use self::flags::verify_flags;
use crate::dbg::DisplayList;
use crate::dominator_tree::DominatorTree;
use crate::entity::SparseSet;
use crate::flowgraph::{BasicBlock, ControlFlowGraph};
use crate::ir;
use crate::ir::entities::AnyEntity;
use crate::ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint};
use crate::ir::{
types, ArgumentLoc, Ebb, FuncRef, Function, GlobalValue, Inst, InstructionData, JumpTable,
Opcode, SigRef, StackSlot, StackSlotKind, Type, Value, ValueDef, ValueList, ValueLoc,
};
use crate::isa::TargetIsa;
use crate::iterators::IteratorExtras;
use crate::settings::FlagsOrIsa;
use crate::timing;
use core::cmp::Ordering;
use core::fmt::{self, Display, Formatter, Write};
use failure_derive::Fail;
use std::collections::BTreeSet;
use std::string::String;
use std::vec::Vec;
pub use self::cssa::verify_cssa;
pub use self::liveness::verify_liveness;
pub use self::locations::verify_locations;
macro_rules! report {
( $errors: expr, $loc: expr, $msg: tt ) => {
$errors.0.push(crate::verifier::VerifierError {
location: $loc.into(),
message: String::from($msg),
})
};
( $errors: expr, $loc: expr, $fmt: tt, $( $arg: expr ),+ ) => {
$errors.0.push(crate::verifier::VerifierError {
location: $loc.into(),
message: format!( $fmt, $( $arg ),+ ),
})
};
}
macro_rules! fatal {
( $( $arg: expr ),+ ) => ({
report!( $( $arg ),+ );
Err(())
});
}
macro_rules! nonfatal {
( $( $arg: expr ),+ ) => ({
report!( $( $arg ),+ );
Ok(())
});
}
mod cssa;
mod flags;
mod liveness;
mod locations;
#[derive(Fail, Debug, PartialEq, Eq)]
pub struct VerifierError {
pub location: AnyEntity,
pub message: String,
}
impl Display for VerifierError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}: {}", self.location, self.message)
}
}
pub type VerifierStepResult<T> = Result<T, ()>;
pub type VerifierResult<T> = Result<T, VerifierErrors>;
#[derive(Fail, Debug, Default, PartialEq, Eq)]
pub struct VerifierErrors(pub Vec<VerifierError>);
impl VerifierErrors {
#[inline]
pub fn new() -> Self {
VerifierErrors(Vec::new())
}
#[inline]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
#[inline]
pub fn has_error(&self) -> bool {
!self.0.is_empty()
}
#[inline]
pub fn as_result(&self) -> VerifierStepResult<()> {
if self.is_empty() {
Ok(())
} else {
Err(())
}
}
}
impl From<Vec<VerifierError>> for VerifierErrors {
fn from(v: Vec<VerifierError>) -> Self {
VerifierErrors(v)
}
}
impl Into<Vec<VerifierError>> for VerifierErrors {
fn into(self) -> Vec<VerifierError> {
self.0
}
}
impl Into<VerifierResult<()>> for VerifierErrors {
fn into(self) -> VerifierResult<()> {
if self.is_empty() {
Ok(())
} else {
Err(self)
}
}
}
impl Display for VerifierErrors {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
for err in &self.0 {
writeln!(f, "- {}", err)?;
}
Ok(())
}
}
pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
func: &Function,
fisa: FOI,
) -> VerifierResult<()> {
let _tt = timing::verifier();
let mut errors = VerifierErrors::default();
let verifier = Verifier::new(func, fisa.into());
let result = verifier.run(&mut errors);
if errors.is_empty() {
result.unwrap();
Ok(())
} else {
Err(errors)
}
}
pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
func: &Function,
cfg: &ControlFlowGraph,
domtree: &DominatorTree,
fisa: FOI,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let _tt = timing::verifier();
let verifier = Verifier::new(func, fisa.into());
if cfg.is_valid() {
verifier.cfg_integrity(cfg, errors)?;
}
if domtree.is_valid() {
verifier.domtree_integrity(domtree, errors)?;
}
verifier.run(errors)
}
struct Verifier<'a> {
func: &'a Function,
expected_cfg: ControlFlowGraph,
expected_domtree: DominatorTree,
isa: Option<&'a dyn TargetIsa>,
}
impl<'a> Verifier<'a> {
pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self {
let expected_cfg = ControlFlowGraph::with_function(func);
let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
Self {
func,
expected_cfg,
expected_domtree,
isa: fisa.isa,
}
}
fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
let mut cycle_seen = false;
let mut seen = SparseSet::new();
'gvs: for gv in self.func.global_values.keys() {
seen.clear();
seen.insert(gv);
let mut cur = gv;
loop {
match self.func.global_values[cur] {
ir::GlobalValueData::Load { base, .. }
| ir::GlobalValueData::IAddImm { base, .. } => {
if seen.insert(base).is_some() {
if !cycle_seen {
report!(
errors,
gv,
"global value cycle: {}",
DisplayList(seen.as_slice())
);
cycle_seen = true;
}
continue 'gvs;
}
cur = base;
}
_ => break,
}
}
match self.func.global_values[gv] {
ir::GlobalValueData::VMContext { .. } => {
if self
.func
.special_param(ir::ArgumentPurpose::VMContext)
.is_none()
{
report!(errors, gv, "undeclared vmctx reference {}", gv);
}
}
ir::GlobalValueData::IAddImm {
base, global_type, ..
