3 Commits

28 changed files with 459 additions and 1132 deletions

View File

@ -2,8 +2,8 @@ group 'asmble'
version '0.2.0'
buildscript {
ext.kotlin_version = '1.2.61'
ext.asm_version = '6.2.1'
ext.kotlin_version = '1.2.51'
ext.asm_version = '5.2'
repositories {
mavenCentral()
@ -21,11 +21,7 @@ buildscript {
allprojects {
apply plugin: 'java'
group 'com.github.cretz.asmble'
version '0.4.2-fl'
// skips building and running for the specified examples
ext.skipExamples = ['c-simple', 'go-simple', 'rust-regex']
// todo disabling Rust regex is temporary because some strings in wasm code exceed the size in 65353 bytes.
version '0.4.0-fl'
repositories {
mavenCentral()
@ -58,9 +54,9 @@ project(':compiler') {
compile "org.jetbrains.kotlin:kotlin-reflect:$kotlin_version"
compile "org.ow2.asm:asm-tree:$asm_version"
compile "org.ow2.asm:asm-util:$asm_version"
compile "org.ow2.asm:asm-commons:$asm_version"
testCompile 'junit:junit:4.12'
testCompile "org.jetbrains.kotlin:kotlin-test-junit:$kotlin_version"
testCompile "org.ow2.asm:asm-debug-all:$asm_version"
}
publishSettings(project, 'asmble-compiler', 'Asmble WASM Compiler')
@ -71,38 +67,6 @@ project(':examples') {
dependencies {
compileOnly project(':compiler')
}
// C/C++ example helpers
task cToWasm {
doFirst {
mkdir 'build'
exec {
def cFileName = fileTree(dir: 'src', includes: ['*.c']).files.iterator().next()
commandLine 'clang', '--target=wasm32-unknown-unknown-wasm', '-O3', cFileName, '-c', '-o', 'build/lib.wasm'
}
}
}
task showCWast(type: JavaExec) {
dependsOn cToWasm
classpath configurations.compileClasspath
main = 'asmble.cli.MainKt'
doFirst {
args 'translate', 'build/lib.wasm'
}
}
task compileCWasm(type: JavaExec) {
dependsOn cToWasm
classpath configurations.compileClasspath
main = 'asmble.cli.MainKt'
doFirst {
def outFile = 'build/wasm-classes/' + wasmCompiledClassName.replace('.', '/') + '.class'
file(outFile).parentFile.mkdirs()
args 'compile', 'build/lib.wasm', wasmCompiledClassName, '-out', outFile
}
}
// Go example helpers
@ -178,33 +142,8 @@ project(':examples') {
}
}
project(':examples:c-simple') {
if (project.name in skipExamples) {
println("[Note!] Building and runnig for ${project.name} was skipped")
test.onlyIf { false } // explicit skipping tests
compileJava.onlyIf { false } // explicit skipping compile
return
}
apply plugin: 'application'
ext.wasmCompiledClassName = 'asmble.generated.CSimple'
dependencies {
compile files('build/wasm-classes')
}
compileJava {
dependsOn compileCWasm
}
mainClassName = 'asmble.examples.csimple.Main'
}
project(':examples:go-simple') {
if (project.name in skipExamples) {
println("[Note!] Building and runnig for ${project.name} was skipped")
test.onlyIf { false } // explicit skipping tests
compileJava.onlyIf { false } // explicit skipping compile
return
}
apply plugin: 'application'
ext.wasmCompiledClassName = 'asmble.generated.GoSimple'
dependencies {
@ -216,44 +155,32 @@ project(':examples:go-simple') {
mainClassName = 'asmble.examples.gosimple.Main'
}
project(':examples:rust-regex') {
if (project.name in skipExamples) {
println("[Note!] Building and runnig for ${project.name} was skipped")
test.onlyIf { false } // explicit skipping tests
compileJava.onlyIf { false } // explicit skipping compile
compileTestJava.onlyIf { false } // explicit skipping compile
return
}
apply plugin: 'application'
apply plugin: 'me.champeau.gradle.jmh'
ext.wasmCompiledClassName = 'asmble.generated.RustRegex'
dependencies {
compile files('build/wasm-classes')
testCompile 'junit:junit:4.12'
}
compileJava {
dependsOn compileRustWasm
}
mainClassName = 'asmble.examples.rustregex.Main'
// todo temporary disable Rust regex, because some strings in wasm code exceed the size in 65353 bytes.
test {
testLogging.showStandardStreams = true
testLogging.events 'PASSED', 'SKIPPED'
}
jmh {
iterations = 5
warmupIterations = 5
fork = 3
}
}
// project(':examples:rust-regex') {
// apply plugin: 'application'
// apply plugin: 'me.champeau.gradle.jmh'
// ext.wasmCompiledClassName = 'asmble.generated.RustRegex'
// dependencies {
// compile files('build/wasm-classes')
// testCompile 'junit:junit:4.12'
// }
// compileJava {
// dependsOn compileRustWasm
// }
// mainClassName = 'asmble.examples.rustregex.Main'
// test {
// testLogging.showStandardStreams = true
// testLogging.events 'PASSED', 'SKIPPED'
// }
// jmh {
// iterations = 5
// warmupIterations = 5
// fork = 3
// }
// }
project(':examples:rust-simple') {
if (project.name in skipExamples) {
println("[Note!] Building and runnig for ${project.name} was skipped")
test.onlyIf { false } // explicit skipping tests
compileJava.onlyIf { false } // explicit skipping compile
return
}
apply plugin: 'application'
ext.wasmCompiledClassName = 'asmble.generated.RustSimple'
dependencies {
@ -266,12 +193,6 @@ project(':examples:rust-simple') {
}
project(':examples:rust-string') {
if (project.name in skipExamples) {
println("[Note!] Building and runnig for ${project.name} was skipped")
test.onlyIf { false } // explicit skipping tests
compileJava.onlyIf { false } // explicit skipping compile
return
}
apply plugin: 'application'
ext.wasmCompiledClassName = 'asmble.generated.RustString'
dependencies {
@ -310,6 +231,10 @@ def publishSettings(project, projectName, projectDescription) {
bintray {
if(!hasProperty("bintrayUser") || !hasProperty("bintrayKey")) {
return
}
user = bintrayUser
key = bintrayKey
publications = ['MyPublication']

