1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
use llvm_sys::core::{LLVMDisposePassManager, LLVMInitializeFunctionPassManager, LLVMFinalizeFunctionPassManager, LLVMRunFunctionPassManager, LLVMRunPassManager, LLVMCreatePassManager, LLVMCreateFunctionPassManagerForModule, LLVMGetGlobalPassRegistry};
use llvm_sys::initialization::{LLVMInitializeCore, LLVMInitializeTransformUtils, LLVMInitializeScalarOpts, LLVMInitializeObjCARCOpts, LLVMInitializeVectorization, LLVMInitializeInstCombine, LLVMInitializeIPO, LLVMInitializeInstrumentation, LLVMInitializeAnalysis, LLVMInitializeIPA, LLVMInitializeCodeGen, LLVMInitializeTarget};
use llvm_sys::prelude::{LLVMPassManagerRef, LLVMPassRegistryRef};
use llvm_sys::transforms::ipo::{LLVMAddArgumentPromotionPass, LLVMAddConstantMergePass, LLVMAddDeadArgEliminationPass, LLVMAddFunctionAttrsPass, LLVMAddFunctionInliningPass, LLVMAddAlwaysInlinerPass, LLVMAddGlobalDCEPass, LLVMAddGlobalOptimizerPass, LLVMAddIPConstantPropagationPass, LLVMAddIPSCCPPass, LLVMAddInternalizePass, LLVMAddStripDeadPrototypesPass, LLVMAddPruneEHPass, LLVMAddStripSymbolsPass};
use llvm_sys::transforms::pass_manager_builder::{LLVMPassManagerBuilderRef, LLVMPassManagerBuilderCreate, LLVMPassManagerBuilderDispose, LLVMPassManagerBuilderSetOptLevel, LLVMPassManagerBuilderSetSizeLevel, LLVMPassManagerBuilderSetDisableUnitAtATime, LLVMPassManagerBuilderSetDisableUnrollLoops, LLVMPassManagerBuilderSetDisableSimplifyLibCalls, LLVMPassManagerBuilderUseInlinerWithThreshold, LLVMPassManagerBuilderPopulateFunctionPassManager, LLVMPassManagerBuilderPopulateModulePassManager, LLVMPassManagerBuilderPopulateLTOPassManager};
use llvm_sys::transforms::scalar::{LLVMAddAggressiveDCEPass, LLVMAddMemCpyOptPass, LLVMAddAlignmentFromAssumptionsPass, LLVMAddCFGSimplificationPass, LLVMAddDeadStoreEliminationPass, LLVMAddScalarizerPass, LLVMAddMergedLoadStoreMotionPass, LLVMAddGVNPass, LLVMAddIndVarSimplifyPass, LLVMAddInstructionCombiningPass, LLVMAddJumpThreadingPass, LLVMAddLICMPass, LLVMAddLoopDeletionPass, LLVMAddLoopIdiomPass, LLVMAddLoopRotatePass, LLVMAddLoopRerollPass, LLVMAddLoopUnrollPass, LLVMAddLoopUnswitchPass, LLVMAddPartiallyInlineLibCallsPass, LLVMAddSCCPPass, LLVMAddScalarReplAggregatesPass, LLVMAddScalarReplAggregatesPassSSA, LLVMAddScalarReplAggregatesPassWithThreshold, LLVMAddSimplifyLibCallsPass, LLVMAddTailCallEliminationPass, LLVMAddConstantPropagationPass, LLVMAddDemoteMemoryToRegisterPass, LLVMAddVerifierPass, LLVMAddCorrelatedValuePropagationPass, LLVMAddEarlyCSEPass, LLVMAddLowerExpectIntrinsicPass, LLVMAddTypeBasedAliasAnalysisPass, LLVMAddScopedNoAliasAAPass, LLVMAddBasicAliasAnalysisPass, LLVMAddReassociatePass};
#[llvm_versions(3.7..=latest)]
use llvm_sys::transforms::scalar::LLVMAddBitTrackingDCEPass;
use llvm_sys::transforms::vectorize::{LLVMAddLoopVectorizePass, LLVMAddSLPVectorizePass};

use crate::OptimizationLevel;
use crate::module::Module;
#[llvm_versions(3.6..=3.8)]
use crate::targets::TargetData;
use crate::values::{AsValueRef, FunctionValue};

use std::borrow::Borrow;
use std::marker::PhantomData;

// REVIEW: Opt Level might be identical to targets::Option<CodeGenOptLevel>
#[derive(Debug)]
pub struct PassManagerBuilder {
    pass_manager_builder: LLVMPassManagerBuilderRef,
}

impl PassManagerBuilder {
    fn new(pass_manager_builder: LLVMPassManagerBuilderRef) -> Self {
        assert!(!pass_manager_builder.is_null());

        PassManagerBuilder {
            pass_manager_builder,
        }
    }

    pub fn create() -> Self {
        let pass_manager_builder = unsafe {
            LLVMPassManagerBuilderCreate()
        };

        PassManagerBuilder::new(pass_manager_builder)
    }

    pub fn set_optimization_level(&self, opt_level: OptimizationLevel) {
        unsafe {
            LLVMPassManagerBuilderSetOptLevel(self.pass_manager_builder, opt_level as u32)
        }
    }

