349 lines
14 KiB
Rust
Raw Normal View History

2020-03-03 16:16:29 -08:00
//! Types for a reusable pointer abstraction for accessing Wasm linear memory.
//!
//! This abstraction is safe: it ensures the memory is in bounds and that the pointer
//! is aligned (avoiding undefined behavior).
//!
//! Therefore, you should use this abstraction whenever possible to avoid memory
//! related bugs when implementing an ABI.
use crate::{
memory::Memory,
types::{ValueType, WasmExternType},
};
use std::{cell::Cell, fmt, marker::PhantomData, mem};
2020-03-03 16:16:29 -08:00
/// The `Array` marker type. This type can be used like `WasmPtr<T, Array>`
/// to get access to methods
pub struct Array;
2020-03-03 16:16:29 -08:00
/// The `Item` marker type. This is the default and does not usually need to be
/// specified.
pub struct Item;
2020-03-03 16:16:29 -08:00
/// A zero-cost type that represents a pointer to something in Wasm linear
/// memory.
///
/// This type can be used directly in the host function arguments:
/// ```
/// # use wasmer_runtime_core::vm::Ctx;
/// # use wasmer_runtime_core::memory::ptr::WasmPtr;
/// pub fn host_import(ctx: &mut Ctx, ptr: WasmPtr<u32>) {
/// let memory = ctx.memory(0);
/// let derefed_ptr = ptr.deref(memory).expect("pointer in bounds");
/// let inner_val: u32 = derefed_ptr.get();
/// println!("Got {} from Wasm memory address 0x{:X}", inner_val, ptr.offset());
/// // update the value being pointed to
/// derefed_ptr.set(inner_val + 1);
/// }
/// ```
#[repr(transparent)]
pub struct WasmPtr<T: Copy, Ty = Item> {
offset: u32,
_phantom: PhantomData<(T, Ty)>,
}
2020-03-03 16:16:29 -08:00
/// Methods relevant to all types of `WasmPtr`.
impl<T: Copy, Ty> WasmPtr<T, Ty> {
/// Create a new `WasmPtr` at the given offset.
#[inline]
pub fn new(offset: u32) -> Self {
Self {
offset,
_phantom: PhantomData,
}
}
2020-03-03 16:16:29 -08:00
/// Get the offset into Wasm linear memory for this `WasmPtr`.
#[inline]
pub fn offset(self) -> u32 {
self.offset
}
}
#[inline(always)]
fn align_pointer(ptr: usize, align: usize) -> usize {
// clears bits below aligment amount (assumes power of 2) to align pointer
debug_assert!(align.count_ones() == 1);
ptr & !(align - 1)
}
2020-03-03 16:16:29 -08:00
/// Methods for `WasmPtr`s to data that can be dereferenced, namely to types
/// that implement [`ValueType`], meaning that they're valid for all possible
/// bit patterns.
impl<T: Copy + ValueType> WasmPtr<T, Item> {
2020-03-03 16:16:29 -08:00
/// Dereference the `WasmPtr` getting access to a `&Cell<T>` allowing for
/// reading and mutating of the inner value.
///
/// This method is unsound if used with unsynchronized shared memory.
2020-03-03 16:16:29 -08:00
/// If you're unsure what that means, it likely does not apply to you.
/// This invariant will be enforced in the future.
#[inline]
pub fn deref<'a>(self, memory: &'a Memory) -> Option<&'a Cell<T>> {
if (self.offset as usize) + mem::size_of::<T>() > memory.size().bytes().0
|| mem::size_of::<T>() == 0
{
return None;
}
unsafe {
let cell_ptr = align_pointer(
memory.view::<u8>().as_ptr().add(self.offset as usize) as usize,
mem::align_of::<T>(),
) as *const Cell<T>;
Some(&*cell_ptr)
}
}
2020-03-03 16:16:29 -08:00
/// Mutably dereference this `WasmPtr` getting a `&mut Cell<T>` allowing for
/// direct access to a `&mut T`.