View File

@ -1 +0,0 @@
Taken from https://github.com/cretz/msplit

View File

@ -1,286 +0,0 @@
package asmble.compile.jvm.msplit;
import org.objectweb.asm.Label;
import org.objectweb.asm.Opcodes;
import org.objectweb.asm.Type;
import org.objectweb.asm.tree.*;
import java.util.*;
import static asmble.compile.jvm.msplit.Util.*;
/** Splits a method into two */
public class SplitMethod {
protected final int api;
/** @param api Same as for {@link org.objectweb.asm.MethodVisitor#MethodVisitor(int)} or any other ASM class */
public SplitMethod(int api) { this.api = api; }
/**
* Calls {@link #split(String, MethodNode, int, int, int)} with minSize as 20% + 1 of the original, maxSize as
* 70% + 1 of the original, and firstAtLeast as maxSize. The original method is never modified and the result can
* be null if no split points are found.
*/
public Result split(String owner, MethodNode method) {
// Between 20% + 1 and 70% + 1 of size
int insnCount = method.instructions.size();
int minSize = (int) (insnCount * 0.2) + 1;
int maxSize = (int) (insnCount * 0.7) + 1;
return split(owner, method, minSize, maxSize, maxSize);
}
/**
* Splits the given method into two. This uses a {@link Splitter} to consistently create
* {@link asmble.compile.jvm.msplit.Splitter.SplitPoint}s until one reaches firstAtLeast or the largest otherwise, and then calls
* {@link #fromSplitPoint(String, MethodNode, Splitter.SplitPoint)}.
*
* @param owner The internal name of the owning class. Needed when splitting to call the split off method.
* @param method The method to split, never modified
* @param minSize The minimum number of instructions the split off method must have
* @param maxSize The maximum number of instructions the split off method can have
* @param firstAtLeast The number of instructions that, when first reached, will immediately be used without
* continuing. Since split points are streamed, this allows splitting without waiting to
* find the largest overall. If this is &lt= 0, it will not apply and all split points will be
* checked to find the largest before doing the split.
* @return The resulting split method or null if there were no split points found
*/
public Result split(String owner, MethodNode method, int minSize, int maxSize, int firstAtLeast) {
// Get the largest split point
Splitter.SplitPoint largest = null;
for (Splitter.SplitPoint point : new Splitter(api, owner, method, minSize, maxSize)) {
if (largest == null || point.length > largest.length) {
largest = point;
// Early exit?
if (firstAtLeast > 0 && largest.length >= firstAtLeast) break;
}
}
if (largest == null) return null;
return fromSplitPoint(owner, method, largest);
}
/**
* Split the given method at the given split point. Called by {@link #split(String, MethodNode, int, int, int)}. The
* original method is never modified.
*/
public Result fromSplitPoint(String owner, MethodNode orig, Splitter.SplitPoint splitPoint) {
MethodNode splitOff = createSplitOffMethod(orig, splitPoint);
MethodNode trimmed = createTrimmedMethod(owner, orig, splitOff, splitPoint);
return new Result(trimmed, splitOff);
}
protected MethodNode createSplitOffMethod(MethodNode orig, Splitter.SplitPoint splitPoint) {
// The new method is a static synthetic method named method.name + "$split" that returns an object array
// Key is previous local index, value is new local index
Map<Integer, Integer> localsMap = new HashMap<>();
// The new method's parameters are all stack items + all read locals
List<Type> args = new ArrayList<>(splitPoint.neededFromStackAtStart);
splitPoint.localsRead.forEach((index, type) -> {
args.add(type);
localsMap.put(index, args.size() - 1);
});
// Create the new method
MethodNode newMethod = new MethodNode(api,
Opcodes.ACC_STATIC + Opcodes.ACC_PRIVATE + Opcodes.ACC_SYNTHETIC, orig.name + "$split",
Type.getMethodDescriptor(Type.getType(Object[].class), args.toArray(new Type[0])), null, null);
// Add the written locals to the map that are not already there
int newLocalIndex = args.size();
for (Integer key : splitPoint.localsWritten.keySet()) {
if (!localsMap.containsKey(key)) {
localsMap.put(key, newLocalIndex);
newLocalIndex++;
}
}
// First set of instructions is pushing the new stack from the params
for (int i = 0; i < splitPoint.neededFromStackAtStart.size(); i++) {
Type item = splitPoint.neededFromStackAtStart.get(i);
newMethod.visitVarInsn(loadOpFromType(item), i);
}
// Next set of instructions comes verbatim from the original, but we have to change the local indexes
Set<Label> seenLabels = new HashSet<>();
for (int i = 0; i < splitPoint.length; i++) {
AbstractInsnNode insn = orig.instructions.get(i + splitPoint.start);
// Skip frames
if (insn instanceof FrameNode) continue;
// Store the label
if (insn instanceof LabelNode) seenLabels.add(((LabelNode) insn).getLabel());
// Change the local if needed
if (insn instanceof VarInsnNode) {
insn = insn.clone(Collections.emptyMap());
((VarInsnNode) insn).var = localsMap.get(((VarInsnNode) insn).var);
} else if (insn instanceof IincInsnNode) {
insn = insn.clone(Collections.emptyMap());
((VarInsnNode) insn).var = localsMap.get(((VarInsnNode) insn).var);
}
insn.accept(newMethod);
}
// Final set of instructions is an object array of stack to set and then locals written
// Create the object array
int retArrSize = splitPoint.putOnStackAtEnd.size() + splitPoint.localsWritten.size();
intConst(retArrSize).accept(newMethod);
newMethod.visitTypeInsn(Opcodes.ANEWARRAY, OBJECT_TYPE.getInternalName());
// So, we're going to store the arr in the next avail local
int retArrLocalIndex = newLocalIndex;
newMethod.visitVarInsn(Opcodes.ASTORE, retArrLocalIndex);
// Now go over each stack item and load the arr, swap w/ the stack, add the index, swap with the stack, and store
for (int i = splitPoint.putOnStackAtEnd.size() - 1; i >= 0; i--) {
Type item = splitPoint.putOnStackAtEnd.get(i);
// Box the item on the stack if necessary
boxStackIfNecessary(item, newMethod);
// Load the array
newMethod.visitVarInsn(Opcodes.ALOAD, retArrLocalIndex);
// Swap to put stack back on top
newMethod.visitInsn(Opcodes.SWAP);
// Add the index
intConst(i).accept(newMethod);
// Swap to put the stack value back on top
newMethod.visitInsn(Opcodes.SWAP);
// Now that we have arr, index, value, we can store in the array
newMethod.visitInsn(Opcodes.AASTORE);
}
// Do the same with written locals
int currIndex = splitPoint.putOnStackAtEnd.size();
for (Integer index : splitPoint.localsWritten.keySet()) {
Type item = splitPoint.localsWritten.get(index);
// Load the array
newMethod.visitVarInsn(Opcodes.ALOAD, retArrLocalIndex);
// Add the arr index
intConst(currIndex).accept(newMethod);
currIndex++;
// Load the var
newMethod.visitVarInsn(loadOpFromType(item), localsMap.get(index));
// Box it if necessary
boxStackIfNecessary(item, newMethod);
// Store in array
newMethod.visitInsn(Opcodes.AASTORE);
}
// Load the array out and return it
newMethod.visitVarInsn(Opcodes.ALOAD, retArrLocalIndex);
newMethod.visitInsn(Opcodes.ARETURN);
// Any try catch blocks that start in here
for (TryCatchBlockNode tryCatch : orig.tryCatchBlocks) {
if (seenLabels.contains(tryCatch.start.getLabel())) tryCatch.accept(newMethod);
}
// Reset the labels
newMethod.instructions.resetLabels();
return newMethod;
}
protected MethodNode createTrimmedMethod(String owner, MethodNode orig,
MethodNode splitOff, Splitter.SplitPoint splitPoint) {
// The trimmed method is the same as the original, yet the split area is replaced with a call to the split off
// portion. Before calling the split-off, we have to add locals to the stack part. Then afterwards, we have to
// replace the stack and written locals.
// Effectively clone the orig
MethodNode newMethod = new MethodNode(api, orig.access, orig.name, orig.desc,
orig.signature, orig.exceptions.toArray(new String[0]));
orig.accept(newMethod);
// Remove all insns, we'll re-add the ones outside the split range
newMethod.instructions.clear();
// Remove all try catch blocks and keep track of seen labels, we'll re-add them at the end
newMethod.tryCatchBlocks.clear();
Set<Label> seenLabels = new HashSet<>();
// Also keep track of the locals that have been stored, need to know
Set<Integer> seenStoredLocals = new HashSet<>();
// If this is an instance method, we consider "0" (i.e. "this") as seen
if ((orig.access & Opcodes.ACC_STATIC) == 0) seenStoredLocals.add(0);
// Add the insns before split
for (int i = 0; i < splitPoint.start; i++) {
AbstractInsnNode insn = orig.instructions.get(i + splitPoint.start);
// Skip frames
if (insn instanceof FrameNode) continue;
// Record label
if (insn instanceof LabelNode) seenLabels.add(((LabelNode) insn).getLabel());
// Check a local store has happened
if (insn instanceof VarInsnNode && isStoreOp(insn.getOpcode())) seenStoredLocals.add(((VarInsnNode) insn).var);
insn.accept(newMethod);
}
// Push all the read locals on the stack
splitPoint.localsRead.forEach((index, type) -> {
// We've seen a store for this, so just load it, otherwise use a zero val
// TODO: safe? if not, maybe just put at the top of the method a bunch of defaulted locals?
if (seenStoredLocals.contains(index)) newMethod.visitVarInsn(loadOpFromType(type), index);
else zeroVal(type).accept(newMethod);
});
// Invoke the split off method
newMethod.visitMethodInsn(Opcodes.INVOKESTATIC, owner, splitOff.name, splitOff.desc, false);
// Now the object array is on the stack which contains stack pieces + written locals
// Take off the locals
int localArrIndex = splitPoint.putOnStackAtEnd.size();
for (Integer index : splitPoint.localsWritten.keySet()) {
// Dupe the array
newMethod.visitInsn(Opcodes.DUP);
// Put the index on the stack
intConst(localArrIndex).accept(newMethod);
localArrIndex++;
// Load the written local
Type item = splitPoint.localsWritten.get(index);
newMethod.visitInsn(Opcodes.AALOAD);
// Cast to local type
if (!item.equals(OBJECT_TYPE)) {
newMethod.visitTypeInsn(Opcodes.CHECKCAST, boxedTypeIfNecessary(item).getInternalName());
}
// Unbox if necessary
unboxStackIfNecessary(item, newMethod);
// Store in the local
newMethod.visitVarInsn(storeOpFromType(item), index);
}
// Now just load up the stack
for (int i = 0; i < splitPoint.putOnStackAtEnd.size(); i++) {
boolean last = i == splitPoint.putOnStackAtEnd.size() - 1;
// Since the loop started with the array, we only dupe the array every time but the last
if (!last) newMethod.visitInsn(Opcodes.DUP);
// Put the index on the stack
intConst(i).accept(newMethod);
// Load the stack item
Type item = splitPoint.putOnStackAtEnd.get(i);
newMethod.visitInsn(Opcodes.AALOAD);
// Cast to local type
if (!item.equals(OBJECT_TYPE)) {
newMethod.visitTypeInsn(Opcodes.CHECKCAST, boxedTypeIfNecessary(item).getInternalName());
}
// Unbox if necessary
unboxStackIfNecessary(item, newMethod);
// For all but the last stack item, we need to swap with the arr ref above.
if (!last) {
// Note if the stack item takes two slots, we do a form of dup then pop since there's no swap1x2
if (item == Type.LONG_TYPE || item == Type.DOUBLE_TYPE) {
newMethod.visitInsn(Opcodes.DUP_X2);
newMethod.visitInsn(Opcodes.POP);
} else {
newMethod.visitInsn(Opcodes.SWAP);
}
}
}
// Now we have restored all locals and all stack...add the rest of the insns after the split
for (int i = splitPoint.start + splitPoint.length; i < orig.instructions.size(); i++) {
AbstractInsnNode insn = orig.instructions.get(i + splitPoint.start);
// Skip frames
if (insn instanceof FrameNode) continue;
// Record label
if (insn instanceof LabelNode) seenLabels.add(((LabelNode) insn).getLabel());
insn.accept(newMethod);
}
// Add any try catch blocks that started in here
for (TryCatchBlockNode tryCatch : orig.tryCatchBlocks) {
if (seenLabels.contains(tryCatch.start.getLabel())) tryCatch.accept(newMethod);
}
// Reset the labels
newMethod.instructions.resetLabels();
return newMethod;
}
/** Result of a split method */
public static class Result {
/** A copy of the original method, but changed to invoke {@link #splitOffMethod} */
public final MethodNode trimmedMethod;
/** The new method that was split off the original and is called by {@link #splitOffMethod} */
public final MethodNode splitOffMethod;
public Result(MethodNode trimmedMethod, MethodNode splitOffMethod) {
this.trimmedMethod = trimmedMethod;
this.splitOffMethod = splitOffMethod;
}
}
}