    // REVIEW: Valid input 0-2 according to llvmlite. Maybe better as an enum?
    pub fn set_size_level(&self, size_level: u32) {
        unsafe {
            LLVMPassManagerBuilderSetSizeLevel(self.pass_manager_builder, size_level)
        }
    }

    pub fn set_disable_unit_at_a_time(&self, disable: bool) {
        unsafe {
            LLVMPassManagerBuilderSetDisableUnitAtATime(self.pass_manager_builder, disable as i32)
        }
    }

    pub fn set_disable_unroll_loops(&self, disable: bool) {
        unsafe {
            LLVMPassManagerBuilderSetDisableUnrollLoops(self.pass_manager_builder, disable as i32)
        }
    }

    pub fn set_disable_simplify_lib_calls(&self, disable: bool) {
        unsafe {
            LLVMPassManagerBuilderSetDisableSimplifyLibCalls(self.pass_manager_builder, disable as i32)
        }
    }

    pub fn set_inliner_with_threshold(&self, threshold: u32) {
        unsafe {
            LLVMPassManagerBuilderUseInlinerWithThreshold(self.pass_manager_builder, threshold)
        }
    }

    /// Populates a PassManager<FunctionValue> with the expectation of function
    /// transformations.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use inkwell::OptimizationLevel::Aggressive;
    /// use inkwell::module::Module;
    /// use inkwell::passes::{PassManager, PassManagerBuilder};
    ///
    /// let module = Module::create("mod");
    /// let pass_manager_builder = PassManagerBuilder::create();
    ///
    /// pass_manager_builder.set_optimization_level(Aggressive);
    ///
    /// let fpm = PassManager::create(&module);
    ///
    /// pass_manager_builder.populate_function_pass_manager(&fpm);
    /// ```
    pub fn populate_function_pass_manager(&self, pass_manager: &PassManager<FunctionValue>) {
        unsafe {
            LLVMPassManagerBuilderPopulateFunctionPassManager(self.pass_manager_builder, pass_manager.pass_manager)
        }
    }

    /// Populates a PassManager<Module> with the expectation of whole module
    /// transformations.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use inkwell::OptimizationLevel::Aggressive;
    /// use inkwell::passes::{PassManager, PassManagerBuilder};
    /// use inkwell::targets::{InitializationConfig, Target};
    ///
    /// let config = InitializationConfig::default();
    /// Target::initialize_native(&config).unwrap();
    /// let pass_manager_builder = PassManagerBuilder::create();
    ///
    /// pass_manager_builder.set_optimization_level(Aggressive);
    ///
    /// let fpm = PassManager::create(());
    ///
    /// pass_manager_builder.populate_module_pass_manager(&fpm);
    /// ```
    pub fn populate_module_pass_manager(&self, pass_manager: &PassManager<Module>) {
        unsafe {
            LLVMPassManagerBuilderPopulateModulePassManager(self.pass_manager_builder, pass_manager.pass_manager)
        }
    }

    /// Populates a PassManager<Module> with the expectation of link time
    /// optimization transformations.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use inkwell::OptimizationLevel::Aggressive;
    /// use inkwell::passes::{PassManager, PassManagerBuilder};
    /// use inkwell::targets::{InitializationConfig, Target};
    ///
    /// let config = InitializationConfig::default();
    /// Target::initialize_native(&config).unwrap();
    /// let pass_manager_builder = PassManagerBuilder::create();
    ///
    /// pass_manager_builder.set_optimization_level(Aggressive);
    ///
    /// let lpm = PassManager::create(());
    ///
    /// pass_manager_builder.populate_lto_pass_manager(&lpm, false, false);
    /// ```
    pub fn populate_lto_pass_manager(&self, pass_manager: &PassManager<Module>, internalize: bool, run_inliner: bool) {
        unsafe {
            LLVMPassManagerBuilderPopulateLTOPassManager(self.pass_manager_builder, pass_manager.pass_manager, internalize as i32, run_inliner as i32)
        }
    }
}

impl Drop for PassManagerBuilder {
    fn drop(&mut self) {
        unsafe {
            LLVMPassManagerBuilderDispose(self.pass_manager_builder)
        }
    }
}

// This is an ugly privacy hack so that PassManagerSubType can stay private
// to this module and so that super traits using this trait will be not be
// implementable outside this library
pub trait PassManagerSubType {
    type Input;

    unsafe fn create<I: Borrow<Self::Input>>(input: I) -> LLVMPassManagerRef;
    unsafe fn run_in_pass_manager(&self, pass_manager: &PassManager<Self>) -> bool where Self: Sized;
}

impl PassManagerSubType for Module {
    type Input = ();

    unsafe fn create<I: Borrow<Self::Input>>(_: I) -> LLVMPassManagerRef {
        LLVMCreatePassManager()
    }

    unsafe fn run_in_pass_manager(&self, pass_manager: &PassManager<Self>) -> bool {
        LLVMRunPassManager(pass_manager.pass_manager, self.module.get()) == 1
    }
}

// With GATs https://github.com/rust-lang/rust/issues/44265 this could be
// type Input<'a> = &'a Module;
impl PassManagerSubType for FunctionValue {
    type Input = Module;

    unsafe fn create<I: Borrow<Self::Input>>(input: I) -> LLVMPassManagerRef {
        LLVMCreateFunctionPassManagerForModule(input.borrow().module.get())
    }

    unsafe fn run_in_pass_manager(&self, pass_manager: &PassManager<Self>) -> bool {
        LLVMRunFunctionPassManager(pass_manager.pass_manager, self.as_value_ref()) == 1
    }
}