} => {
if !global_type.is_int() {
report!(
errors,
gv,
"iadd_imm global value with non-int type {}",
global_type
);
} else if let Some(isa) = self.isa {
let base_type = self.func.global_values[base].global_type(isa);
if global_type != base_type {
report!(
errors,
gv,
"iadd_imm type {} differs from operand type {}",
global_type,
base_type
);
}
}
}
ir::GlobalValueData::Load { base, .. } => {
if let Some(isa) = self.isa {
let base_type = self.func.global_values[base].global_type(isa);
let pointer_type = isa.pointer_type();
if base_type != pointer_type {
report!(
errors,
gv,
"base {} has type {}, which is not the pointer type {}",
base,
base_type,
pointer_type
);
}
}
}
_ => {}
}
}
Ok(())
}
fn verify_heaps(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if let Some(isa) = self.isa {
for (heap, heap_data) in &self.func.heaps {
let base = heap_data.base;
if !self.func.global_values.is_valid(base) {
return nonfatal!(errors, heap, "invalid base global value {}", base);
}
let pointer_type = isa.pointer_type();
let base_type = self.func.global_values[base].global_type(isa);
if base_type != pointer_type {
report!(
errors,
heap,
"heap base has type {}, which is not the pointer type {}",
base_type,
pointer_type
);
}
if let ir::HeapStyle::Dynamic { bound_gv, .. } = heap_data.style {
if !self.func.global_values.is_valid(bound_gv) {
return nonfatal!(errors, heap, "invalid bound global value {}", bound_gv);
}
let index_type = heap_data.index_type;
let bound_type = self.func.global_values[bound_gv].global_type(isa);
if index_type != bound_type {
report!(
errors,
heap,
"heap index type {} differs from the type of its bound, {}",
index_type,
bound_type
);
}
}
}
}
Ok(())
}
fn verify_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if let Some(isa) = self.isa {
for (table, table_data) in &self.func.tables {
let base = table_data.base_gv;
if !self.func.global_values.is_valid(base) {
return nonfatal!(errors, table, "invalid base global value {}", base);
}
let pointer_type = isa.pointer_type();
let base_type = self.func.global_values[base].global_type(isa);
if base_type != pointer_type {
report!(
errors,
table,
"table base has type {}, which is not the pointer type {}",
base_type,
pointer_type
);
}
let bound_gv = table_data.bound_gv;
if !self.func.global_values.is_valid(bound_gv) {
return nonfatal!(errors, table, "invalid bound global value {}", bound_gv);
}
let index_type = table_data.index_type;
let bound_type = self.func.global_values[bound_gv].global_type(isa);
if index_type != bound_type {
report!(
errors,
table,
"table index type {} differs from the type of its bound, {}",
index_type,
bound_type
);
}
}
}
Ok(())
}
fn verify_jump_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
for (jt, jt_data) in &self.func.jump_tables {
for &ebb in jt_data.iter() {
self.verify_ebb(jt, ebb, errors)?;
}
}
Ok(())
}
fn ebb_integrity(
&self,
ebb: Ebb,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let is_terminator = self.func.dfg[inst].opcode().is_terminator();
let is_last_inst = self.func.layout.last_inst(ebb) == Some(inst);
if is_terminator && !is_last_inst {
return fatal!(
errors,
inst,
"a terminator instruction was encountered before the end of {}",
ebb
);
}
if is_last_inst && !is_terminator {
return fatal!(
errors,
ebb,
"block does not end in a terminator instruction"
);
}
let inst_ebb = self.func.layout.inst_ebb(inst);
if inst_ebb != Some(ebb) {
return fatal!(errors, inst, "should belong to {} not {:?}", ebb, inst_ebb);
}
for &arg in self.func.dfg.ebb_params(ebb) {
match self.func.dfg.value_def(arg) {
ValueDef::Param(arg_ebb, _) => {
if ebb != arg_ebb {
return fatal!(errors, arg, "does not belong to {}", ebb);
}
}
_ => {
return fatal!(errors, arg, "expected an argument, found a result");
}
}
}
Ok(())
}
fn instruction_integrity(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let inst_data = &self.func.dfg[inst];
let dfg = &self.func.dfg;
if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
return fatal!(
errors,
inst,
"instruction opcode doesn't match instruction format"
);
}