View File

@ -1,392 +0,0 @@
package asmble.compile.jvm.msplit;
import org.objectweb.asm.Label;
import org.objectweb.asm.Opcodes;
import org.objectweb.asm.Type;
import org.objectweb.asm.commons.AnalyzerAdapter;
import org.objectweb.asm.tree.*;
import java.util.*;
import static asmble.compile.jvm.msplit.Util.*;
/** For a given method, iterate over possible split points */
public class Splitter implements Iterable<Splitter.SplitPoint> {
protected final int api;
protected final String owner;
protected final MethodNode method;
protected final int minSize;
protected final int maxSize;
/**
* @param api Same as for {@link org.objectweb.asm.MethodVisitor#MethodVisitor(int)} or any other ASM class
* @param owner Internal name of the method's owner
* @param method The method to find split points for
* @param minSize The minimum number of instructions required for the split point to be valid
* @param maxSize The maximum number of instructions that split points cannot exceeed
*/
public Splitter(int api, String owner, MethodNode method, int minSize, int maxSize) {
this.api = api;
this.owner = owner;
this.method = method;
this.minSize = minSize;
this.maxSize = maxSize;
}
@Override
public Iterator<SplitPoint> iterator() { return new Iter(); }
// Types are always int, float, long, double, or ref (no other primitives)
/** A split point in a method that can be split off into another method */
public static class SplitPoint {
/**
* The locals read in this split area, keyed by index. Value type is always int, float, long, double, or object.
*/
public final SortedMap<Integer, Type> localsRead;
/**
* The locals written in this split area, keyed by index. Value type is always int, float, long, double, or object.
*/
public final SortedMap<Integer, Type> localsWritten;
/**
* The values of the stack needed at the start of this split area. Type is always int, float, long, double, or
* object.
*/
public final List<Type> neededFromStackAtStart;
/**
* The values of the stack at the end of this split area that are needed to put back on the original. Type is always
* int, float, long, double, or object.
*/
public final List<Type> putOnStackAtEnd;
/**
* The instruction index this split area begins at.
*/
public final int start;
/**
* The number of instructions this split area has.
*/
public final int length;
public SplitPoint(SortedMap<Integer, Type> localsRead, SortedMap<Integer, Type>localsWritten,
List<Type> neededFromStackAtStart, List<Type> putOnStackAtEnd, int start, int length) {
this.localsRead = localsRead;
this.localsWritten = localsWritten;
this.neededFromStackAtStart = neededFromStackAtStart;
this.putOnStackAtEnd = putOnStackAtEnd;
this.start = start;
this.length = length;
}
}
protected int compareInsnIndexes(AbstractInsnNode o1, AbstractInsnNode o2) {
return Integer.compare(method.instructions.indexOf(o1), method.instructions.indexOf(o2));
}
protected class Iter implements Iterator<SplitPoint> {
protected final AbstractInsnNode[] insns;
protected final List<TryCatchBlockNode> tryCatchBlocks;
protected int currIndex = -1;
protected boolean peeked;
protected SplitPoint peekedValue;
protected Iter() {
insns = method.instructions.toArray();
tryCatchBlocks = new ArrayList<>(method.tryCatchBlocks);
// Must be sorted by earliest starting index then earliest end index then earliest handler
tryCatchBlocks.sort((o1, o2) -> {
int cmp = compareInsnIndexes(o1.start, o2.start);
if (cmp == 0) compareInsnIndexes(o1.end, o2.end);
if (cmp == 0) compareInsnIndexes(o1.handler, o2.handler);
return cmp;
});
}
@Override
public boolean hasNext() {
if (!peeked) {
peeked = true;
peekedValue = nextOrNull();
}
return peekedValue != null;
}
@Override
public SplitPoint next() {
// If we've peeked in hasNext, use that
SplitPoint ret;
if (peeked) {
peeked = false;
ret = peekedValue;
} else {
ret = nextOrNull();
}
if (ret == null) throw new NoSuchElementException();
return ret;
}
protected SplitPoint nextOrNull() {
// Try for each index
while (++currIndex + minSize <= insns.length) {
SplitPoint longest = longestForCurrIndex();
if (longest != null) return longest;
}
return null;
}
protected SplitPoint longestForCurrIndex() {
// As a special case, if the previous insn was a line number, that was good enough
if (currIndex - 1 >- 0 && insns[currIndex - 1] instanceof LineNumberNode) return null;
// Build the info object
InsnTraverseInfo info = new InsnTraverseInfo();
info.startIndex = currIndex;
info.endIndex = Math.min(currIndex + maxSize - 1, insns.length - 1);
// Reduce the end based on try/catch blocks the start is in or that jump to
constrainEndByTryCatchBlocks(info);
// Reduce the end based on any jumps within
constrainEndByInternalJumps(info);
// Reduce the end based on any jumps into
constrainEndByExternalJumps(info);
// Make sure we didn't reduce the end too far
if (info.getSize() < minSize) return null;
// Now that we have our largest range from the start index, we can go over each updating the local refs and stack
// For the stack, we are going to use the
return splitPointFromInfo(info);
}
protected void constrainEndByTryCatchBlocks(InsnTraverseInfo info) {
// Go over all the try/catch blocks, sorted by earliest
for (TryCatchBlockNode block : tryCatchBlocks) {
int handleIndex = method.instructions.indexOf(block.handler);
int startIndex = method.instructions.indexOf(block.start);
int endIndex = method.instructions.indexOf(block.end) - 1;
boolean catchWithinDisallowed;
if (info.startIndex <= startIndex && info.endIndex >= endIndex) {
// The try block is entirely inside the range...
catchWithinDisallowed = false;
// Since it's entirely within, we need the catch handler within too
if (handleIndex < info.startIndex || handleIndex > info.endIndex) {
// Well, it's not within, so that means we can't include this try block at all
info.endIndex = Math.min(info.endIndex, startIndex - 1);
}
} else if (info.startIndex > startIndex && info.endIndex > endIndex) {
// The try block started before this range, but ends inside of it...
// The end has to be changed to the block's end so it doesn't go over the boundary
info.endIndex = Math.min(info.endIndex, endIndex);
// The catch can't jump in here
catchWithinDisallowed = true;
} else if (info.startIndex <= startIndex && info.endIndex < endIndex) {
// The try block started in this range, but ends outside of it...
// Can't have the block then, reduce it to before the start
info.endIndex = Math.min(info.endIndex, startIndex - 1);
// Since we don't have the block, we can't jump in here either
catchWithinDisallowed = true;
} else {
// The try block is completely outside, just restrict the catch from jumping in
catchWithinDisallowed = true;
}
// If the catch is within and not allowed to be, we have to change the end to before it
if (catchWithinDisallowed && info.startIndex <= handleIndex && info.endIndex >= handleIndex) {
info.endIndex = Math.min(info.endIndex, handleIndex - 1);
}
}
}
protected void constrainEndByInternalJumps(InsnTraverseInfo info) {
for (int i = info.startIndex; i <= info.endIndex; i++) {
AbstractInsnNode node = insns[i];
int earliestIndex;
int furthestIndex;
if (node instanceof JumpInsnNode) {
earliestIndex = method.instructions.indexOf(((JumpInsnNode) node).label);
furthestIndex = earliestIndex;
} else if (node instanceof TableSwitchInsnNode) {
earliestIndex = method.instructions.indexOf(((TableSwitchInsnNode) node).dflt);
furthestIndex = earliestIndex;
for (LabelNode label : ((TableSwitchInsnNode) node).labels) {
int index = method.instructions.indexOf(label);
earliestIndex = Math.min(earliestIndex, index);
furthestIndex = Math.max(furthestIndex, index);
}
} else if (node instanceof LookupSwitchInsnNode) {
earliestIndex = method.instructions.indexOf(((LookupSwitchInsnNode) node).dflt);
furthestIndex = earliestIndex;
for (LabelNode label : ((LookupSwitchInsnNode) node).labels) {
int index = method.instructions.indexOf(label);
earliestIndex = Math.min(earliestIndex, index);
furthestIndex = Math.max(furthestIndex, index);
}
} else continue;
// Stop here if any indexes are out of range, otherwise, change end
if (earliestIndex < info.startIndex || furthestIndex > info.endIndex) {
info.endIndex = i - 1;
return;
}
info.endIndex = Math.max(info.endIndex, furthestIndex);
}
}
protected void constrainEndByExternalJumps(InsnTraverseInfo info) {
// Basically, if any external jumps jump into our range, that can't be included in the range
for (int i = 0; i < insns.length; i++) {
if (i >= info.startIndex && i <= info.endIndex) continue;
AbstractInsnNode node = insns[i];
if (node instanceof JumpInsnNode) {
int index = method.instructions.indexOf(((JumpInsnNode) node).label);
if (index >= info.startIndex) info.endIndex = Math.min(info.endIndex, index - 1);
} else if (node instanceof TableSwitchInsnNode) {
int index = method.instructions.indexOf(((TableSwitchInsnNode) node).dflt);
if (index >= info.startIndex) info.endIndex = Math.min(info.endIndex, index - 1);
for (LabelNode label : ((TableSwitchInsnNode) node).labels) {
index = method.instructions.indexOf(label);
if (index >= info.startIndex) info.endIndex = Math.min(info.endIndex, index - 1);
}
} else if (node instanceof LookupSwitchInsnNode) {
int index = method.instructions.indexOf(((LookupSwitchInsnNode) node).dflt);
if (index >= info.startIndex) info.endIndex = Math.min(info.endIndex, index - 1);
for (LabelNode label : ((LookupSwitchInsnNode) node).labels) {
index = method.instructions.indexOf(label);
if (index >= info.startIndex) info.endIndex = Math.min(info.endIndex, index - 1);
}
}
}
}
protected SplitPoint splitPointFromInfo(InsnTraverseInfo info) {
// We're going to use the analyzer adapter and run it for the up until the end, a step at a time
StackAndLocalTrackingAdapter adapter = new StackAndLocalTrackingAdapter(Splitter.this);
// Visit all of the insns up our start.
// XXX: I checked the source of AnalyzerAdapter to confirm I don't need any of the surrounding stuff
for (int i = 0; i < info.startIndex; i++) insns[i].accept(adapter);
// Take the stack at the start and copy it off
List<Object> stackAtStart = new ArrayList<>(adapter.stack);
// Reset some adapter state
adapter.lowestStackSize = stackAtStart.size();
adapter.localsRead.clear();
adapter.localsWritten.clear();
// Now go over the remaining range
for (int i = info.startIndex; i <= info.endIndex; i++) insns[i].accept(adapter);
// Build the split point
return new SplitPoint(
localMapFromAdapterLocalMap(adapter.localsRead, adapter.uninitializedTypes),
localMapFromAdapterLocalMap(adapter.localsWritten, adapter.uninitializedTypes),
typesFromAdapterStackRange(stackAtStart, adapter.lowestStackSize, adapter.uninitializedTypes),
typesFromAdapterStackRange(adapter.stack, adapter.lowestStackSize, adapter.uninitializedTypes),
info.startIndex,
info.getSize()
);
}
protected SortedMap<Integer, Type> localMapFromAdapterLocalMap(
SortedMap<Integer, Object> map, Map<Object, Object> uninitializedTypes) {
SortedMap<Integer, Type> ret = new TreeMap<>();
map.forEach((k, v) -> ret.put(k, typeFromAdapterStackItem(v, uninitializedTypes)));
return ret;
}
protected List<Type> typesFromAdapterStackRange(
List<Object> stack, int start, Map<Object, Object> uninitializedTypes) {
List<Type> ret = new ArrayList<>();
for (int i = start; i < stack.size(); i++) {
Object item = stack.get(i);
ret.add(typeFromAdapterStackItem(item, uninitializedTypes));
// Jump an extra spot for longs and doubles
if (item == Opcodes.LONG || item == Opcodes.DOUBLE) {
if (stack.get(++i) != Opcodes.TOP) throw new IllegalStateException("Expected top after long/double");
}
}
return ret;
}
protected Type typeFromAdapterStackItem(Object item, Map<Object, Object> uninitializedTypes) {
if (item == Opcodes.INTEGER) return Type.INT_TYPE;
else if (item == Opcodes.FLOAT) return Type.FLOAT_TYPE;
else if (item == Opcodes.LONG) return Type.LONG_TYPE;
else if (item == Opcodes.DOUBLE) return Type.DOUBLE_TYPE;
else if (item == Opcodes.NULL) return OBJECT_TYPE;
else if (item == Opcodes.UNINITIALIZED_THIS) return Type.getObjectType(owner);
else if (item instanceof Label) return Type.getObjectType((String) uninitializedTypes.get(item));
else if (item instanceof String) return Type.getObjectType((String) item);
else throw new IllegalStateException("Unrecognized stack item: " + item);
}
}
protected static class StackAndLocalTrackingAdapter extends AnalyzerAdapter {
public int lowestStackSize;
public final SortedMap<Integer, Object> localsRead = new TreeMap<>();
public final SortedMap<Integer, Object> localsWritten = new TreeMap<>();
protected StackAndLocalTrackingAdapter(Splitter splitter) {
super(splitter.api, splitter.owner, splitter.method.access, splitter.method.name, splitter.method.desc, null);
stack = new SizeChangeNotifyList<Object>() {
@Override
protected void onSizeChanged() { lowestStackSize = Math.min(lowestStackSize, size()); }
};
}
@Override
public void visitVarInsn(int opcode, int var) {
switch (opcode) {
case Opcodes.ILOAD:
case Opcodes.LLOAD:
case Opcodes.FLOAD:
case Opcodes.DLOAD:
case Opcodes.ALOAD:
localsRead.put(var, locals.get(var));
break;
case Opcodes.ISTORE:
case Opcodes.FSTORE:
case Opcodes.ASTORE:
localsWritten.put(var, stack.get(stack.size() - 1));
break;
case Opcodes.LSTORE:
case Opcodes.DSTORE:
localsWritten.put(var, stack.get(stack.size() - 2));
break;
}
super.visitVarInsn(opcode, var);
}
@Override
public void visitIincInsn(int var, int increment) {
localsRead.put(var, Type.INT_TYPE);
localsWritten.put(var, Type.INT_TYPE);
super.visitIincInsn(var, increment);
}
}
protected static class SizeChangeNotifyList<T> extends AbstractList<T> {
protected final ArrayList<T> list = new ArrayList<>();
protected void onSizeChanged() { }
@Override
public T get(int index) { return list.get(index); }
@Override
public int size() { return list.size(); }
@Override
public T set(int index, T element) { return list.set(index, element); }
@Override
public void add(int index, T element) {
list.add(index, element);
onSizeChanged();
}
@Override
public T remove(int index) {
T ret = list.remove(index);
onSizeChanged();
return ret;
}
}
protected static class InsnTraverseInfo {
public int startIndex;
// Can only shrink, never increase in size
public int endIndex;
public int getSize() { return endIndex - startIndex + 1; }
}
}