// SubTypes: PassManager<Module>, PassManager<FunctionValue>
/// A manager for running optimization and simplification passes. Much of the
/// documenation for specific passes is directly from the [LLVM
/// documentation](https://llvm.org/docs/Passes.html).
#[derive(Debug)]
pub struct PassManager<T> {
    pub(crate) pass_manager: LLVMPassManagerRef,
    sub_type: PhantomData<T>,
}

impl PassManager<FunctionValue> {
    // return true means some pass modified the module, not an error occurred
    pub fn initialize(&self) -> bool {
        unsafe {
            LLVMInitializeFunctionPassManager(self.pass_manager) == 1
        }
    }

    pub fn finalize(&self) -> bool {
        unsafe {
            LLVMFinalizeFunctionPassManager(self.pass_manager) == 1
        }
    }
}

impl<T: PassManagerSubType> PassManager<T> {
    pub(crate) fn new(pass_manager: LLVMPassManagerRef) -> Self {
        assert!(!pass_manager.is_null());

        PassManager {
            pass_manager,
            sub_type: PhantomData,
        }
    }

    pub fn create<I: Borrow<T::Input>>(input: I) -> PassManager<T> {
        let pass_manager = unsafe {
            T::create(input)
        };

        PassManager::new(pass_manager)
    }

    /// This method returns true if any of the passes modified the function or module
    /// and false otherwise.
    pub fn run_on(&self, input: &T) -> bool {
        unsafe {
            input.run_in_pass_manager(self)
        }
    }

    #[llvm_versions(3.6..=3.8)]
    pub fn add_target_data(&self, target_data: &TargetData) {
        use llvm_sys::target::LLVMAddTargetData;

        unsafe {
            LLVMAddTargetData(target_data.target_data, self.pass_manager)
        }
    }

    /// This pass promotes "by reference" arguments to be "by value" arguments.
    /// In practice, this means looking for internal functions that have pointer
    /// arguments. If it can prove, through the use of alias analysis, that an
    /// argument is only loaded, then it can pass the value into the function
    /// instead of the address of the value. This can cause recursive simplification
    /// of code and lead to the elimination of allocas (especially in C++ template
    /// code like the STL).
    ///
    /// This pass also handles aggregate arguments that are passed into a function,
    /// scalarizing them if the elements of the aggregate are only loaded. Note that
    /// it refuses to scalarize aggregates which would require passing in more than
    /// three operands to the function, because passing thousands of operands for a
    /// large array or structure is unprofitable!
    ///
    /// Note that this transformation could also be done for arguments that are
    /// only stored to (returning the value instead), but does not currently.
    /// This case would be best handled when and if LLVM starts supporting multiple
    /// return values from functions.
    pub fn add_argument_promotion_pass(&self) {
        unsafe {
            LLVMAddArgumentPromotionPass(self.pass_manager)
        }
    }

    /// Merges duplicate global constants together into a single constant that is
    /// shared. This is useful because some passes (i.e., TraceValues) insert a lot
    /// of string constants into the program, regardless of whether or not an existing
    /// string is available.
    pub fn add_constant_merge_pass(&self) {
        unsafe {
            LLVMAddConstantMergePass(self.pass_manager)
        }
    }

    /// This pass deletes dead arguments from internal functions. Dead argument
    /// elimination removes arguments which are directly dead, as well as arguments
    /// only passed into function calls as dead arguments of other functions. This
    /// pass also deletes dead arguments in a similar way.
    ///
    /// This pass is often useful as a cleanup pass to run after aggressive
    /// interprocedural passes, which add possibly-dead arguments.
    pub fn add_dead_arg_elimination_pass(&self) {
        unsafe {
            LLVMAddDeadArgEliminationPass(self.pass_manager)
        }
    }

    /// A simple interprocedural pass which walks the call-graph, looking for
    /// functions which do not access or only read non-local memory, and marking
    /// them readnone/readonly. In addition, it marks function arguments (of
    /// pointer type) “nocapture” if a call to the function does not create
    /// any copies of the pointer value that outlive the call. This more or
    /// less means that the pointer is only dereferenced, and not returned
    /// from the function or stored in a global. This pass is implemented
    /// as a bottom-up traversal of the call-graph.
    pub fn add_function_attrs_pass(&self) {
        unsafe {
            LLVMAddFunctionAttrsPass(self.pass_manager)
        }
    }

    /// Bottom-up inlining of functions into callees.
    pub fn add_function_inlining_pass(&self) {
        unsafe {
            LLVMAddFunctionInliningPass(self.pass_manager)
        }
    }

    /// A custom inliner that handles only functions that are marked as “always inline”.
    pub fn add_always_inliner_pass(&self) {
        unsafe {
            LLVMAddAlwaysInlinerPass(self.pass_manager)
        }
    }

    /// This transform is designed to eliminate unreachable internal
    /// globals from the program. It uses an aggressive algorithm,
    /// searching out globals that are known to be alive. After it
    /// finds all of the globals which are needed, it deletes
    /// whatever is left over. This allows it to delete recursive
    /// chunks of the program which are unreachable.
    pub fn add_global_dce_pass(&self) {
        unsafe {
            LLVMAddGlobalDCEPass(self.pass_manager)
        }
    }

    /// This pass transforms simple global variables that never have
    /// their address taken. If obviously true, it marks read/write
    /// globals as constant, deletes variables only stored to, etc.
    pub fn add_global_optimizer_pass(&self) {
        unsafe {
            LLVMAddGlobalOptimizerPass(self.pass_manager)
        }
    }

    /// This pass implements an extremely simple interprocedural
    /// constant propagation pass. It could certainly be improved
    /// in many different ways, like using a worklist. This pass
    /// makes arguments dead, but does not remove them. The existing
    /// dead argument elimination pass should be run after this to
    /// clean up the mess.
    pub fn add_ip_constant_propagation_pass(&self) {
        unsafe {
            LLVMAddIPConstantPropagationPass(self.pass_manager)
        }
    }