let num_fixed_results = inst_data.opcode().constraints().num_fixed_results();
let var_results = dfg
.call_signature(inst)
.map_or(0, |sig| dfg.signatures[sig].returns.len());
let total_results = num_fixed_results + var_results;
let got_results = dfg.inst_results(inst).len();
if got_results != total_results {
return fatal!(
errors,
inst,
"expected {} result values, found {}",
total_results,
got_results
);
}
self.verify_entity_references(inst, errors)
}
fn verify_entity_references(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
use crate::ir::instructions::InstructionData::*;
for &arg in self.func.dfg.inst_args(inst) {
self.verify_inst_arg(inst, arg, errors)?;
let original = self.func.dfg.resolve_aliases(arg);
if !self.func.dfg.value_is_attached(original) {
report!(
errors,
inst,
"argument {} -> {} is not attached",
arg,
original
);
}
}
for &res in self.func.dfg.inst_results(inst) {
self.verify_inst_result(inst, res, errors)?;
}
match self.func.dfg[inst] {
MultiAry { ref args, .. } => {
self.verify_value_list(inst, args, errors)?;
}
Jump {
destination,
ref args,
..
}
| Branch {
destination,
ref args,
..
}
| BranchInt {
destination,
ref args,
..
}
| BranchFloat {
destination,
ref args,
..
}
| BranchIcmp {
destination,
ref args,
..
} => {
self.verify_ebb(inst, destination, errors)?;
self.verify_value_list(inst, args, errors)?;
}
BranchTable {
table, destination, ..
} => {
self.verify_ebb(inst, destination, errors)?;
self.verify_jump_table(inst, table, errors)?;
}
BranchTableBase { table, .. }
| BranchTableEntry { table, .. }
| IndirectJump { table, .. } => {
self.verify_jump_table(inst, table, errors)?;
}
Call {
func_ref, ref args, ..
} => {
self.verify_func_ref(inst, func_ref, errors)?;
self.verify_value_list(inst, args, errors)?;
}
CallIndirect {
sig_ref, ref args, ..
} => {
self.verify_sig_ref(inst, sig_ref, errors)?;
self.verify_value_list(inst, args, errors)?;
}
FuncAddr { func_ref, .. } => {
self.verify_func_ref(inst, func_ref, errors)?;
}
StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
self.verify_stack_slot(inst, stack_slot, errors)?;
}
UnaryGlobalValue { global_value, .. } => {
self.verify_global_value(inst, global_value, errors)?;
}
HeapAddr { heap, .. } => {
self.verify_heap(inst, heap, errors)?;
}
TableAddr { table, .. } => {
self.verify_table(inst, table, errors)?;
}
RegSpill { dst, .. } => {
self.verify_stack_slot(inst, dst, errors)?;
}
RegFill { src, .. } => {
self.verify_stack_slot(inst, src, errors)?;
}
LoadComplex { ref args, .. } => {
self.verify_value_list(inst, args, errors)?;
}
StoreComplex { ref args, .. } => {
self.verify_value_list(inst, args, errors)?;
}
Unary { .. }
| UnaryImm { .. }
| UnaryIeee32 { .. }
| UnaryIeee64 { .. }
| UnaryBool { .. }
| Binary { .. }
| BinaryImm { .. }
| Ternary { .. }
| InsertLane { .. }
| ExtractLane { .. }
| IntCompare { .. }
| IntCompareImm { .. }
| IntCond { .. }
| FloatCompare { .. }
| FloatCond { .. }
| IntSelect { .. }
| Load { .. }
| Store { .. }
| RegMove { .. }
| CopySpecial { .. }
| Trap { .. }
| CondTrap { .. }
| IntCondTrap { .. }
| FloatCondTrap { .. }
| NullAry { .. } => {}
}
Ok(())
}
fn verify_ebb(
&self,
loc: impl Into<AnyEntity>,
e: Ebb,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dfg.ebb_is_valid(e) || !self.func.layout.is_ebb_inserted(e) {
return fatal!(errors, loc, "invalid ebb reference {}", e);
}
if let Some(entry_block) = self.func.layout.entry_block() {
if e == entry_block {
return fatal!(errors, loc, "invalid reference to entry ebb {}", e);
}
}
Ok(())
}
fn verify_sig_ref(
&self,
inst: Inst,
s: SigRef,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dfg.signatures.is_valid(s) {
fatal!(errors, inst, "invalid signature reference {}", s)
} else {
Ok(())
}
}
fn verify_func_ref(
&self,
inst: Inst,
f: FuncRef,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.dfg.ext_funcs.is_valid(f) {
nonfatal!(errors, inst, "invalid function reference {}", f)
} else {
Ok(())
}
}
fn verify_stack_slot(
&self,
inst: Inst,
ss: StackSlot,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.stack_slots.is_valid(ss) {