View File

@ -1,84 +0,0 @@
package asmble.compile.jvm.msplit;
import org.objectweb.asm.Opcodes;
import org.objectweb.asm.Type;
import org.objectweb.asm.tree.*;
class Util {
private Util() { }
static final Type OBJECT_TYPE = Type.getType(Object.class);
static AbstractInsnNode zeroVal(Type type) {
if (type == Type.INT_TYPE) return new InsnNode(Opcodes.ICONST_0);
else if (type == Type.LONG_TYPE) return new InsnNode(Opcodes.LCONST_0);
else if (type == Type.FLOAT_TYPE) return new InsnNode(Opcodes.FCONST_0);
else if (type == Type.DOUBLE_TYPE) return new InsnNode(Opcodes.DCONST_0);
else return new InsnNode(Opcodes.ACONST_NULL);
}
static boolean isStoreOp(int opcode) {
return opcode == Opcodes.ISTORE || opcode == Opcodes.LSTORE || opcode == Opcodes.FSTORE ||
opcode == Opcodes.DSTORE || opcode == Opcodes.ASTORE;
}
static int storeOpFromType(Type type) {
if (type == Type.INT_TYPE) return Opcodes.ISTORE;
else if (type == Type.LONG_TYPE) return Opcodes.LSTORE;
else if (type == Type.FLOAT_TYPE) return Opcodes.FSTORE;
else if (type == Type.DOUBLE_TYPE) return Opcodes.DSTORE;
else return Opcodes.ASTORE;
}
static int loadOpFromType(Type type) {
if (type == Type.INT_TYPE) return Opcodes.ILOAD;
else if (type == Type.LONG_TYPE) return Opcodes.LLOAD;
else if (type == Type.FLOAT_TYPE) return Opcodes.FLOAD;
else if (type == Type.DOUBLE_TYPE) return Opcodes.DLOAD;
else return Opcodes.ALOAD;
}
static Type boxedTypeIfNecessary(Type type) {
if (type == Type.INT_TYPE) return Type.getType(Integer.class);
else if (type == Type.LONG_TYPE) return Type.getType(Long.class);
else if (type == Type.FLOAT_TYPE) return Type.getType(Float.class);
else if (type == Type.DOUBLE_TYPE) return Type.getType(Double.class);
else return type;
}
static void boxStackIfNecessary(Type type, MethodNode method) {
if (type == Type.INT_TYPE) boxCall(Integer.class, type).accept(method);
else if (type == Type.FLOAT_TYPE) boxCall(Float.class, type).accept(method);
else if (type == Type.LONG_TYPE) boxCall(Long.class, type).accept(method);
else if (type == Type.DOUBLE_TYPE) boxCall(Double.class, type).accept(method);
}
static void unboxStackIfNecessary(Type type, MethodNode method) {
if (type == Type.INT_TYPE) method.visitMethodInsn(Opcodes.INVOKEVIRTUAL,
"java/lang/Integer", "intValue", Type.getMethodDescriptor(Type.INT_TYPE), false);
else if (type == Type.FLOAT_TYPE) method.visitMethodInsn(Opcodes.INVOKEVIRTUAL,
"java/lang/Float", "floatValue", Type.getMethodDescriptor(Type.FLOAT_TYPE), false);
else if (type == Type.LONG_TYPE) method.visitMethodInsn(Opcodes.INVOKEVIRTUAL,
"java/lang/Long", "longValue", Type.getMethodDescriptor(Type.LONG_TYPE), false);
else if (type == Type.DOUBLE_TYPE) method.visitMethodInsn(Opcodes.INVOKEVIRTUAL,
"java/lang/Double", "doubleValue", Type.getMethodDescriptor(Type.DOUBLE_TYPE), false);
}
static AbstractInsnNode intConst(int v) {
switch (v) {
case -1: return new InsnNode(Opcodes.ICONST_M1);
case 0: return new InsnNode(Opcodes.ICONST_0);
case 1: return new InsnNode(Opcodes.ICONST_1);
case 2: return new InsnNode(Opcodes.ICONST_2);
case 3: return new InsnNode(Opcodes.ICONST_3);
case 4: return new InsnNode(Opcodes.ICONST_4);
case 5: return new InsnNode(Opcodes.ICONST_5);
default: return new LdcInsnNode(v);
}
}
static MethodInsnNode boxCall(Class<?> boxType, Type primType) {
return new MethodInsnNode(Opcodes.INVOKESTATIC, Type.getInternalName(boxType),
"valueOf", Type.getMethodDescriptor(Type.getType(boxType), primType), false);
}
}

