littleEndian?: boolean): void; /** The `setInt8()` method stores a signed 8-bit integer (byte) value at the specified byte offset from the start of the `DataView`. */ setInt8(byteOffset: i32, value: i8): void; /** The `setInt16()` method stores a signed 16-bit integer (short) value at the specified byte offset from the start of the `DataView`. */ setInt16(byteOffset: i32, value: i16, littleEndian?: boolean): void; /** The `setInt32()` method stores a signed 32-bit integer (long) value at the specified byte offset from the start of the `DataView`. */ setInt32(byteOffset: i32, value: i32, littleEndian?: boolean): void; /** The `setUint8()` method stores an unsigned 8-bit integer (byte) value at the specified byte offset from the start of the `DataView`. */ setUint8(byteOffset: i32, value: u8): void; /** The `setUint16()` method stores an unsigned 16-bit integer (unsigned short) value at the specified byte offset from the start of the `DataView`. */ setUint16(byteOffset: i32, value: u16, littleEndian?: boolean): void; /** The `setUint32()` method stores an unsigned 32-bit integer (unsigned long) value at the specified byte offset from the start of the `DataView`. */ setUint32(byteOffset: i32, value: u32, littleEndian?: boolean): void; /** Returns a string representation of DataView. */ toString(): string; } declare class Array { static isArray(value: any): value is Array; [key: number]: T; length: i32; constructor(capacity?: i32); fill(value: T, start?: i32, end?: i32): this; every(callbackfn: (element: T, index: i32, array?: Array) => bool): bool; findIndex(predicate: (element: T, index: i32, array?: Array) => bool): i32; includes(searchElement: T, fromIndex?: i32): bool; indexOf(searchElement: T, fromIndex?: i32): i32; lastIndexOf(searchElement: T, fromIndex?: i32): i32; push(element: T): i32; concat(items: T[]): T[]; copyWithin(target: i32, start: i32, end?: i32): this; pop(): T; forEach(callbackfn: (value: T, index: i32, array: Array) => void): void; map(callbackfn: (value: T, index: i32, array: Array) => U): Array; filter(callbackfn: (value: T, index: i32, array: Array) => bool): Array; reduce(callbackfn: (previousValue: U, currentValue: T, currentIndex: i32, array: Array) => U, initialValue: U): U; reduceRight(callbackfn: (previousValue: U, currentValue: T, currentIndex: i32, array: Array) => U, initialValue: U): U; shift(): T; some(callbackfn: (element: T, index: i32, array?: Array) => bool): bool; unshift(element: T): i32; slice(from?: i32, to?: i32): Array; splice(start: i32, deleteCount?: i32): Array; sort(comparator?: (a: T, b: T) => i32): this; join(separator?: string): string; reverse(): T[]; toString(): string; } declare class Uint8Array extends Array {} declare class Uint8ClampedArray extends Array {} declare class Uint16Array extends Array {} declare class Uint32Array extends Array {} declare class Int8Array extends Array {} declare class Int16Array extends Array {} declare class Int32Array extends Array {} declare class Float32Array extends Array {} declare class Float64Array extends Array {} declare class String { static fromCharCode(ls: i32, hs?: i32): string; static fromCharCodes(arr: u16[]): string; static fromCodePoint(code: i32): string; static fromCodePoints(arr: i32[]): string; readonly length: i32; private constructor(); charAt(index: i32): string; charCodeAt(index: i32): i32; concat(other: string): string; indexOf(other: string, fromIndex?: i32): i32; lastIndexOf(other: string, fromIndex?: i32): i32; includes(other: string): bool; startsWith(other: string): bool; endsWith(other: string): bool; substr(start: u32, length?: u32): string; substring(from: i32, to?: i32): string; trim(): string; trimLeft(): string; trimRight(): string; trimStart(): string; trimEnd(): string; padStart(targetLength: i32, padString?: string): string; padEnd(targetLength: i32, padString?: string): string; replace(search: string, replacement: string): string; repeat(count?: i32): string; split(separator?: string, limit?: i32): string[]; toString(): string; } interface Boolean {} declare class Number { private constructor(); toString(radix?: i32): string; } interface Object {} interface Function {} interface RegExp {} interface IArguments {} /** Class for representing a runtime error. Base class of all errors. */ declare class Error { /** Error name. */ name: string; /** Message provided on construction. */ message: string; /** Stack trace. */ stack?: string; /** Constructs a new error, optionally with a message. */ constructor(message?: string); /** Method returns a string representing the specified Error class. */ toString(): string; } /** Class for indicating an error when a value is not in the set or range of allowed values. */ declare class RangeError extends Error { } /** Class for indicating an error when a value is not of the expected type. */ declare class TypeError extends Error { } /** Class for indicating an error when trying to interpret syntactically invalid code. */ declare class SyntaxError extends Error { } declare class Set { constructor(entries?: T[]); readonly size: i32; has(value: T): bool; add(value: T): void; delete(value: T): bool; clear(): void; toString(): string; [Symbol.iterator](): Iterator; } declare class Map { constructor(entries?: [K, V][]); readonly size: i32; set(key: K, value: V): void; has(key: K): bool; get(key: K): V | null; clear(): void; entries(): Iterable<[K, V]>; keys(): Iterable; values(): Iterable; delete(key: K): bool; toString(): string; [Symbol.iterator](): Iterator<[K,V]>; } interface SymbolConstructor { readonly hasInstance: symbol; readonly isConcatSpreadable: symbol; readonly isRegExp: symbol; readonly iterator: symbol; readonly match: symbol; readonly replace: symbol; readonly search: symbol; readonly species: symbol; readonly split: symbol; readonly toPrimitive: symbol; readonly toStringTag: symbol; readonly unscopables: symbol; (description?: string | null): symbol; for(key: string): symbol; keyFor(sym: symbol): string | null; } declare const Symbol: SymbolConstructor; interface Iterable { [Symbol.iterator](): Iterator; } interface Iterator {} interface IMath { readonly E: f64; readonly LN2: f64; readonly LN10: f64; readonly LOG2E: f64; readonly LOG10E: f64; readonly PI: f64; readonly SQRT1_2: f64; readonly SQRT2: f64; abs(x: f64): f64; acos(x: f64): f64; acosh(x: f64): f64; asin(x: f64): f64; asinh(x: f64): f64; atan(x: f64): f64; atan2(y: f64, x: f64): f64; atanh(x: f64): f64; cbrt(x: f64): f64; ceil(x: f64): f64; clz32(x: f64): i32; cos(x: f64): f64; cosh(x: f64): f64; exp(x: f64): f64; expm1(x: f64): f64; floor(x: f64): f64; fround(x: f64): f32; hypot(value1: f64, value2: f64): f64; // TODO: see std/math imul(a: f64, b: f64): i32; log(x: f64): f64; log10(x: f64): f64; log1p(x: f64): f64; log2(x: f64): f64; max(value1: f64, value2: f64): f64; // TODO: see std/math min(value1: f64, value2: f64): f64; // TODO: see std/math pow(base: f64, exponent: f64): f64; random(): f64; round(x: f64): f64; sign(x: f64): f64; signbit(x: f64): bool; sin(x: f64): f64; sinh(x: f64): f64; sqrt(x: f64): f64; tan(x: f64): f64; tanh(x: f64): f64; trunc(x: f64): f64; } declare const Math: IMath; declare const Mathf: IMath; declare const JSMath: IMath; declare class Date { /** Returns the UTC timestamp in milliseconds of the specified date. */ static UTC( year: i32, month: i32, day: i32, hour: i32, minute: i32, second: i32, millisecond: i32 ): number; /** Returns the current UTC timestamp in milliseconds. */ static now(): number; /** Constructs a new date object from an UTC timestamp in milliseconds. */ constructor(value: number); /** Returns the UTC timestamp of this date in milliseconds. */ getTime(): number; /** Sets the UTC timestamp of this date in milliseconds. */ setTime(value: number): number; } declare namespace console { /** @deprecated */ function log(message: string): void; }