    /// This file implements a simple interprocedural pass which
    /// walks the call-graph, turning invoke instructions into
    /// call instructions if and only if the callee cannot throw
    /// an exception. It implements this as a bottom-up traversal
    /// of the call-graph.
    pub fn add_prune_eh_pass(&self) {
        unsafe {
            LLVMAddPruneEHPass(self.pass_manager)
        }
    }

    /// An interprocedural variant of [Sparse Conditional Constant
    /// Propagation](https://llvm.org/docs/Passes.html#passes-sccp).
    pub fn add_ipsccp_pass(&self) {
        unsafe {
            LLVMAddIPSCCPPass(self.pass_manager)
        }
    }

    /// This pass loops over all of the functions in the input module,
    /// looking for a main function. If a main function is found, all
    /// other functions and all global variables with initializers are
    /// marked as internal.
    pub fn add_internalize_pass(&self, all_but_main: bool) {
        unsafe {
            LLVMAddInternalizePass(self.pass_manager, all_but_main as u32)
        }
    }

    /// This pass loops over all of the functions in the input module,
    /// looking for dead declarations and removes them. Dead declarations
    /// are declarations of functions for which no implementation is available
    /// (i.e., declarations for unused library functions).
    pub fn add_strip_dead_prototypes_pass(&self) {
        unsafe {
            LLVMAddStripDeadPrototypesPass(self.pass_manager)
        }
    }

    /// Performs code stripping. This transformation can delete:
    ///
    /// * Names for virtual registers
    /// * Symbols for internal globals and functions
    /// * Debug information
    ///
    /// Note that this transformation makes code much less readable,
    /// so it should only be used in situations where the strip utility
    /// would be used, such as reducing code size or making it harder
    /// to reverse engineer code.
    pub fn add_strip_symbol_pass(&self) {
        unsafe {
            LLVMAddStripSymbolsPass(self.pass_manager)
        }
    }

    /// This pass combines instructions inside basic blocks to form
    /// vector instructions. It iterates over each basic block,
    /// attempting to pair compatible instructions, repeating this
    /// process until no additional pairs are selected for vectorization.
    /// When the outputs of some pair of compatible instructions are
    /// used as inputs by some other pair of compatible instructions,
    /// those pairs are part of a potential vectorization chain.
    /// Instruction pairs are only fused into vector instructions when
    /// they are part of a chain longer than some threshold length.
    /// Moreover, the pass attempts to find the best possible chain
    /// for each pair of compatible instructions. These heuristics
    /// are intended to prevent vectorization in cases where it would
    /// not yield a performance increase of the resulting code.
    #[llvm_versions(3.6..=4.0)]
    pub fn add_bb_vectorize_pass(&self) {
        use llvm_sys::transforms::vectorize::LLVMAddBBVectorizePass;

        unsafe {
            LLVMAddBBVectorizePass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_loop_vectorize_pass(&self) {
        unsafe {
            LLVMAddLoopVectorizePass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_slp_vectorize_pass(&self) {
        unsafe {
            LLVMAddSLPVectorizePass(self.pass_manager)
        }
    }

    /// ADCE aggressively tries to eliminate code. This pass is similar
    /// to [DCE](https://llvm.org/docs/Passes.html#passes-dce) but it
    /// assumes that values are dead until proven otherwise. This is
    /// similar to [SCCP](https://llvm.org/docs/Passes.html#passes-sccp),
    /// except applied to the liveness of values.
    pub fn add_aggressive_dce_pass(&self) {
        unsafe {
            LLVMAddAggressiveDCEPass(self.pass_manager)
        }
    }

    #[llvm_versions(3.7..=latest)]
    /// No LLVM documentation is available at this time.
    pub fn add_bit_tracking_dce_pass(&self) {
        unsafe {
            LLVMAddBitTrackingDCEPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_alignment_from_assumptions_pass(&self) {
        unsafe {
            LLVMAddAlignmentFromAssumptionsPass(self.pass_manager)
        }
    }

    /// Performs dead code elimination and basic block merging. Specifically:
    ///
    /// * Removes basic blocks with no predecessors.
    /// * Merges a basic block into its predecessor if there is only one and the predecessor only has one successor.
    /// * Eliminates PHI nodes for basic blocks with a single predecessor.
    /// * Eliminates a basic block that only contains an unconditional branch.
    pub fn add_cfg_simplification_pass(&self) {
        unsafe {
            LLVMAddCFGSimplificationPass(self.pass_manager)
        }
    }

    /// A trivial dead store elimination that only considers basic-block local redundant stores.
    pub fn add_dead_store_elimination_pass(&self) {
        unsafe {
            LLVMAddDeadStoreEliminationPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_scalarizer_pass(&self) {
        unsafe {
            LLVMAddScalarizerPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_merged_load_store_motion_pass(&self) {
        unsafe {
            LLVMAddMergedLoadStoreMotionPass(self.pass_manager)
        }
    }

    /// This pass performs global value numbering to eliminate
    /// fully and partially redundant instructions. It also
    /// performs redundant load elimination.
    pub fn add_gvn_pass(&self) {
        unsafe {
            LLVMAddGVNPass(self.pass_manager)
        }
    }

