wasmer/lib/dynasm-backend/src/codegen_x64.rs

4678 lines
159 KiB
Rust
Raw Normal View History

2019-02-12 00:52:17 +08:00
use super::codegen::*;
use super::stack::{
ControlFrame, ControlStack, IfElseState, ScratchRegister, ValueInfo, ValueLocation, ValueStack,
};
use byteorder::{ByteOrder, LittleEndian};
2019-02-15 02:21:52 +08:00
use dynasmrt::{
x64::Assembler, AssemblyOffset, DynamicLabel, DynasmApi, DynasmLabelApi, ExecutableBuffer,
};
2019-03-09 02:57:23 +08:00
use std::cell::RefCell;
use std::ptr::NonNull;
use std::sync::Mutex;
use std::{any::Any, collections::HashMap, sync::Arc};
2019-02-15 02:21:52 +08:00
use wasmer_runtime_core::{
backend::{Backend, Compiler, FuncResolver, ProtectedCaller, Token, UserTrapper},
error::{CompileError, CompileResult, RuntimeError, RuntimeResult},
module::{ModuleInfo, ModuleInner, StringTable},
structures::{Map, TypedIndex},
types::{
2019-03-09 00:32:18 +08:00
FuncIndex, FuncSig, GlobalIndex, LocalFuncIndex, LocalGlobalIndex, MemoryIndex, SigIndex,
2019-03-14 10:30:24 +08:00
TableIndex, Type, Value, LocalMemoryIndex, ImportedMemoryIndex, LocalOrImport,
2019-02-15 02:21:52 +08:00
},
2019-03-14 10:30:24 +08:00
memory::MemoryType,
units::Pages,
2019-03-09 02:57:23 +08:00
vm::{self, ImportBacking, LocalGlobal, LocalTable},
2019-02-15 02:21:52 +08:00
};
2019-02-12 00:52:17 +08:00
use wasmparser::{Operator, Type as WpType};
2019-03-09 02:57:23 +08:00
thread_local! {
static CURRENT_EXECUTION_CONTEXT: RefCell<Vec<*const X64ExecutionContext>> = RefCell::new(Vec::new());
}
lazy_static! {
2019-03-09 00:07:13 +08:00
static ref CALL_WASM: unsafe extern "C" fn(params: *const u8, params_len: usize, target: *const u8, memory_base: *mut u8, vmctx: *mut vm::Ctx) -> i64 = {
let mut assembler = Assembler::new().unwrap();
let offset = assembler.offset();
dynasm!(
assembler
2019-02-25 23:55:27 +08:00
; push rbx
; push r12
; push r13
; push r14
; push r15
2019-02-28 23:58:02 +08:00
; mov r15, rcx // memory_base
2019-03-09 00:07:13 +08:00
; mov r14, r8 // vmctx
; lea rax, [>after_call]
; push rax
; push rbp
; mov rbp, rsp
; sub rsp, rsi // params_len
; mov rcx, 0
; mov r8, rsp
; _loop:
; cmp rsi, 0
; je >_loop_end
2019-03-13 18:23:50 +08:00
; mov rax, [rdi]
; mov [r8], rax
; add r8, 8
; add rdi, 8
; sub rsi, 8
; jmp <_loop
; _loop_end:
; jmp rdx
; after_call:
2019-02-25 23:55:27 +08:00
; pop r15
; pop r14
; pop r13
; pop r12
; pop rbx
; ret
);
let buf = assembler.finalize().unwrap();
let ret = unsafe { ::std::mem::transmute(buf.ptr(offset)) };
::std::mem::forget(buf);
ret
};
2019-03-09 00:07:13 +08:00
static ref CONSTRUCT_STACK_AND_CALL_NATIVE: unsafe extern "C" fn (stack_top: *mut u8, stack_base: *mut u8, ctx: *mut vm::Ctx, target: *const vm::Func) -> u64 = {
let mut assembler = Assembler::new().unwrap();