nonfatal!(errors, inst, "invalid stack slot {}", ss)
} else {
Ok(())
}
}
fn verify_global_value(
&self,
inst: Inst,
gv: GlobalValue,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.global_values.is_valid(gv) {
nonfatal!(errors, inst, "invalid global value {}", gv)
} else {
Ok(())
}
}
fn verify_heap(
&self,
inst: Inst,
heap: ir::Heap,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.heaps.is_valid(heap) {
nonfatal!(errors, inst, "invalid heap {}", heap)
} else {
Ok(())
}
}
fn verify_table(
&self,
inst: Inst,
table: ir::Table,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.tables.is_valid(table) {
nonfatal!(errors, inst, "invalid table {}", table)
} else {
Ok(())
}
}
fn verify_value_list(
&self,
inst: Inst,
l: &ValueList,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !l.is_valid(&self.func.dfg.value_lists) {
nonfatal!(errors, inst, "invalid value list reference {:?}", l)
} else {
Ok(())
}
}
fn verify_jump_table(
&self,
inst: Inst,
j: JumpTable,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if !self.func.jump_tables.is_valid(j) {
nonfatal!(errors, inst, "invalid jump table reference {}", j)
} else {
Ok(())
}
}
fn verify_value(
&self,
loc_inst: Inst,
v: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let dfg = &self.func.dfg;
if !dfg.value_is_valid(v) {
nonfatal!(errors, loc_inst, "invalid value reference {}", v)
} else {
Ok(())
}
}
fn verify_inst_arg(
&self,
loc_inst: Inst,
v: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
self.verify_value(loc_inst, v, errors)?;
let dfg = &self.func.dfg;
let loc_ebb = self.func.layout.pp_ebb(loc_inst);
let is_reachable = self.expected_domtree.is_reachable(loc_ebb);
match dfg.value_def(v) {
ValueDef::Result(def_inst, _) => {
if !dfg.inst_is_valid(def_inst) {
return fatal!(
errors,
loc_inst,
"{} is defined by invalid instruction {}",
v,
def_inst
);
}
if self.func.layout.inst_ebb(def_inst) == None {
return fatal!(
errors,
loc_inst,
"{} is defined by {} which has no EBB",
v,
def_inst
);
}
if is_reachable {
if !self
.expected_domtree
.dominates(def_inst, loc_inst, &self.func.layout)
{
return fatal!(
errors,
loc_inst,
"uses value {} from non-dominating {}",
v,
def_inst
);
}
if def_inst == loc_inst {
return fatal!(errors, loc_inst, "uses value {} from itself", v);
}
}
}
ValueDef::Param(ebb, _) => {
if !dfg.ebb_is_valid(ebb) {
return fatal!(errors, loc_inst, "{} is defined by invalid EBB {}", v, ebb);
}
if !self.func.layout.is_ebb_inserted(ebb) {
return fatal!(
errors,
loc_inst,
"{} is defined by {} which is not in the layout",
v,
ebb
);
}
if is_reachable
&& !self
.expected_domtree
.dominates(ebb, loc_inst, &self.func.layout)
{
return fatal!(
errors,
loc_inst,
"uses value arg from non-dominating {}",
ebb
);
}
}
}
Ok(())
}
fn verify_inst_result(
&self,
loc_inst: Inst,
v: Value,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
self.verify_value(loc_inst, v, errors)?;
match self.func.dfg.value_def(v) {
ValueDef::Result(def_inst, _) => {
if def_inst != loc_inst {
fatal!(
errors,
loc_inst,
"instruction result {} is not defined by the instruction",
v
)
} else {
Ok(())
}
}
ValueDef::Param(_, _) => fatal!(
errors,
loc_inst,
"instruction result {} is not defined by the instruction",
v
),
}
}
fn domtree_integrity(
&self,
domtree: &DominatorTree,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
for ebb in self.func.layout.ebbs() {
let expected = self.expected_domtree.idom(ebb);
let got = domtree.idom(ebb);
if got != expected {
return fatal!(
errors,
ebb,
"invalid domtree, expected idom({}) = {:?}, got {:?}",
ebb,
expected,
got
);
}
}
if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
return fatal!(
errors,
AnyEntity::Function,
"incorrect number of Ebbs in postorder traversal"
);
}
for (index, (&test_ebb, &true_ebb)) in domtree
.cfg_postorder()
.iter()
.zip(self.expected_domtree.cfg_postorder().iter())
.enumerate()
{
if test_ebb != true_ebb {
return fatal!(
errors,
test_ebb,
"invalid domtree, postorder ebb number {} should be {}, got {}",
index,
true_ebb,
test_ebb
);
}
}
for (&prev_ebb, &next_ebb) in domtree.cfg_postorder().iter().adjacent_pairs() {