View File

@ -184,7 +184,7 @@ sealed class Node {
interface Const<out T : Number> : Args { val value: T }
}
// Control instructions [https://www.w3.org/TR/2018/WD-wasm-core-1-20180215/#control-instructions]
// Control instructions [https://www.w3.org/TR/wasm-core-1/#control-instructions]
object Unreachable : Instr(), Args.None
object Nop : Instr(), Args.None
@ -209,12 +209,12 @@ sealed class Node {
override val reserved: Boolean
) : Instr(), Args.ReservedIndex
// Parametric instructions [https://www.w3.org/TR/2018/WD-wasm-core-1-20180215/#parametric-instructions]
// Parametric instructions [https://www.w3.org/TR/wasm-core-1/#parametric-instructions]
object Drop : Instr(), Args.None
object Select : Instr(), Args.None
// Variable instructions [https://www.w3.org/TR/2018/WD-wasm-core-1-20180215/#variable-instructions]
// Variable instructions [https://www.w3.org/TR/wasm-core-1/#variable-instructions]
data class GetLocal(override val index: Int) : Instr(), Args.Index
data class SetLocal(override val index: Int) : Instr(), Args.Index
@ -222,7 +222,7 @@ sealed class Node {
data class GetGlobal(override val index: Int) : Instr(), Args.Index
data class SetGlobal(override val index: Int) : Instr(), Args.Index
// Memory instructions [https://www.w3.org/TR/2018/WD-wasm-core-1-20180215/#memory-instructions]
// Memory instructions [https://www.w3.org/TR/wasm-core-1/#memory-instructions]
data class I32Load(override val align: Int, override val offset: Long) : Instr(), Args.AlignOffset
data class I64Load(override val align: Int, override val offset: Long) : Instr(), Args.AlignOffset
@ -250,7 +250,7 @@ sealed class Node {
data class MemorySize(override val reserved: Boolean) : Instr(), Args.Reserved
data class MemoryGrow(override val reserved: Boolean) : Instr(), Args.Reserved
// Numeric instructions [https://www.w3.org/TR/2018/WD-wasm-core-1-20180215/#numeric-instructions]
// Numeric instructions [https://www.w3.org/TR/wasm-core-1/#numeric-instructions]
// Constants operators
data class I32Const(override val value: Int) : Instr(), Args.Const<Int>

View File

@ -0,0 +1,183 @@
package asmble.ast.opt
import asmble.ast.Node
import asmble.ast.Stack
// This is a naive implementation that just grabs adjacent sets of restricted insns and breaks the one that will save
// the most instructions off into its own function.
open class SplitLargeFunc(
val minSetLength: Int = 5,
val maxSetLength: Int = 40,
val maxParamCount: Int = 30
) {
// Null if no replacement. Second value is number of instructions saved. fnIndex must map to actual func,
// not imported one.
fun apply(mod: Node.Module, fnIndex: Int): Pair<Node.Module, Int>? {
// Get the func
val importFuncCount = mod.imports.count { it.kind is Node.Import.Kind.Func }
val actualFnIndex = fnIndex - importFuncCount
val func = mod.funcs.getOrElse(actualFnIndex) {
error("Unable to find non-import func at $fnIndex (actual $actualFnIndex)")
}
// Just take the best pattern and apply it
val newFuncIndex = importFuncCount + mod.funcs.size
return commonPatterns(mod, func).firstOrNull()?.let { pattern ->
// Name it as <funcname>$splitN (n is num just to disambiguate) if names are part of the mod
val newName = mod.names?.funcNames?.get(fnIndex)?.let {
"$it\$split".let { it + mod.names.funcNames.count { (_, v) -> v.startsWith(it) } }
}
// Go over every replacement in reverse, changing the instructions to our new set
val newInsns = pattern.replacements.foldRight(func.instructions) { repl, insns ->
insns.take(repl.range.start) +
repl.preCallConsts +
Node.Instr.Call(newFuncIndex) +
insns.drop(repl.range.endInclusive + 1)
}
// Return the module w/ the new function, it's new name, and the insns saved
mod.copy(
funcs = mod.funcs.toMutableList().also {
it[actualFnIndex] = func.copy(instructions = newInsns)
} + pattern.newFunc,
names = mod.names?.copy(funcNames = mod.names.funcNames.toMutableMap().also {
it[newFuncIndex] = newName!!
})
) to pattern.insnsSaved
}
}
// Results are by most insns saved. There can be overlap across patterns but never within a single pattern.
fun commonPatterns(mod: Node.Module, fn: Node.Func): List<CommonPattern> {
// Walk the stack for validation needs
val stack = Stack.walkStrict(mod, fn)
// Let's grab sets of insns that qualify. In this naive impl, in order to qualify the insn set needs to
// only have a certain set of insns that can be broken off. It can also only change the stack by 0 or 1
// value while never dipping below the starting stack. We also store the index they started at.
var insnSets = emptyList<InsnSet>()
// Pair in fold keyed by insn index
fn.instructions.foldIndexed(null as List<Pair<Int, Node.Instr>>?) { index, lastInsns, insn ->
if (!insn.canBeMoved) null else (lastInsns ?: emptyList()).plus(index to insn).also { fullNewInsnSet ->
// Get all final instructions between min and max size and with allowed param count (i.e. const count)
val trailingInsnSet = fullNewInsnSet.takeLast(maxSetLength)
// Get all instructions between the min and max
insnSets += (minSetLength..maxSetLength).
asSequence().
flatMap { trailingInsnSet.asSequence().windowed(it) }.
filter { it.count { it.second is Node.Instr.Args.Const<*> } <= maxParamCount }.
mapNotNull { newIndexedInsnSet ->
// Before adding, make sure it qualifies with the stack
InsnSet(
startIndex = newIndexedInsnSet.first().first,
insns = newIndexedInsnSet.map { it.second },
valueAddedToStack = null
).withStackValueIfValid(stack)
}
}
}
// Sort the insn sets by the ones with the most insns
insnSets = insnSets.sortedByDescending { it.insns.size }
// Now let's create replacements for each, keyed by the extracted func
val patterns = insnSets.fold(emptyMap<Node.Func, List<Replacement>>()) { map, insnSet ->
insnSet.extractCommonFunc().let { (func, replacement) ->
val existingReplacements = map.getOrDefault(func, emptyList())
// Ignore if there is any overlap
if (existingReplacements.any(replacement::overlaps)) map
else map + (func to existingReplacements.plus(replacement))
}
}
// Now sort the patterns by most insns saved and return
return patterns.map { (k, v) ->
CommonPattern(k, v.sortedBy { it.range.first })
}.sortedByDescending { it.insnsSaved }
}
val Node.Instr.canBeMoved get() =
// No blocks
this !is Node.Instr.Block && this !is Node.Instr.Loop && this !is Node.Instr.If &&
this !is Node.Instr.Else && this !is Node.Instr.End &&
// No breaks
this !is Node.Instr.Br && this !is Node.Instr.BrIf && this !is Node.Instr.BrTable &&
// No return
this !is Node.Instr.Return &&
// No local access
this !is Node.Instr.GetLocal && this !is Node.Instr.SetLocal && this !is Node.Instr.TeeLocal
fun InsnSet.withStackValueIfValid(stack: Stack): InsnSet? {
// This makes sure that the stack only changes by at most one item and never dips below its starting val.
// If it is invalid, null is returned. If it qualifies and does change 1 value, it is set.
// First, make sure the stack after the last insn is the same as the first or the same + 1 val
val startingStack = stack.insnApplies[startIndex].stackAtBeginning!!
val endingStack = stack.insnApplies.getOrNull(startIndex + insns.size)?.stackAtBeginning ?: stack.current!!
if (endingStack.size != startingStack.size && endingStack.size != startingStack.size + 1) return null
if (endingStack.take(startingStack.size) != startingStack) return null
// Now, walk the insns and make sure they never pop below the start
var stackCounter = 0
stack.insnApplies.subList(startIndex, startIndex + insns.size).forEach {
it.stackChanges.forEach {
stackCounter += if (it.pop) -1 else 1
if (stackCounter < 0) return null
}
}
// We're good, now only if the ending stack is one over the start do we have a ret val
return copy(
valueAddedToStack = endingStack.lastOrNull()?.takeIf { endingStack.size == startingStack.size + 1 }
)
}
fun InsnSet.extractCommonFunc() =
// This extracts a function with constants changed to parameters
insns.fold(Pair(
Node.Func(Node.Type.Func(params = emptyList(), ret = valueAddedToStack), emptyList(), emptyList()),
Replacement(range = startIndex until startIndex + insns.size, preCallConsts = emptyList()))
) { (func, repl), insn ->
if (insn !is Node.Instr.Args.Const<*>) func.copy(instructions = func.instructions + insn) to repl
else func.copy(
type = func.type.copy(params = func.type.params + insn.constType),
instructions = func.instructions + Node.Instr.GetLocal(func.type.params.size)
) to repl.copy(preCallConsts = repl.preCallConsts + insn)
}
protected val Node.Instr.Args.Const<*>.constType get() = when (this) {
is Node.Instr.I32Const -> Node.Type.Value.I32
is Node.Instr.I64Const -> Node.Type.Value.I64
is Node.Instr.F32Const -> Node.Type.Value.F32
is Node.Instr.F64Const -> Node.Type.Value.F64
else -> error("unreachable")
}
data class InsnSet(
val startIndex: Int,
val insns: List<Node.Instr>,
val valueAddedToStack: Node.Type.Value?
)
data class Replacement(
val range: IntRange,
val preCallConsts: List<Node.Instr>
) {
// Subtract one because there is a call after this
val insnsSaved get() = (range.last + 1) - range.first - 1 - preCallConsts.size
fun overlaps(o: Replacement) = range.contains(o.range.first) || range.contains(o.range.last) ||
o.range.contains(range.first) || o.range.contains(range.last)
}
data class CommonPattern(
val newFunc: Node.Func,
// In order by earliest replacement first
val replacements: List<Replacement>
) {
// Replacement pieces saved (with one added for the invocation) less new func instructions
val insnsSaved get() = replacements.sumBy { it.insnsSaved } - newFunc.instructions.size
}
companion object : SplitLargeFunc()
}