    /// This pass performs global value numbering to eliminate
    /// fully and partially redundant instructions. It also
    /// performs redundant load elimination.
    // REVIEW: Is `LLVMAddGVNPass` deprecated? Should we just seemlessly replace
    // the old one with this one in 4.0+?
    #[llvm_versions(4.0..=latest)]
    pub fn add_new_gvn_pass(&self) {
        use llvm_sys::transforms::scalar::LLVMAddNewGVNPass;

        unsafe {
            LLVMAddNewGVNPass(self.pass_manager)
        }
    }

    /// This transformation analyzes and transforms the induction variables (and
    /// computations derived from them) into simpler forms suitable for subsequent
    /// analysis and transformation.
    ///
    /// This transformation makes the following changes to each loop with an
    /// identifiable induction variable:
    ///
    /// * All loops are transformed to have a single canonical induction variable
    /// which starts at zero and steps by one.
    ///
    /// * The canonical induction variable is guaranteed to be the first PHI node
    /// in the loop header block.
    ///
    /// * Any pointer arithmetic recurrences are raised to use array subscripts.
    ///
    /// If the trip count of a loop is computable, this pass also makes the
    /// following changes:
    ///
    /// * The exit condition for the loop is canonicalized to compare the induction
    /// value against the exit value. This turns loops like:
    ///
    /// ```c
    /// for (i = 7; i*i < 1000; ++i)
    /// ```
    /// into
    /// ```c
    /// for (i = 0; i != 25; ++i)
    /// ```
    ///
    /// * Any use outside of the loop of an expression derived from the indvar is
    /// changed to compute the derived value outside of the loop, eliminating the
    /// dependence on the exit value of the induction variable. If the only purpose
    /// of the loop is to compute the exit value of some derived expression, this
    /// transformation will make the loop dead.
    ///
    /// This transformation should be followed by strength reduction after all of
    /// the desired loop transformations have been performed. Additionally, on
    /// targets where it is profitable, the loop could be transformed to count
    /// down to zero (the "do loop" optimization).
    pub fn add_ind_var_simplify_pass(&self) {
        unsafe {
            LLVMAddIndVarSimplifyPass(self.pass_manager)
        }
    }

    /// Combine instructions to form fewer, simple instructions. This pass
    /// does not modify the CFG. This pass is where algebraic simplification happens.
    ///
    /// This pass combines things like:
    ///
    /// ```c
    /// %Y = add i32 %X, 1
    /// %Z = add i32 %Y, 1
    /// ```
    /// into:
    /// ```c
    /// %Z = add i32 %X, 2
    /// ```
    ///
    /// This is a simple worklist driven algorithm.
    ///
    /// This pass guarantees that the following canonicalizations are performed
    /// on the program:
    ///
    /// 1. If a binary operator has a constant operand, it is moved to the
    /// right-hand side.
    ///
    /// 2. Bitwise operators with constant operands are always grouped so that
    /// shifts are performed first, then ors, then ands, then xors.
    ///
    /// 3. Compare instructions are converted from <, >, ≤, or ≥ to = or ≠ if possible.
    ///
    /// 4. All cmp instructions on boolean values are replaced with logical operations.
    ///
    /// 5. add X, X is represented as mul X, 2 ⇒ shl X, 1
    ///
    /// 6. Multiplies with a constant power-of-two argument are transformed into shifts.
    ///
    /// 7. ... etc.
    ///
    /// This pass can also simplify calls to specific well-known function calls
    /// (e.g. runtime library functions). For example, a call exit(3) that occurs within
    /// the main() function can be transformed into simply return 3. Whether or not library
    /// calls are simplified is controlled by the [-functionattrs](https://llvm.org/docs/Passes.html#passes-functionattrs)
    /// pass and LLVM’s knowledge of library calls on different targets.
    pub fn add_instruction_combining_pass(&self) {
        unsafe {
            LLVMAddInstructionCombiningPass(self.pass_manager)
        }
    }

    /// Jump threading tries to find distinct threads of control flow
    /// running through a basic block. This pass looks at blocks that
    /// have multiple predecessors and multiple successors. If one or
    /// more of the predecessors of the block can be proven to always
    /// cause a jump to one of the successors, we forward the edge from
    /// the predecessor to the successor by duplicating the contents of
    /// this block.
    ///
    /// An example of when this can occur is code like this:
    ///
    /// ```c
    /// if () { ...
    ///   X = 4;
    /// }
    /// if (X < 3) {
    /// ```
    ///
    /// In this case, the unconditional branch at the end of the first
    /// if can be revectored to the false side of the second if.
    pub fn add_jump_threading_pass(&self) {
        unsafe {
            LLVMAddJumpThreadingPass(self.pass_manager)
        }
    }

    /// This pass performs loop invariant code motion,
    /// attempting to remove as much code from the body of
    /// a loop as possible. It does this by either hoisting
    /// code into the preheader block, or by sinking code to
    /// the exit blocks if it is safe. This pass also promotes
    /// must-aliased memory locations in the loop to live in
    /// registers, thus hoisting and sinking “invariant” loads
    /// and stores.
    ///
    /// This pass uses alias analysis for two purposes:
    ///
    /// 1. Moving loop invariant loads and calls out of loops.
    /// If we can determine that a load or call inside of a
    /// loop never aliases anything stored to, we can hoist
    /// it or sink it like any other instruction.
    ///
    /// 2. Scalar Promotion of Memory. If there is a store
    /// instruction inside of the loop, we try to move the
    /// store to happen AFTER the loop instead of inside of
    /// the loop. This can only happen if a few conditions
    /// are true:
    ///
    ///     1. The pointer stored through is loop invariant.
    ///
    ///     2. There are no stores or loads in the loop
    /// which may alias the pointer. There are no calls in
    /// the loop which mod/ref the pointer.
    ///
    /// If these conditions are true, we can promote the loads
    /// and stores in the loop of the pointer to use a temporary
    /// alloca'd variable. We then use the mem2reg functionality
    /// to construct the appropriate SSA form for the variable.
    pub fn add_licm_pass(&self) {
        unsafe {
            LLVMAddLICMPass(self.pass_manager)
        }
    }