if self
.expected_domtree
.rpo_cmp(prev_ebb, next_ebb, &self.func.layout)
!= Ordering::Greater
{
return fatal!(
errors,
next_ebb,
"invalid domtree, rpo_cmp does not says {} is greater than {}",
prev_ebb,
next_ebb
);
}
}
Ok(())
}
fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if let Some(ebb) = self.func.layout.entry_block() {
let expected_types = &self.func.signature.params;
let ebb_param_count = self.func.dfg.num_ebb_params(ebb);
if ebb_param_count != expected_types.len() {
return fatal!(
errors,
ebb,
"entry block parameters ({}) must match function signature ({})",
ebb_param_count,
expected_types.len()
);
}
for (i, &arg) in self.func.dfg.ebb_params(ebb).iter().enumerate() {
let arg_type = self.func.dfg.value_type(arg);
if arg_type != expected_types[i].value_type {
report!(
errors,
ebb,
"entry block parameter {} expected to have type {}, got {}",
i,
expected_types[i],
arg_type
);
}
}
}
errors.as_result()
}
fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
let inst_data = &self.func.dfg[inst];
let constraints = inst_data.opcode().constraints();
let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
let ctrl_type = self.func.dfg.ctrl_typevar(inst);
if !value_typeset.contains(ctrl_type) {
report!(
errors,
inst,
"has an invalid controlling type {}",
ctrl_type
);
}
ctrl_type
} else {
types::INVALID
};
let _ = self.typecheck_results(inst, ctrl_type, errors);
let _ = self.typecheck_fixed_args(inst, ctrl_type, errors);
let _ = self.typecheck_variable_args(inst, errors);
let _ = self.typecheck_return(inst, errors);
let _ = self.typecheck_special(inst, ctrl_type, errors);
self.typecheck_copy_nop(inst, errors)?;
Ok(())
}
fn typecheck_results(
&self,
inst: Inst,
ctrl_type: Type,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let mut i = 0;
for &result in self.func.dfg.inst_results(inst) {
let result_type = self.func.dfg.value_type(result);
let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
if let Some(expected_type) = expected_type {
if result_type != expected_type {
report!(
errors,
inst,
"expected result {} ({}) to have type {}, found {}",
i,
result,
expected_type,
result_type
);
}
} else {
return nonfatal!(errors, inst, "has more result values than expected");
}
i += 1;
}
if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
return nonfatal!(errors, inst, "has fewer result values than expected");
}
Ok(())
}
fn typecheck_fixed_args(
&self,
inst: Inst,
ctrl_type: Type,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let constraints = self.func.dfg[inst].opcode().constraints();
for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
let arg_type = self.func.dfg.value_type(arg);
match constraints.value_argument_constraint(i, ctrl_type) {
ResolvedConstraint::Bound(expected_type) => {
if arg_type != expected_type {
report!(
errors,
inst,
"arg {} ({}) has type {}, expected {}",
i,
arg,
arg_type,
expected_type
);
}
}
ResolvedConstraint::Free(type_set) => {
if !type_set.contains(arg_type) {
report!(
errors,
inst,
"arg {} ({}) with type {} failed to satisfy type set {:?}",
i,
arg,
arg_type,
type_set
);
}
}
}
}
Ok(())
}
fn typecheck_variable_args(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
match self.func.dfg.analyze_branch(inst) {
BranchInfo::SingleDest(ebb, _) => {
let iter = self
.func
.dfg
.ebb_params(ebb)
.iter()
.map(|&v| self.func.dfg.value_type(v));
self.typecheck_variable_args_iterator(inst, iter, errors)?;
}
BranchInfo::Table(table, ebb) => {
if let Some(ebb) = ebb {
let arg_count = self.func.dfg.num_ebb_params(ebb);
if arg_count != 0 {
return nonfatal!(
errors,
inst,
"takes no arguments, but had target {} with {} arguments",
ebb,
arg_count
);
}
}
for ebb in self.func.jump_tables[table].iter() {
let arg_count = self.func.dfg.num_ebb_params(*ebb);
if arg_count != 0 {
return nonfatal!(
errors,
inst,
"takes no arguments, but had target {} with {} arguments",
ebb,
arg_count
);
}
}
}
BranchInfo::NotABranch => {}
}
match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
CallInfo::Direct(func_ref, _) => {