View File

@ -1,9 +1,9 @@
package asmble.cli
import asmble.ast.Script
import asmble.compile.jvm.AsmToBinary
import asmble.compile.jvm.AstToAsm
import asmble.compile.jvm.ClsContext
import asmble.compile.jvm.withComputedFramesAndMaxs
import java.io.FileOutputStream
@Suppress("NAME_SHADOWING")
@ -69,7 +69,7 @@ open class Compile : Command<Compile.Args>() {
includeBinary = args.includeBinary
)
AstToAsm.fromModule(ctx)
outStream.write(AsmToBinary.fromClassNode(ctx.cls))
outStream.write(ctx.cls.withComputedFramesAndMaxs())
}
}

View File

@ -1,7 +1,7 @@
package asmble.cli
import asmble.compile.jvm.AsmToBinary
import asmble.compile.jvm.Linker
import asmble.compile.jvm.withComputedFramesAndMaxs
import java.io.FileOutputStream
open class Link : Command<Link.Args>() {
@ -52,7 +52,7 @@ open class Link : Command<Link.Args>() {
defaultMaxMemPages = args.defaultMaxMem
)
Linker.link(ctx)
outStream.write(AsmToBinary.fromClassNode(ctx.cls))
outStream.write(ctx.cls.withComputedFramesAndMaxs())
}
}

View File

@ -3,7 +3,7 @@ package asmble.cli
import asmble.util.Logger
import kotlin.system.exitProcess
val commands = listOf(Compile, Help, Invoke, Link, Run, Translate)
val commands = listOf(Compile, Help, Invoke, Link, Run, SplitFunc, Translate)
/**
* Entry point of command line interface.

View File

@ -2,11 +2,9 @@ package asmble.cli
import asmble.ast.Script
import asmble.compile.jvm.javaIdent
import asmble.run.jvm.LoggerModule
import asmble.run.jvm.Module
import asmble.run.jvm.ScriptContext
import java.io.File
import java.io.PrintWriter
import java.util.*
abstract class ScriptCommand<T> : Command<T>() {
@ -43,13 +41,6 @@ abstract class ScriptCommand<T> : Command<T>() {
desc = "The maximum number of memory pages when a module doesn't say.",
default = "5",
lowPriority = true
).toInt(),
loggerMemPages = bld.arg(
name = "loggerMemPages",
opt = "loggermempages",
desc = "The maximum number of memory pages of the logger module.",
default = "0",
lowPriority = true
).toInt()
)
@ -65,20 +56,16 @@ abstract class ScriptCommand<T> : Command<T>() {
// if input file is class file
"class" -> ctx.classLoader.addClass(File(inFile).readBytes()).let { ctx }
// if input file is wasm file
else -> {
val translateCmd = Translate
translateCmd.logger = this.logger
translateCmd.inToAst(inFile, inFile.substringAfterLast('.')).let { inAst ->
val (mod, name) = (inAst.commands.singleOrNull() as? Script.Cmd.Module) ?:
else -> Translate.also { it.logger = logger }.inToAst(inFile, inFile.substringAfterLast('.')).let { inAst ->
val (mod, name) = (inAst.commands.singleOrNull() as? Script.Cmd.Module) ?:
error("Input file must only contain a single module")
val className = name?.javaIdent?.capitalize() ?:
val className = name?.javaIdent?.capitalize() ?:
"Temp" + UUID.randomUUID().toString().replace("-", "")
ctx.withCompiledModule(mod, className, name).let { ctx ->
if (name == null && index != args.inFiles.size - 1)
logger.warn { "File '$inFile' not last and has no name so will be unused" }
if (name == null || args.disableAutoRegister) ctx
else ctx.runCommand(Script.Cmd.Register(name, null))
}
ctx.withCompiledModule(mod, className, name).let { ctx ->
if (name == null && index != args.inFiles.size - 1)
logger.warn { "File '$inFile' not last and has no name so will be unused" }
if (name == null || args.disableAutoRegister) ctx
else ctx.runCommand(Script.Cmd.Register(name, null))
}
}
}
@ -91,16 +78,7 @@ abstract class ScriptCommand<T> : Command<T>() {
ctx.withModuleRegistered(moduleName,
Module.Native(Class.forName(className, true, ctx.classLoader).newInstance()))
}
if (args.specTestRegister) context = context.withHarnessRegistered()
if (args.loggerMemPages > 0) {
// creates additional Wasm module with logger functionality
context =
context.withModuleRegistered(
"logger",
Module.Native(LoggerModule(args.loggerMemPages, PrintWriter(System.out)))
)
}
if (args.specTestRegister) context = context.withHarnessRegistered() // проверить что не так с "Cannot find compatible import for spectest::print"
return context
}
@ -112,14 +90,12 @@ abstract class ScriptCommand<T> : Command<T>() {
* @param disableAutoRegister If set, this will not auto-register modules with names
* @param specTestRegister If true, registers the spec test harness as 'spectest'
* @param defaultMaxMemPages The maximum number of memory pages when a module doesn't say
* @param loggerMemPages The maximum number of memory pages of the logger module.
*/
data class ScriptArgs(
val inFiles: List<String>,
val registrations: List<Pair<String, String>>,
val disableAutoRegister: Boolean,
val specTestRegister: Boolean,
val defaultMaxMemPages: Int,
val loggerMemPages: Int
val defaultMaxMemPages: Int
)
}
}

View File

@ -0,0 +1,146 @@
package asmble.cli
import asmble.ast.Node
import asmble.ast.Script
import asmble.ast.opt.SplitLargeFunc
open class SplitFunc : Command<SplitFunc.Args>() {
override val name = "split-func"
override val desc = "Split a WebAssembly function into two"
override fun args(bld: Command.ArgsBuilder) = Args(
inFile = bld.arg(
name = "inFile",
desc = "The wast or wasm WebAssembly file name. Can be '--' to read from stdin."
),
funcName = bld.arg(
name = "funcName",
desc = "The name (or '#' + function space index) of the function to split"
),
inFormat = bld.arg(
name = "inFormat",
opt = "in",
desc = "Either 'wast' or 'wasm' to describe format.",
default = "<use file extension>",
lowPriority = true
),
outFile = bld.arg(
name = "outFile",
opt = "outFile",
desc = "The wast or wasm WebAssembly file name. Can be '--' to write to stdout.",
default = "<inFileSansExt.split.wasm or stdout>",
lowPriority = true
),
outFormat = bld.arg(
name = "outFormat",
opt = "out",
desc = "Either 'wast' or 'wasm' to describe format.",
default = "<use file extension or wast for stdout>",
lowPriority = true
),
compact = bld.flag(
opt = "compact",
desc = "If set for wast out format, will be compacted.",
lowPriority = true
),
minInsnSetLength = bld.arg(
name = "minInsnSetLength",
opt = "minLen",
desc = "The minimum number of instructions allowed for the split off function.",
default = "5",
lowPriority = true
).toInt(),
maxInsnSetLength = bld.arg(
name = "maxInsnSetLength",
opt = "maxLen",
desc = "The maximum number of instructions allowed for the split off function.",
default = "40",
lowPriority = true
).toInt(),
maxNewFuncParamCount = bld.arg(
name = "maxNewFuncParamCount",
opt = "maxParams",
desc = "The maximum number of params allowed for the split off function.",
default = "30",
lowPriority = true
).toInt(),
attempts = bld.arg(
name = "attempts",
opt = "attempts",
desc = "The number of attempts to perform.",
default = "1",
lowPriority = true
).toInt()
).also { bld.done() }
override fun run(args: Args) {
// Load the mod
val translate = Translate().also { it.logger = logger }
val inFormat =
if (args.inFormat != "<use file extension>") args.inFormat
else args.inFile.substringAfterLast('.', "<unknown>")
val script = translate.inToAst(args.inFile, inFormat)
var mod = (script.commands.firstOrNull() as? Script.Cmd.Module)?.module ?: error("Only a single module allowed")
// Do attempts
val splitter = SplitLargeFunc(
minSetLength = args.minInsnSetLength,
maxSetLength = args.maxInsnSetLength,
maxParamCount = args.maxNewFuncParamCount
)
for (attempt in 0 until args.attempts) {
// Find the function
var index = mod.names?.funcNames?.toList()?.find { it.second == args.funcName }?.first
if (index == null && args.funcName.startsWith('#')) index = args.funcName.drop(1).toInt()
val origFunc = index?.let {
mod.funcs.getOrNull(it - mod.imports.count { it.kind is Node.Import.Kind.Func })
} ?: error("Unable to find func")
// Split it
val results = splitter.apply(mod, index)
if (results == null) {
logger.warn { "No instructions after attempt $attempt" }
break
}
val (splitMod, insnsSaved) = results
val newFunc = splitMod.funcs[index - mod.imports.count { it.kind is Node.Import.Kind.Func }]
val splitFunc = splitMod.funcs.last()
logger.warn {
"Split complete, from func with ${origFunc.instructions.size} insns to a func " +
"with ${newFunc.instructions.size} insns + delegated func " +
"with ${splitFunc.instructions.size} insns and ${splitFunc.type.params.size} params, " +
"saved $insnsSaved insns"
}
mod = splitMod
}
// Write it
val outFile = when {
args.outFile != "<inFileSansExt.split.wasm or stdout>" -> args.outFile
args.inFile == "--" -> "--"
else -> args.inFile.replaceAfterLast('.', "split." + args.inFile.substringAfterLast('.'))
}
val outFormat = when {
args.outFormat != "<use file extension or wast for stdout>" -> args.outFormat
outFile == "--" -> "wast"
else -> outFile.substringAfterLast('.', "<unknown>")
}
translate.astToOut(outFile, outFormat, args.compact,
Script(listOf(Script.Cmd.Module(mod, mod.names?.moduleName))))
}
data class Args(
val inFile: String,
val inFormat: String,
val funcName: String,
val outFile: String,
val outFormat: String,
val compact: Boolean,
val minInsnSetLength: Int,
val maxInsnSetLength: Int,
val maxNewFuncParamCount: Int,
val attempts: Int
)
companion object : SplitFunc()
}