///
/// # Safety
/// - This method does not do any aliasing checks: it's possible to create
/// `&mut T` that point to the same memory. You should ensure that you have
/// exclusive access to Wasm linear memory before calling this method.
#[inline]
pub unsafe fn deref_mut<'a>(self, memory: &'a Memory) -> Option<&'a mut Cell<T>> {
if (self.offset as usize) + mem::size_of::<T>() > memory.size().bytes().0
|| mem::size_of::<T>() == 0
{
return None;
}
let cell_ptr = align_pointer(
memory.view::<u8>().as_ptr().add(self.offset as usize) as usize,
mem::align_of::<T>(),
) as *mut Cell<T>;
Some(&mut *cell_ptr)
}
}
2020-03-03 16:16:29 -08:00
/// Methods for `WasmPtr`s to arrays of data that can be dereferenced, namely to
/// types that implement [`ValueType`], meaning that they're valid for all
/// possible bit patterns.
impl<T: Copy + ValueType> WasmPtr<T, Array> {
2020-03-03 16:16:29 -08:00
/// Dereference the `WasmPtr` getting access to a `&[Cell<T>]` allowing for
/// reading and mutating of the inner values.
///
/// This method is unsound if used with unsynchronized shared memory.
2020-03-03 16:16:29 -08:00
/// If you're unsure what that means, it likely does not apply to you.
/// This invariant will be enforced in the future.
#[inline]
2020-01-24 14:55:02 -08:00
pub fn deref(self, memory: &Memory, index: u32, length: u32) -> Option<&[Cell<T>]> {
// gets the size of the item in the array with padding added such that
// for any index, we will always result an aligned memory access
let item_size = mem::size_of::<T>() + (mem::size_of::<T>() % mem::align_of::<T>());
let slice_full_len = index as usize + length as usize;
if (self.offset as usize) + (item_size * slice_full_len) > memory.size().bytes().0
|| length == 0
|| mem::size_of::<T>() == 0
{
return None;
}
unsafe {
let cell_ptr = align_pointer(
memory.view::<u8>().as_ptr().add(self.offset as usize) as usize,
mem::align_of::<T>(),
) as *const Cell<T>;
let cell_ptrs = &std::slice::from_raw_parts(cell_ptr, slice_full_len)
[index as usize..slice_full_len];
Some(cell_ptrs)
}
}
2020-03-03 16:16:29 -08:00
/// Mutably dereference this `WasmPtr` getting a `&mut [Cell<T>]` allowing for
/// direct access to a `&mut [T]`.
///
/// # Safety
/// - This method does not do any aliasing checks: it's possible to create
/// `&mut T` that point to the same memory. You should ensure that you have
/// exclusive access to Wasm linear memory before calling this method.
#[inline]
2020-01-24 14:55:02 -08:00
pub unsafe fn deref_mut(
self,
2020-01-24 14:55:02 -08:00
memory: &Memory,
index: u32,
length: u32,
2020-01-24 14:55:02 -08:00
) -> Option<&mut [Cell<T>]> {
// gets the size of the item in the array with padding added such that
// for any index, we will always result an aligned memory access
let item_size = mem::size_of::<T>() + (mem::size_of::<T>() % mem::align_of::<T>());
let slice_full_len = index as usize + length as usize;
if (self.offset as usize) + (item_size * slice_full_len) > memory.size().bytes().0
|| length == 0
|| mem::size_of::<T>() == 0
{
return None;
}
let cell_ptr = align_pointer(
memory.view::<u8>().as_ptr().add(self.offset as usize) as usize,
mem::align_of::<T>(),
) as *mut Cell<T>;
let cell_ptrs = &mut std::slice::from_raw_parts_mut(cell_ptr, slice_full_len)
[index as usize..slice_full_len];
Some(cell_ptrs)
}
2019-07-12 15:58:28 -07:00
2020-03-03 16:16:29 -08:00
/// Get a UTF-8 string from the `WasmPtr` with the given length.
///
/// Note that this method returns a reference to Wasm linear memory. The
/// underlying data can be mutated if the Wasm is allowed to execute or
/// an aliasing `WasmPtr` is used to mutate memory.