let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
let arg_types = self.func.dfg.signatures[sig_ref]
.params
.iter()
.map(|a| a.value_type);
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
self.check_outgoing_args(inst, sig_ref, errors)?;
}
CallInfo::Indirect(sig_ref, _) => {
let arg_types = self.func.dfg.signatures[sig_ref]
.params
.iter()
.map(|a| a.value_type);
self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
self.check_outgoing_args(inst, sig_ref, errors)?;
}
CallInfo::NotACall => {}
}
Ok(())
}
fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(
&self,
inst: Inst,
iter: I,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let variable_args = self.func.dfg.inst_variable_args(inst);
let mut i = 0;
for expected_type in iter {
if i >= variable_args.len() {
i += 1;
continue;
}
let arg = variable_args[i];
let arg_type = self.func.dfg.value_type(arg);
if expected_type != arg_type {
report!(
errors,
inst,
"arg {} ({}) has type {}, expected {}",
i,
variable_args[i],
arg_type,
expected_type
);
}
i += 1;
}
if i != variable_args.len() {
return nonfatal!(
errors,
inst,
"mismatched argument count for `{}`: got {}, expected {}",
self.func.dfg.display_inst(inst, None),
variable_args.len(),
i
);
}
Ok(())
}
fn check_outgoing_args(
&self,
inst: Inst,
sig_ref: SigRef,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let sig = &self.func.dfg.signatures[sig_ref];
let args = self.func.dfg.inst_variable_args(inst);
let expected_args = &sig.params[..];
for (&arg, &abi) in args.iter().zip(expected_args) {
if let ArgumentLoc::Stack(offset) = abi.location {
let arg_loc = self.func.locations[arg];
if let ValueLoc::Stack(ss) = arg_loc {
self.verify_stack_slot(inst, ss, errors)?;
let slot = &self.func.stack_slots[ss];
if slot.kind != StackSlotKind::OutgoingArg {
return fatal!(
errors,
inst,
"Outgoing stack argument {} in wrong stack slot: {} = {}",
arg,
ss,
slot
);
}
if slot.offset != Some(offset) {
return fatal!(
errors,
inst,
"Outgoing stack argument {} should have offset {}: {} = {}",
arg,
offset,
ss,
slot
);
}
if slot.size != abi.value_type.bytes() {
return fatal!(
errors,
inst,
"Outgoing stack argument {} wrong size for {}: {} = {}",
arg,
abi.value_type,
ss,
slot
);
}
} else {
let reginfo = self.isa.map(|i| i.register_info());
return fatal!(
errors,
inst,
"Outgoing stack argument {} in wrong location: {}",
arg,
arg_loc.display(reginfo.as_ref())
);
}
}
}
Ok(())
}
fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if self.func.dfg[inst].opcode().is_return() {
let args = self.func.dfg.inst_variable_args(inst);
let expected_types = &self.func.signature.returns;
if args.len() != expected_types.len() {
return nonfatal!(
errors,
inst,
"arguments of return must match function signature"
);
}
for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
let arg_type = self.func.dfg.value_type(arg);
if arg_type != expected_type.value_type {
report!(
errors,
inst,
"arg {} ({}) has type {}, must match function signature of {}",
i,
arg,
arg_type,
expected_type
);
}
}
}
Ok(())
}
fn typecheck_special(
&self,
inst: Inst,
ctrl_type: Type,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
match self.func.dfg[inst] {
ir::InstructionData::Unary { opcode, arg } => {
let arg_type = self.func.dfg.value_type(arg);
match opcode {
Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => {
if arg_type.lane_count() != ctrl_type.lane_count() {
return nonfatal!(
errors,
inst,
"input {} and output {} must have same number of lanes",
arg_type,
ctrl_type
);
}
if arg_type.lane_bits() >= ctrl_type.lane_bits() {
return nonfatal!(
errors,
inst,
"input {} must be smaller than output {}",
arg_type,
ctrl_type
);
}
}
Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => {
if arg_type.lane_count() != ctrl_type.lane_count() {
return nonfatal!(
errors,
inst,
"input {} and output {} must have same number of lanes",
arg_type,
ctrl_type
);
}
if arg_type.lane_bits() <= ctrl_type.lane_bits() {
return nonfatal!(
errors,
inst,
"input {} must be larger than output {}",
arg_type,
ctrl_type
);
}
}
_ => {}
}
}