View File

@ -70,7 +70,7 @@ open class Translate : Command<Translate.Args>() {
}
}
"wasm" ->
Script(listOf(Script.Cmd.Module(BinaryToAst(logger = this.logger).toModule(
Script(listOf(Script.Cmd.Module(BinaryToAst(logger = logger).toModule(
ByteReader.InputStream(inBytes.inputStream())), null)))
else -> error("Unknown in format '$inFormat'")
}

View File

@ -2,6 +2,7 @@ package asmble.compile.jvm
import asmble.ast.Node
import org.objectweb.asm.ClassReader
import org.objectweb.asm.ClassWriter
import org.objectweb.asm.Opcodes
import org.objectweb.asm.Type
import org.objectweb.asm.tree.*
@ -188,6 +189,16 @@ fun MethodNode.toAsmString(): String {
val Node.Type.Func.asmDesc: String get() =
(this.ret?.typeRef ?: Void::class.ref).asMethodRetDesc(*this.params.map { it.typeRef }.toTypedArray())
fun ClassNode.withComputedFramesAndMaxs(
cw: ClassWriter = ClassWriter(ClassWriter.COMPUTE_FRAMES + ClassWriter.COMPUTE_MAXS)
): ByteArray {
// Note, compute maxs adds a bunch of NOPs for unreachable code.
// See $func12 of block.wast. I don't believe the extra time over the
// instructions to remove the NOPs is worth it.
this.accept(cw)
return cw.toByteArray()
}
fun ClassNode.toAsmString(): String {
val stringWriter = StringWriter()
this.accept(TraceClassVisitor(PrintWriter(stringWriter)))

View File

@ -1,51 +0,0 @@
package asmble.compile.jvm
import asmble.compile.jvm.msplit.SplitMethod
import org.objectweb.asm.ClassWriter
import org.objectweb.asm.MethodTooLargeException
import org.objectweb.asm.Opcodes
import org.objectweb.asm.tree.ClassNode
/**
* May mutate given class nodes on [fromClassNode] if [splitMethod] is present (the default). Uses the two-param
* [SplitMethod.split] call to try and split overly large methods.
*/
open class AsmToBinary(val splitMethod: SplitMethod? = SplitMethod(Opcodes.ASM6)) {
fun fromClassNode(
cn: ClassNode,
newClassWriter: () -> ClassWriter = { ClassWriter(ClassWriter.COMPUTE_FRAMES + ClassWriter.COMPUTE_MAXS) }
): ByteArray {
while (true) {
val cw = newClassWriter()
// Note, compute maxs adds a bunch of NOPs for unreachable code.
// See $func12 of block.wast. I don't believe the extra time over the
// instructions to remove the NOPs is worth it.
cn.accept(cw)
try {
return cw.toByteArray()
} catch (e: MethodTooLargeException) {
if (splitMethod == null) throw e
// Split the offending method by removing it and replacing it with the split ones
require(cn.name == e.className)
val tooLargeIndex = cn.methods.indexOfFirst { it.name == e.methodName && it.desc == e.descriptor }
require(tooLargeIndex >= 0)
val split = splitMethod.split(cn.name, cn.methods[tooLargeIndex])
split ?: throw IllegalStateException("Failed to split", e)
// Change the split off method's name if there's already one
val origName = split.splitOffMethod.name
var foundCount = 0
while (cn.methods.any { it.name == split.splitOffMethod.name }) {
split.splitOffMethod.name = origName + (++foundCount)
}
// Replace at the index
cn.methods.removeAt(tooLargeIndex)
cn.methods.add(tooLargeIndex, split.splitOffMethod)
cn.methods.add(tooLargeIndex, split.trimmedMethod)
}
}
}
companion object : AsmToBinary() {
val noSplit = AsmToBinary(null)
}
}

View File

@ -4,13 +4,13 @@ import asmble.ast.Node
import asmble.util.Logger
/**
* Jvm context of execution a function.
* Jvm context of the function execution.
*
* @param cls Class execution context
* @param cls class execution context
* @param node Ast of this function
* @param insns A list of instructions
* @param memIsLocalVar If true then function use only local variables and don't load
* and store from memory.
* @param insns instructions list
* @param memIsLocalVar true if function uses only local variables and doesn't load
* or store to/from memory.
*/
data class FuncContext(
val cls: ClsContext,

View File

@ -150,11 +150,19 @@ open class InsnReworker {
// if we are at 0, add the result of said block if necessary to the count.
if (insideOfBlocks > 0) {
// If it's not a block, just ignore it
(insns[insnIndex] as? Node.Instr.Args.Type)?.let {
val blockStackDiff = insns[insnIndex].let {
when (it) {
is Node.Instr.Block -> if (it.type == null) 0 else 1
is Node.Instr.Loop -> 0
is Node.Instr.If -> if (it.type == null) -1 else 0
else -> null
}
}
if (blockStackDiff != null) {
insideOfBlocks--
ctx.trace { "Found block begin, number of blocks we're still inside: $insideOfBlocks" }
// We're back on our block, change the count if it had a result
if (insideOfBlocks == 0 && it.type != null) countSoFar++
// We're back on our block, change the count
if (insideOfBlocks == 0) countSoFar += blockStackDiff
}
if (insideOfBlocks > 0) continue
}
@ -241,9 +249,10 @@ open class InsnReworker {
*/
fun insnStackDiff(ctx: ClsContext, insn: Node.Instr): Int = when (insn) {
is Node.Instr.Unreachable, is Node.Instr.Nop, is Node.Instr.Block,
is Node.Instr.Loop, is Node.Instr.Else, is Node.Instr.End, is Node.Instr.Br,
is Node.Instr.Loop, is Node.Instr.If, is Node.Instr.Else,
is Node.Instr.End, is Node.Instr.Br, is Node.Instr.BrIf,
is Node.Instr.Return -> NOP
is Node.Instr.If, is Node.Instr.BrIf, is Node.Instr.BrTable -> POP_PARAM
is Node.Instr.BrTable -> POP_PARAM
is Node.Instr.Call -> ctx.funcTypeAtIndex(insn.index).let {
// All calls pop params and any return is a push
(POP_PARAM * it.params.size) + (if (it.ret == null) NOP else PUSH_RESULT)

View File

@ -201,7 +201,7 @@ open class Linker {
"instance" + mod.name.javaIdent.capitalize(), mod.ref.asmDesc),
InsnNode(Opcodes.ARETURN)
)
ctx.cls.methods.plusAssign(func.toMethodNode())
ctx.cls.methods.plusAssign(func)
}
class ModuleClass(val cls: Class<*>, overrideName: String? = null) {

View File

@ -2,11 +2,12 @@ package asmble.io
import asmble.ast.Node
import asmble.util.*
import java.io.ByteArrayInputStream
import java.nio.ByteBuffer
open class BinaryToAst(
val version: Long = 1L,
val logger: Logger = Logger.Print(Logger.Level.WARN),
val logger: Logger = Logger.Print(Logger.Level.OFF),
val includeNameSection: Boolean = true
) : Logger by logger {