    /// This file implements the Dead Loop Deletion Pass.
    /// This pass is responsible for eliminating loops with
    /// non-infinite computable trip counts that have no side
    /// effects or volatile instructions, and do not contribute
    /// to the computation of the function’s return value.
    pub fn add_loop_deletion_pass(&self) {
        unsafe {
            LLVMAddLoopDeletionPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_loop_idiom_pass(&self) {
        unsafe {
            LLVMAddLoopIdiomPass(self.pass_manager)
        }
    }

    /// A simple loop rotation transformation.
    pub fn add_loop_rotate_pass(&self) {
        unsafe {
            LLVMAddLoopRotatePass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_loop_reroll_pass(&self) {
        unsafe {
            LLVMAddLoopRerollPass(self.pass_manager)
        }
    }

    /// This pass implements a simple loop unroller.
    /// It works best when loops have been canonicalized
    /// by the [indvars](https://llvm.org/docs/Passes.html#passes-indvars)
    /// pass, allowing it to determine the trip counts
    /// of loops easily.
    pub fn add_loop_unroll_pass(&self) {
        unsafe {
            LLVMAddLoopUnrollPass(self.pass_manager)
        }
    }

    /// This pass transforms loops that contain branches on
    /// loop-invariant conditions to have multiple loops.
    /// For example, it turns the left into the right code:
    ///
    /// ```c
    /// for (...)                  if (lic)
    ///     A                          for (...)
    ///     if (lic)                       A; B; C
    ///         B                  else
    ///     C                          for (...)
    ///                                    A; C
    /// ```
    ///
    /// This can increase the size of the code exponentially
    /// (doubling it every time a loop is unswitched) so we
    /// only unswitch if the resultant code will be smaller
    /// than a threshold.
    ///
    /// This pass expects [LICM](https://llvm.org/docs/Passes.html#passes-licm)
    /// to be run before it to hoist invariant conditions
    /// out of the loop, to make the unswitching opportunity
    /// obvious.
    pub fn add_loop_unswitch_pass(&self) {
        unsafe {
            LLVMAddLoopUnswitchPass(self.pass_manager)
        }
    }

    /// This pass performs various transformations related
    /// to eliminating memcpy calls, or transforming sets
    /// of stores into memsets.
    pub fn add_memcpy_optimize_pass(&self) {
        unsafe {
            LLVMAddMemCpyOptPass(self.pass_manager)
        }
    }

    /// This pass performs partial inlining, typically by inlining
    /// an if statement that surrounds the body of the function.
    pub fn add_partially_inline_lib_calls_pass(&self) {
        unsafe {
            LLVMAddPartiallyInlineLibCallsPass(self.pass_manager)
        }
    }

    /// Rewrites switch instructions with a sequence of branches,
    /// which allows targets to get away with not implementing the
    /// switch instruction until it is convenient.
    pub fn add_lower_switch_pass(&self) {
        #[llvm_versions(3.6..=6.0)]
        use llvm_sys::transforms::scalar::LLVMAddLowerSwitchPass;
        #[llvm_versions(7.0..=latest)]
        use llvm_sys::transforms::util::LLVMAddLowerSwitchPass;

        unsafe {
            LLVMAddLowerSwitchPass(self.pass_manager)
        }
    }

    /// This file promotes memory references to be register references.
    /// It promotes alloca instructions which only have loads and stores
    /// as uses. An alloca is transformed by using dominator frontiers
    /// to place phi nodes, then traversing the function in depth-first
    /// order to rewrite loads and stores as appropriate. This is just
    /// the standard SSA construction algorithm to construct "pruned" SSA form.
    pub fn add_promote_memory_to_register_pass(&self) {
        #[llvm_versions(3.6..7.0)]
        use llvm_sys::transforms::scalar::LLVMAddPromoteMemoryToRegisterPass;
        #[llvm_versions(7.0..=latest)]
        use llvm_sys::transforms::util::LLVMAddPromoteMemoryToRegisterPass;

        unsafe {
            LLVMAddPromoteMemoryToRegisterPass(self.pass_manager)
        }
    }

    /// This pass reassociates commutative expressions in an order that is designed
    /// to promote better constant propagation, GCSE, LICM, PRE, etc.
    ///
    /// For example: 4 + (x + 5) ⇒ x + (4 + 5)
    ///
    /// In the implementation of this algorithm, constants are assigned rank = 0,
    /// function arguments are rank = 1, and other values are assigned ranks
    /// corresponding to the reverse post order traversal of current function
    /// (starting at 2), which effectively gives values in deep loops higher
    /// rank than values not in loops.
    pub fn add_reassociate_pass(&self) {
        unsafe {
            LLVMAddReassociatePass(self.pass_manager)
        }
    }

    /// Sparse conditional constant propagation and merging, which can
    /// be summarized as:
    ///
    /// * Assumes values are constant unless proven otherwise
    /// * Assumes BasicBlocks are dead unless proven otherwise
    /// * Proves values to be constant, and replaces them with constants
    /// * Proves conditional branches to be unconditional
    ///
    /// Note that this pass has a habit of making definitions be dead.
    /// It is a good idea to run a DCE pass sometime after running this pass.
    pub fn add_sccp_pass(&self) {
        unsafe {
            LLVMAddSCCPPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_scalar_repl_aggregates_pass(&self) {
        unsafe {
            LLVMAddScalarReplAggregatesPass(self.pass_manager)
        }
    }