2020-01-24 14:55:02 -08:00
pub fn get_utf8_string(self, memory: &Memory, str_len: u32) -> Option<&str> {
if self.offset as usize + str_len as usize > memory.size().bytes().0 || str_len == 0 {
2019-07-12 15:58:28 -07:00
return None;
}
let ptr = unsafe { memory.view::<u8>().as_ptr().add(self.offset as usize) as *const u8 };
let slice: &[u8] = unsafe { std::slice::from_raw_parts(ptr, str_len as usize) };
std::str::from_utf8(slice).ok()
}
2020-03-03 16:16:29 -08:00
/// Get a UTF-8 string from the `WasmPtr`, where the string is nul-terminated.
///
/// Note that this does not account for UTF-8 strings that _contain_ nul themselves,
/// [`get_utf8_string`] has to be used for those.
2020-03-03 16:16:29 -08:00
///
/// Also note that this method returns a reference to Wasm linear memory. The
/// underlying data can be mutated if the Wasm is allowed to execute or
/// an aliasing `WasmPtr` is used to mutate memory.
2020-01-24 14:55:02 -08:00
pub fn get_utf8_string_with_nul(self, memory: &Memory) -> Option<&str> {
memory.view::<u8>()[(self.offset as usize)..]
.iter()
.map(|cell| cell.get())
.position(|byte| byte == 0)
.and_then(|length| self.get_utf8_string(memory, length as u32))
}
}
unsafe impl<T: Copy, Ty> WasmExternType for WasmPtr<T, Ty> {
type Native = i32;
fn to_native(self) -> Self::Native {
self.offset as i32
}
fn from_native(n: Self::Native) -> Self {
Self {
offset: n as u32,
_phantom: PhantomData,
}
}
}
unsafe impl<T: Copy, Ty> ValueType for WasmPtr<T, Ty> {}
impl<T: Copy, Ty> Clone for WasmPtr<T, Ty> {
fn clone(&self) -> Self {
Self {
offset: self.offset,
_phantom: PhantomData,
}
}
}
impl<T: Copy, Ty> Copy for WasmPtr<T, Ty> {}
impl<T: Copy, Ty> PartialEq for WasmPtr<T, Ty> {
fn eq(&self, other: &Self) -> bool {
self.offset == other.offset
}
}
impl<T: Copy, Ty> Eq for WasmPtr<T, Ty> {}
impl<T: Copy, Ty> fmt::Debug for WasmPtr<T, Ty> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "WasmPtr({:#x})", self.offset)
}
}
2020-03-05 15:06:00 -08:00
#[cfg(test)]
mod test {
use super::*;
use crate::memory;
use crate::units::Pages;
/// Ensure that memory accesses work on the edges of memory and that out of
/// bounds errors are caught with both `deref` and `deref_mut`.
#[test]
fn wasm_ptr_memory_bounds_checks_hold() {
// create a memory
let memory_descriptor =
memory::MemoryDescriptor::new(Pages(1), Some(Pages(1)), false).unwrap();
let memory = memory::Memory::new(memory_descriptor).unwrap();
// test that basic access works and that len = 0 is caught correctly
let start_wasm_ptr: WasmPtr<u8> = WasmPtr::new(0);
let start_wasm_ptr_array: WasmPtr<u8, Array> = WasmPtr::new(0);
assert!(start_wasm_ptr.deref(&memory).is_some());
assert!(unsafe { start_wasm_ptr.deref_mut(&memory).is_some() });
assert!(start_wasm_ptr_array.deref(&memory, 0, 0).is_none());
assert!(start_wasm_ptr_array.get_utf8_string(&memory, 0).is_none());
assert!(unsafe { start_wasm_ptr_array.deref_mut(&memory, 0, 0).is_none() });
assert!(start_wasm_ptr_array.deref(&memory, 0, 1).is_some());
assert!(unsafe { start_wasm_ptr_array.deref_mut(&memory, 0, 1).is_some() });