ir::InstructionData::HeapAddr { heap, arg, .. } => {
let index_type = self.func.dfg.value_type(arg);
let heap_index_type = self.func.heaps[heap].index_type;
if index_type != heap_index_type {
return nonfatal!(
errors,
inst,
"index type {} differs from heap index type {}",
index_type,
heap_index_type
);
}
}
ir::InstructionData::TableAddr { table, arg, .. } => {
let index_type = self.func.dfg.value_type(arg);
let table_index_type = self.func.tables[table].index_type;
if index_type != table_index_type {
return nonfatal!(
errors,
inst,
"index type {} differs from table index type {}",
index_type,
table_index_type
);
}
}
ir::InstructionData::UnaryGlobalValue { global_value, .. } => {
if let Some(isa) = self.isa {
let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst));
let global_type = self.func.global_values[global_value].global_type(isa);
if inst_type != global_type {
return nonfatal!(
errors,
inst,
"global_value instruction with type {} references global value with type {}",
inst_type,
global_type
);
}
}
}
_ => {}
}
Ok(())
}
fn typecheck_copy_nop(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
if let InstructionData::Unary {
opcode: Opcode::CopyNop,
arg,
} = self.func.dfg[inst]
{
let dst_vals = self.func.dfg.inst_results(inst);
if dst_vals.len() != 1 {
return fatal!(errors, inst, "copy_nop must produce exactly one result");
}
let dst_val = dst_vals[0];
if self.func.dfg.value_type(dst_val) != self.func.dfg.value_type(arg) {
return fatal!(errors, inst, "copy_nop src and dst types must be the same");
}
let src_loc = self.func.locations[arg];
let dst_loc = self.func.locations[dst_val];
let locs_ok = match (src_loc, dst_loc) {
(ValueLoc::Stack(src_slot), ValueLoc::Stack(dst_slot)) => src_slot == dst_slot,
_ => false,
};
if !locs_ok {
return fatal!(
errors,
inst,
"copy_nop must refer to identical stack slots, but found {:?} vs {:?}",
src_loc,
dst_loc
);
}
}
Ok(())
}
fn cfg_integrity(
&self,
cfg: &ControlFlowGraph,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let mut expected_succs = BTreeSet::<Ebb>::new();
let mut got_succs = BTreeSet::<Ebb>::new();
let mut expected_preds = BTreeSet::<Inst>::new();
let mut got_preds = BTreeSet::<Inst>::new();
for ebb in self.func.layout.ebbs() {
expected_succs.extend(self.expected_cfg.succ_iter(ebb));
got_succs.extend(cfg.succ_iter(ebb));
let missing_succs: Vec<Ebb> = expected_succs.difference(&got_succs).cloned().collect();
if !missing_succs.is_empty() {
report!(
errors,
ebb,
"cfg lacked the following successor(s) {:?}",
missing_succs
);
continue;
}
let excess_succs: Vec<Ebb> = got_succs.difference(&expected_succs).cloned().collect();
if !excess_succs.is_empty() {
report!(
errors,
ebb,
"cfg had unexpected successor(s) {:?}",
excess_succs
);
continue;
}
expected_preds.extend(
self.expected_cfg
.pred_iter(ebb)
.map(|BasicBlock { inst, .. }| inst),
);
got_preds.extend(cfg.pred_iter(ebb).map(|BasicBlock { inst, .. }| inst));
let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
if !missing_preds.is_empty() {
report!(
errors,
ebb,
"cfg lacked the following predecessor(s) {:?}",
missing_preds
);
continue;
}
let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
if !excess_preds.is_empty() {
report!(
errors,
ebb,
"cfg had unexpected predecessor(s) {:?}",
excess_preds
);
continue;
}
expected_succs.clear();
got_succs.clear();
expected_preds.clear();
got_preds.clear();
}
errors.as_result()
}
fn verify_encoding(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
if self.func.encodings.is_empty() {
return Ok(());
}
let isa = match self.isa {
Some(isa) => isa,
None => return Ok(()),
};
let encoding = self.func.encodings[inst];
if encoding.is_legal() {
if self.func.dfg[inst].opcode().is_ghost() {
return nonfatal!(
errors,
inst,
"Ghost instruction has an encoding: {}",
isa.encoding_info().display(encoding)
);
}
let mut encodings = isa
.legal_encodings(
&self.func,
&self.func.dfg[inst],
self.func.dfg.ctrl_typevar(inst),
)
.peekable();
if encodings.peek().is_none() {
return nonfatal!(
errors,
inst,
"Instruction failed to re-encode {}",
isa.encoding_info().display(encoding)