    /// The well-known scalar replacement of aggregates transformation.
    /// This transform breaks up alloca instructions of aggregate type
    /// (structure or array) into individual alloca instructions for each
    /// member if possible. Then, if possible, it transforms the individual
    /// alloca instructions into nice clean scalar SSA form.
    pub fn add_scalar_repl_aggregates_pass_ssa(&self) {
        unsafe {
            LLVMAddScalarReplAggregatesPassSSA(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_scalar_repl_aggregates_pass_with_threshold(&self, threshold: i32) {
        unsafe {
            LLVMAddScalarReplAggregatesPassWithThreshold(self.pass_manager, threshold)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_simplify_lib_calls_pass(&self) {
        unsafe {
            LLVMAddSimplifyLibCallsPass(self.pass_manager)
        }
    }

    /// This file transforms calls of the current function (self recursion) followed
    /// by a return instruction with a branch to the entry of the function, creating
    /// a loop. This pass also implements the following extensions to the basic algorithm:
    ///
    /// 1. Trivial instructions between the call and return do not prevent the
    /// transformation from taking place, though currently the analysis cannot support
    /// moving any really useful instructions (only dead ones).
    ///
    /// 2. This pass transforms functions that are prevented from being tail
    /// recursive by an associative expression to use an accumulator variable, thus
    /// compiling the typical naive factorial or fib implementation into efficient code.
    ///
    /// 3. TRE is performed if the function returns void, if the return returns
    /// the result returned by the call, or if the function returns a run-time constant
    /// on all exits from the function. It is possible, though unlikely, that the return
    /// returns something else (like constant 0), and can still be TRE’d. It can be
    /// TRE'd if all other return instructions in the function return the exact same value.
    ///
    /// 4. If it can prove that callees do not access theier caller stack frame,
    /// they are marked as eligible for tail call elimination (by the code generator).
    pub fn add_tail_call_elimination_pass(&self) {
        unsafe {
            LLVMAddTailCallEliminationPass(self.pass_manager)
        }
    }

    /// This pass implements constant propagation and merging. It looks for instructions
    /// involving only constant operands and replaces them with a constant value instead
    /// of an instruction. For example:
    ///
    /// ```ir
    /// add i32 1, 2
    /// ```
    ///
    /// becomes
    ///
    /// ```ir
    /// i32 3
    /// ```
    ///
    /// NOTE: this pass has a habit of making definitions be dead. It is a good idea to
    /// run a Dead Instruction Elimination pass sometime after running this pass.
    pub fn add_constant_propagation_pass(&self) {
        unsafe {
            LLVMAddConstantPropagationPass(self.pass_manager)
        }
    }

    /// This file promotes memory references to be register references.
    /// It promotes alloca instructions which only have loads and stores
    /// as uses. An alloca is transformed by using dominator frontiers to
    /// place phi nodes, then traversing the function in depth-first order to
    /// rewrite loads and stores as appropriate. This is just the standard SSA
    /// construction algorithm to construct “pruned” SSA form.
    pub fn add_demote_memory_to_register_pass(&self) {
        unsafe {
            LLVMAddDemoteMemoryToRegisterPass(self.pass_manager)
        }
    }

    /// Verifies an LLVM IR code. This is useful to run after an optimization
    /// which is undergoing testing. Note that llvm-as verifies its input before
    /// emitting bitcode, and also that malformed bitcode is likely to make
    /// LLVM crash. All language front-ends are therefore encouraged to verify
    /// their output before performing optimizing transformations.
    ///
    /// 1. Both of a binary operator’s parameters are of the same type.
    ///
    /// 2. Verify that the indices of mem access instructions match other operands.
    ///
    /// 3. Verify that arithmetic and other things are only performed on
    /// first-class types. Verify that shifts and logicals only happen on
    /// integrals f.e.
    ///
    /// 4. All of the constants in a switch statement are of the correct type.
    ///
    /// 5. The code is in valid SSA form.
    ///
    /// 6. It is illegal to put a label into any other type (like a structure)
    /// or to return one.
    ///
    /// 7. Only phi nodes can be self referential: %x = add i32 %x, %x is invalid.
    ///
    /// 8. PHI nodes must have an entry for each predecessor, with no extras.
    ///
    /// 9. PHI nodes must be the first thing in a basic block, all grouped together.
    ///
    /// 10. PHI nodes must have at least one entry.
    ///
    /// 11. All basic blocks should only end with terminator insts, not contain them.
    ///
    /// 12. The entry node to a function must not have predecessors.
    ///
    /// 13. All Instructions must be embedded into a basic block.
    ///
    /// 14. Functions cannot take a void-typed parameter.
    ///
    /// 15. Verify that a function’s argument list agrees with its declared type.
    ///
    /// 16. It is illegal to specify a name for a void value.
    ///
    /// 17. It is illegal to have an internal global value with no initializer.
    ///
    /// 18. It is illegal to have a ret instruction that returns a value that does
    /// not agree with the function return value type.
    ///
    /// 19. Function call argument types match the function prototype.
    ///
    /// 20. All other things that are tested by asserts spread about the code.
    ///
    /// Note that this does not provide full security verification (like Java), but instead just tries to ensure that code is well-formed.
    pub fn add_verifier_pass(&self) {
        unsafe {
            LLVMAddVerifierPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_correlated_value_propagation_pass(&self) {
        unsafe {
            LLVMAddCorrelatedValuePropagationPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_early_cse_pass(&self) {
        unsafe {
            LLVMAddEarlyCSEPass(self.pass_manager)
        }
    }