View File

@ -1,44 +0,0 @@
package asmble.run.jvm
import asmble.compile.jvm.Mem
import java.io.PrintWriter
import java.nio.ByteBuffer
/**
* Module with possibility to write bytes to any 'writer'. This module actually
* used for logging from the Wasm code outside to 'embedder' (host environment).
*/
open class LoggerModule(pagesOfMemory: Int, val writer: PrintWriter) {
private val memory =
ByteBuffer.allocate(pagesOfMemory * Mem.PAGE_SIZE) as ByteBuffer
/**
* [Wasm function]
* Writes one byte to the logger memory buffer. If there is no place to write
* one byte into the buffer then flush all data from the buffer to [PrintWriter]
* and after that try to put the byte again.
*/
fun write(byte: Int) {
val isFull = memory.position() >= memory.limit()
if (isFull) {
flush()
}
memory.put(byte.toByte())
}
/**
* [Wasm function]
* Reads all bytes from the logger memory buffer, convert its to UTF-8
* string and writes to stdout.
* Cleans the logger memory buffer.
*/
fun flush() {
val message = String(memory.array(), 0, memory.position())
writer.print(message)
writer.flush()
memory.clear()
}
}

View File

@ -45,7 +45,6 @@ data class ScriptContext(
val defaultMaxMemPages: Int = 1,
val includeBinaryInCompiledClass: Boolean = false
) : Logger by logger {
fun withHarnessRegistered(out: PrintWriter = PrintWriter(System.out, true)) =
withModuleRegistered("spectest", Module.Native(TestHarness(out)))
@ -320,15 +319,10 @@ data class ScriptContext(
bindImport(import, true, MethodType.methodType(Array<MethodHandle>::class.java)).
invokeWithArguments()!! as Array<MethodHandle>
open class SimpleClassLoader(
parent: ClassLoader,
logger: Logger,
val splitWhenTooLarge: Boolean = true
) : ClassLoader(parent), Logger by logger {
open class SimpleClassLoader(parent: ClassLoader, logger: Logger) : ClassLoader(parent), Logger by logger {
fun fromBuiltContext(ctx: ClsContext): Class<*> {
trace { "Computing frames for ASM class:\n" + ctx.cls.toAsmString() }
val writer = if (splitWhenTooLarge) AsmToBinary else AsmToBinary.noSplit
return writer.fromClassNode(ctx.cls).let { bytes ->
return ctx.cls.withComputedFramesAndMaxs().let { bytes ->
debug { "ASM class:\n" + bytes.asClassNode().toAsmString() }
defineClass("${ctx.packageName}.${ctx.className}", bytes, 0, bytes.size)
}
@ -345,4 +339,4 @@ data class ScriptContext(
defineClass(className, bytes, 0, bytes.size)
}
}
}
}

View File

@ -16,7 +16,7 @@ class SpecTestUnit(name: String, wast: String, expectedOutput: String?) : BaseTe
"nop" -> 20
"memory_grow" -> 830
"imports" -> 5
else -> 2
else -> 1
}
override fun warningInsteadOfErrReason(t: Throwable) = when (name) {

View File

@ -1,31 +1,29 @@
package asmble.run.jvm
package asmble.ast.opt
import asmble.TestBase
import asmble.ast.Node
import asmble.compile.jvm.AstToAsm
import asmble.compile.jvm.ClsContext
import org.junit.Assert
import asmble.run.jvm.ScriptContext
import org.junit.Test
import org.objectweb.asm.MethodTooLargeException
import java.nio.ByteBuffer
import java.util.*
import kotlin.test.assertEquals
class LargeFuncTest : TestBase() {
class SplitLargeFuncTest : TestBase() {
@Test
fun testLargeFunc() {
val numInsnChunks = 6001
// Make large func that does some math
fun testSplitLargeFunc() {
// We're going to make a large function that does some addition and then stores in mem
val ctx = ClsContext(
packageName = "test",
className = "Temp" + UUID.randomUUID().toString().replace("-", ""),
logger = logger,
mod = Node.Module(
memories = listOf(Node.Type.Memory(Node.ResizableLimits(initial = 4, maximum = 4))),
memories = listOf(Node.Type.Memory(Node.ResizableLimits(initial = 2, maximum = 2))),
funcs = listOf(Node.Func(
type = Node.Type.Func(params = emptyList(), ret = null),
locals = emptyList(),
instructions = (0 until numInsnChunks).flatMap {
instructions = (0 until 501).flatMap {
listOf<Node.Instr>(
Node.Instr.I32Const(it * 4),
// Let's to i * (i = 1)
@ -49,21 +47,43 @@ class LargeFuncTest : TestBase() {
)
// Compile it
AstToAsm.fromModule(ctx)
// Confirm the method size is too large
try {
ScriptContext.SimpleClassLoader(javaClass.classLoader, logger, splitWhenTooLarge = false).
fromBuiltContext(ctx)
Assert.fail()
} catch (e: MethodTooLargeException) { }
// Try again with split
val cls = ScriptContext.SimpleClassLoader(javaClass.classLoader, logger).fromBuiltContext(ctx)
// Create it and check that it still does what we expect
val inst = cls.newInstance()
// Run someFunc
cls.getMethod("someFunc").invoke(inst)
// Get the memory out
val mem = cls.getMethod("getMemory").invoke(inst) as ByteBuffer
// Read out the mem values
(0 until numInsnChunks).forEach { assertEquals(it * (it - 1), mem.getInt(it * 4)) }
(0 until 501).forEach { assertEquals(it * (it - 1), mem.getInt(it * 4)) }
// Now split it
val (splitMod, insnsSaved) = SplitLargeFunc.apply(ctx.mod, 0) ?: error("Nothing could be split")
// Count insns and confirm it is as expected
val origInsnCount = ctx.mod.funcs.sumBy { it.instructions.size }
val newInsnCount = splitMod.funcs.sumBy { it.instructions.size }
assertEquals(origInsnCount - newInsnCount, insnsSaved)
// Compile it
val splitCtx = ClsContext(
packageName = "test",
className = "Temp" + UUID.randomUUID().toString().replace("-", ""),
logger = logger,
mod = splitMod
)
AstToAsm.fromModule(splitCtx)
val splitCls = ScriptContext.SimpleClassLoader(javaClass.classLoader, logger).fromBuiltContext(splitCtx)
val splitInst = splitCls.newInstance()
// Run someFunc
splitCls.getMethod("someFunc").invoke(splitInst)
// Get the memory out and compare it
val splitMem = splitCls.getMethod("getMemory").invoke(splitInst) as ByteBuffer
assertEquals(mem, splitMem)
// Dump some info
logger.debug {
val orig = ctx.mod.funcs.first()
val (new, split) = splitMod.funcs.let { it.first() to it.last() }
"Split complete, from single func with ${orig.instructions.size} insns to func " +
"with ${new.instructions.size} insns + delegated func " +
"with ${split.instructions.size} insns and ${split.type.params.size} params"
}
}
}

View File

@ -1,51 +0,0 @@
package asmble.run.jvm
import asmble.TestBase
import org.junit.Test
import java.io.PrintWriter
import java.io.StringWriter
import kotlin.test.assertEquals
class LoggerModuleTest : TestBase() {
@Test
fun writeAndFlushTest() {
val stream = StringWriter()
val logger = LoggerModule(1, PrintWriter(stream))
logger.flush() // checks that no raise error
val testString = "test String for log to stdout"
for (byte: Byte in testString.toByteArray()) {
logger.write(byte.toInt())
}
logger.flush()
val loggedString = stream.toString()
assertEquals(testString, loggedString)
}
@Test
fun writeAndFlushMoreThanLoggerBufferTest() {
val stream = StringWriter()
// logger buffer has 65Kb size
val logger = LoggerModule(1, PrintWriter(stream))
val testString = longString(65_000 * 2) // twice as much as logger buffer
for (byte: Byte in testString.toByteArray()) {
logger.write(byte.toInt())
}
logger.flush()
val loggedString = stream.toString()
assertEquals(testString, loggedString)
}
private fun longString(size: Int): String {
val stringBuffer = StringBuffer()
for (idx: Int in (1 until size)) {
stringBuffer.append((idx % Byte.MAX_VALUE).toChar())
}
return stringBuffer.toString()
}
}

View File

@ -1,14 +0,0 @@
### Example: C Simple
This shows a simple example of compiling C to WASM and then to the JVM. This is the C version of
[rust-simple](../rust-simple).
In order to run the C or C++ examples, the latest LLVM binaries must be on the `PATH`, built with the experimental
WebAssembly target. This can be built by passing `-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=WebAssembly` to `cmake` when
building WebAssembly. Or it can be downloaded from a nightly build site
([this one](http://gsdview.appspot.com/wasm-llvm/builds/) was used for these examples at the time of writing).
Everything else is basically the same as [rust-simple](../rust-simple) except with C code and using `clang`. To run
execute the following from the root `asmble` dir:
gradlew --no-daemon :examples:c-simple:run

View File

@ -1,3 +0,0 @@
int addOne(int x) {
return x + 1;
}

View File

@ -1,13 +0,0 @@
package asmble.examples.csimple;
import java.lang.invoke.MethodHandle;
import asmble.generated.CSimple;
class Main {
public static void main(String[] args) {
// Doesn't need memory or method table
CSimple simple = new CSimple(0, new MethodHandle[0]);
System.out.println("25 + 1 = " + simple.addOne(25));
}
}

View File

@ -2,8 +2,9 @@ package main
import (
"fmt"
"os"
)
func main() {
fmt.Println("Hello, World!")
fmt.Printf("Args: %v", os.Args)
}