);
}
let has_valid_encoding = encodings.any(|possible_enc| encoding == possible_enc);
if !has_valid_encoding {
let mut possible_encodings = String::new();
let mut multiple_encodings = false;
for enc in isa.legal_encodings(
&self.func,
&self.func.dfg[inst],
self.func.dfg.ctrl_typevar(inst),
) {
if !possible_encodings.is_empty() {
possible_encodings.push_str(", ");
multiple_encodings = true;
}
possible_encodings
.write_fmt(format_args!("{}", isa.encoding_info().display(enc)))
.unwrap();
}
return nonfatal!(
errors,
inst,
"encoding {} should be {}{}",
isa.encoding_info().display(encoding),
if multiple_encodings { "one of: " } else { "" },
possible_encodings
);
}
return Ok(());
}
let opcode = self.func.dfg[inst].opcode();
if opcode == Opcode::Fallthrough || opcode == Opcode::FallthroughReturn {
return Ok(());
}
let mut needs_enc = None;
if opcode.is_branch() {
needs_enc = Some("Branch");
} else if opcode.is_call() {
needs_enc = Some("Call");
} else if opcode.is_return() {
needs_enc = Some("Return");
} else if opcode.can_store() {
needs_enc = Some("Store");
} else if opcode.can_trap() {
needs_enc = Some("Trapping instruction");
} else if opcode.other_side_effects() {
needs_enc = Some("Instruction with side effects");
}
if let Some(text) = needs_enc {
match self.func.encode(inst, isa) {
Ok(enc) => {
return nonfatal!(
errors,
inst,
"{} must have an encoding (e.g., {})",
text,
isa.encoding_info().display(enc)
);
}
Err(_) => return nonfatal!(errors, inst, "{} must have an encoding", text),
}
}
Ok(())
}
fn immediate_constraints(
&self,
inst: Inst,
errors: &mut VerifierErrors,
) -> VerifierStepResult<()> {
let inst_data = &self.func.dfg[inst];
let memflags = match *inst_data {
ir::InstructionData::Store { flags, .. }
| ir::InstructionData::StoreComplex { flags, .. } => flags,
_ => return Ok(()),
};
if memflags.readonly() {
fatal!(
errors,
inst,
"A store instruction cannot have the `readonly` MemFlag"
)
} else {
Ok(())
}
}
pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
self.verify_global_values(errors)?;
self.verify_heaps(errors)?;
self.verify_tables(errors)?;
self.verify_jump_tables(errors)?;
self.typecheck_entry_block_params(errors)?;
for ebb in self.func.layout.ebbs() {
for inst in self.func.layout.ebb_insts(ebb) {
self.ebb_integrity(ebb, inst, errors)?;
self.instruction_integrity(inst, errors)?;
self.typecheck(inst, errors)?;
self.verify_encoding(inst, errors)?;
self.immediate_constraints(inst, errors)?;
}
}
verify_flags(self.func, &self.expected_cfg, self.isa, errors)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::{Verifier, VerifierError, VerifierErrors};
use crate::entity::EntityList;
use crate::ir::instructions::{InstructionData, Opcode};
use crate::ir::Function;
use crate::settings;
macro_rules! assert_err_with_msg {
($e:expr, $msg:expr) => {
match $e.0.get(0) {
None => panic!("Expected an error"),
Some(&VerifierError { ref message, .. }) => {
if !message.contains($msg) {
#[cfg(feature = "std")]
panic!(format!(
"'{}' did not contain the substring '{}'",
message, $msg
));
#[cfg(not(feature = "std"))]
panic!("error message did not contain the expected substring");
}
}
}
};
}
#[test]
fn empty() {
let func = Function::new();
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
let mut errors = VerifierErrors::default();
assert_eq!(verifier.run(&mut errors), Ok(()));
assert!(errors.0.is_empty());
}
#[test]
fn bad_instruction_format() {
let mut func = Function::new();
let ebb0 = func.dfg.make_ebb();
func.layout.append_ebb(ebb0);
let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
opcode: Opcode::F32const,
imm: 0.into(),
});
func.layout.append_inst(nullary_with_bad_opcode, ebb0);
func.layout.append_inst(
func.dfg.make_inst(InstructionData::Jump {
opcode: Opcode::Jump,
destination: ebb0,
args: EntityList::default(),
}),
ebb0,
);
let flags = &settings::Flags::new(settings::builder());
let verifier = Verifier::new(&func, flags.into());
let mut errors = VerifierErrors::default();
let _ = verifier.run(&mut errors);
assert_err_with_msg!(errors, "instruction format");
}
}