    #[llvm_versions(4.0..=latest)]
    /// No LLVM documentation is available at this time.
    pub fn add_early_cse_mem_ssa_pass(&self) {
        use llvm_sys::transforms::scalar::LLVMAddEarlyCSEMemSSAPass;

        unsafe {
            LLVMAddEarlyCSEMemSSAPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_lower_expect_intrinsic_pass(&self) {
        unsafe {
            LLVMAddLowerExpectIntrinsicPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_type_based_alias_analysis_pass(&self) {
        unsafe {
            LLVMAddTypeBasedAliasAnalysisPass(self.pass_manager)
        }
    }

    /// No LLVM documentation is available at this time.
    pub fn add_scoped_no_alias_aa_pass(&self) {
        unsafe {
            LLVMAddScopedNoAliasAAPass(self.pass_manager)
        }
    }

    /// A basic alias analysis pass that implements identities
    /// (two different globals cannot alias, etc), but does no
    /// stateful analysis.
    pub fn add_basic_alias_analysis_pass(&self) {
        unsafe {
            LLVMAddBasicAliasAnalysisPass(self.pass_manager)
        }
    }

    #[llvm_versions(7.0..=latest)]
    pub fn add_aggressive_inst_combiner_pass(&self) {
        #[cfg(feature = "llvm7-0")]
        use llvm_sys::transforms::scalar::LLVMAddAggressiveInstCombinerPass;
        #[cfg(not(feature = "llvm7-0"))]
        use llvm_sys::transforms::aggressive_instcombine::LLVMAddAggressiveInstCombinerPass;

        unsafe {
            LLVMAddAggressiveInstCombinerPass(self.pass_manager)
        }
    }

    #[llvm_versions(7.0..=latest)]
    pub fn add_loop_unroll_and_jam_pass(&self) {
        use llvm_sys::transforms::scalar::LLVMAddLoopUnrollAndJamPass;

        unsafe {
            LLVMAddLoopUnrollAndJamPass(self.pass_manager)
        }
    }

    #[llvm_versions(8.0..=latest)]
    pub fn add_coroutine_early_pass(&self) {
        use llvm_sys::transforms::coroutines::LLVMAddCoroEarlyPass;

        unsafe {
            LLVMAddCoroEarlyPass(self.pass_manager)
        }
    }

    #[llvm_versions(8.0..=latest)]
    pub fn add_coroutine_split_pass(&self) {
        use llvm_sys::transforms::coroutines::LLVMAddCoroSplitPass;

        unsafe {
            LLVMAddCoroSplitPass(self.pass_manager)
        }
    }

    #[llvm_versions(8.0..=latest)]
    pub fn add_coroutine_elide_pass(&self) {
        use llvm_sys::transforms::coroutines::LLVMAddCoroElidePass;

        unsafe {
            LLVMAddCoroElidePass(self.pass_manager)
        }
    }

    #[llvm_versions(8.0..=latest)]
    pub fn add_coroutine_cleanup_pass(&self) {
        use llvm_sys::transforms::coroutines::LLVMAddCoroCleanupPass;

        unsafe {
            LLVMAddCoroCleanupPass(self.pass_manager)
        }
    }
}

impl<T> Drop for PassManager<T> {
    fn drop(&mut self) {
        unsafe {
            LLVMDisposePassManager(self.pass_manager)
        }
    }
}

#[derive(Debug)]
pub struct PassRegistry {
    pass_registry: LLVMPassRegistryRef,
}

impl PassRegistry {
    pub fn new(pass_registry: LLVMPassRegistryRef) -> PassRegistry {
        assert!(!pass_registry.is_null());

        PassRegistry {
            pass_registry,
        }
    }

    pub fn get_global() -> PassRegistry {
        let pass_registry = unsafe {
            LLVMGetGlobalPassRegistry()
        };

        PassRegistry::new(pass_registry)
    }

    pub fn initialize_core(&self) {
        unsafe {
            LLVMInitializeCore(self.pass_registry)
        }
    }

    pub fn initialize_transform_utils(&self) {
        unsafe {
            LLVMInitializeTransformUtils(self.pass_registry)
        }
    }

    pub fn initialize_scalar_opts(&self) {
        unsafe {
            LLVMInitializeScalarOpts(self.pass_registry)
        }
    }

    pub fn initialize_obj_carc_opts(&self) {
        unsafe {
            LLVMInitializeObjCARCOpts(self.pass_registry)
        }
    }

    pub fn initialize_vectorization(&self) {
        unsafe {
            LLVMInitializeVectorization(self.pass_registry)
        }
    }

    pub fn initialize_inst_combine(&self) {
        unsafe {
            LLVMInitializeInstCombine(self.pass_registry)
        }
    }

    // Let us begin our initial public offering
    pub fn initialize_ipo(&self) {
        unsafe {
            LLVMInitializeIPO(self.pass_registry)
        }
    }

    pub fn initialize_instrumentation(&self) {
        unsafe {
            LLVMInitializeInstrumentation(self.pass_registry)
        }
    }

    pub fn initialize_analysis(&self) {
        unsafe {
            LLVMInitializeAnalysis(self.pass_registry)
        }
    }

    pub fn initialize_ipa(&self) {
        unsafe {
            LLVMInitializeIPA(self.pass_registry)
        }
    }

    pub fn initialize_codegen(&self) {
        unsafe {
            LLVMInitializeCodeGen(self.pass_registry)
        }
    }

    pub fn initialize_target(&self) {
        unsafe {
            LLVMInitializeTarget(self.pass_registry)
        }
    }

    #[llvm_versions(7.0..=latest)]
    pub fn initialize_aggressive_inst_combiner(&self) {
        use llvm_sys::initialization::LLVMInitializeAggressiveInstCombiner;

        unsafe {
            LLVMInitializeAggressiveInstCombiner(self.pass_registry)
        }
    }
}