// test that accessing the last valid memory address works correctly and OOB is caught
let last_valid_address_for_u8 = (memory.size().bytes().0 - 1) as u32;
let end_wasm_ptr: WasmPtr<u8> = WasmPtr::new(last_valid_address_for_u8);
assert!(end_wasm_ptr.deref(&memory).is_some());
assert!(unsafe { end_wasm_ptr.deref_mut(&memory).is_some() });
let end_wasm_ptr_array: WasmPtr<u8, Array> = WasmPtr::new(last_valid_address_for_u8);
assert!(end_wasm_ptr_array.deref(&memory, 0, 1).is_some());
assert!(unsafe { end_wasm_ptr_array.deref_mut(&memory, 0, 1).is_some() });
let invalid_idx_len_combos: [(u32, u32); 3] = [(0, 0), (0, 2), (1, 1)];
for &(idx, len) in invalid_idx_len_combos.into_iter() {
assert!(end_wasm_ptr_array.deref(&memory, idx, len).is_none());
assert!(unsafe { end_wasm_ptr_array.deref_mut(&memory, idx, len).is_none() });
}
assert!(end_wasm_ptr_array.get_utf8_string(&memory, 2).is_none());
// test that accesing the last valid memory address for a u32 is valid
// (same as above test but with more edge cases to assert on)
let last_valid_address_for_u32 = (memory.size().bytes().0 - 4) as u32;
let end_wasm_ptr: WasmPtr<u32> = WasmPtr::new(last_valid_address_for_u32);
assert!(end_wasm_ptr.deref(&memory).is_some());
assert!(unsafe { end_wasm_ptr.deref_mut(&memory).is_some() });
assert!(end_wasm_ptr.deref(&memory).is_some());
assert!(unsafe { end_wasm_ptr.deref_mut(&memory).is_some() });
let end_wasm_ptr_oob_array: [WasmPtr<u32>; 4] = [
WasmPtr::new(last_valid_address_for_u32 + 1),
WasmPtr::new(last_valid_address_for_u32 + 2),
WasmPtr::new(last_valid_address_for_u32 + 3),
WasmPtr::new(last_valid_address_for_u32 + 4),
];
for oob_end_ptr in end_wasm_ptr_oob_array.into_iter() {
assert!(oob_end_ptr.deref(&memory).is_none());
assert!(unsafe { oob_end_ptr.deref_mut(&memory).is_none() });
}
let end_wasm_ptr_array: WasmPtr<u32, Array> = WasmPtr::new(last_valid_address_for_u32);
assert!(end_wasm_ptr_array.deref(&memory, 0, 1).is_some());
assert!(unsafe { end_wasm_ptr_array.deref_mut(&memory, 0, 1).is_some() });
let invalid_idx_len_combos: [(u32, u32); 4] = [(0, 0), (1, 0), (0, 2), (1, 1)];
for &(idx, len) in invalid_idx_len_combos.into_iter() {
assert!(end_wasm_ptr_array.deref(&memory, idx, len).is_none());
assert!(unsafe { end_wasm_ptr_array.deref_mut(&memory, idx, len).is_none() });
}
let end_wasm_ptr_array_oob_array: [WasmPtr<u32, Array>; 4] = [
WasmPtr::new(last_valid_address_for_u32 + 1),
WasmPtr::new(last_valid_address_for_u32 + 2),
WasmPtr::new(last_valid_address_for_u32 + 3),
WasmPtr::new(last_valid_address_for_u32 + 4),
];
for oob_end_array_ptr in end_wasm_ptr_array_oob_array.into_iter() {
assert!(oob_end_array_ptr.deref(&memory, 0, 1).is_none());
assert!(unsafe { oob_end_array_ptr.deref_mut(&memory, 0, 1).is_none() });
assert!(oob_end_array_ptr.deref(&memory, 0, 0).is_none());
assert!(unsafe { oob_end_array_ptr.deref_mut(&memory, 0, 0).is_none() });
assert!(oob_end_array_ptr.deref(&memory, 1, 0).is_none());
assert!(unsafe { oob_end_array_ptr.deref_mut(&memory, 1, 0).is_none() });
}
}
}