let offset = assembler.offset();
dynasm!(
assembler
; push r15
; push r14
; push r13
; push r12
; sub rsp, 8 // align to 16 bytes
; mov r15, rdi
; mov r14, rsi
; mov r13, rdx
; mov r12, rcx
; mov rdi, r13
; cmp r15, r14
; je >stack_ready
; mov rdi, [r15]
; add r15, 8
; mov rsi, r13
; cmp r15, r14
; je >stack_ready
; mov rsi, [r15]
; add r15, 8
; mov rdx, r13
; cmp r15, r14
; je >stack_ready
; mov rdx, [r15]
; add r15, 8
; mov rcx, r13
; cmp r15, r14
; je >stack_ready
; mov rcx, [r15]
; add r15, 8
; mov r8, r13
; cmp r15, r14
; je >stack_ready
; mov r8, [r15]
; add r15, 8
; mov r9, r13
; cmp r15, r14
; je >stack_ready
; ud2 // FIXME
; stack_ready:
; call r12
; add rsp, 8
; pop r12
; pop r13
; pop r14
; pop r15
; ret
);
let buf = assembler.finalize().unwrap();
let ret = unsafe { ::std::mem::transmute(buf.ptr(offset)) };
::std::mem::forget(buf);
ret
};
}
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Register {
RAX,
RCX,
RDX,
RBX,
RSP,
RBP,
RSI,
RDI,
R8,
R9,
R10,
R11,
R12,
R13,
R14,
R15,
}
impl Register {
pub fn from_scratch_reg(sr: ScratchRegister) -> Register {
use self::Register::*;
match sr.raw_id() {
0 => RDI,
1 => RSI,
2 => RDX,
3 => RCX,
4 => R8,
5 => R9,
6 => R10,
7 => R11,
2019-02-25 23:55:27 +08:00
8 => RBX,
9 => R12,
10 => R13,
2019-03-09 00:07:13 +08:00
// 11 => R14, // R14 is reserved for vmctx.
2019-02-28 23:22:21 +08:00
// 12 => R15, // R15 is reserved for memory base pointer.
_ => unreachable!(),
}
}
2019-02-19 20:25:09 +08:00
pub fn is_used(&self, stack: &ValueStack) -> bool {
use self::Register::*;
for val in &stack.values {
match val.location {
ValueLocation::Register(x) => {
if Register::from_scratch_reg(x) == *self {
return true;
}
}
ValueLocation::Stack => break,
}
}
false
}
}
2019-02-26 20:56:10 +08:00
#[repr(u64)]
#[derive(Copy, Clone, Debug)]
pub enum TrapCode {
Unreachable,
}
pub struct NativeTrampolines {
trap_unreachable: DynamicLabel,
2019-03-14 10:30:24 +08:00
memory_size_dynamic_local: DynamicLabel,
memory_size_static_local: DynamicLabel,
memory_size_shared_local: DynamicLabel,
memory_size_dynamic_import: DynamicLabel,
memory_size_static_import: DynamicLabel,
memory_size_shared_import: DynamicLabel,
memory_grow_dynamic_local: DynamicLabel,
memory_grow_static_local: DynamicLabel,
memory_grow_shared_local: DynamicLabel,
memory_grow_dynamic_import: DynamicLabel,
memory_grow_static_import: DynamicLabel,
memory_grow_shared_import: DynamicLabel,
2019-02-26 20:56:10 +08:00
}
2019-02-12 00:52:17 +08:00
pub struct X64ModuleCodeGenerator {
functions: Vec<X64FunctionCode>,
signatures: Option<Arc<Map<SigIndex, FuncSig>>>,
function_signatures: Option<Arc<Map<FuncIndex, SigIndex>>>,
2019-03-09 02:57:23 +08:00
function_labels: Option<HashMap<usize, (DynamicLabel, Option<AssemblyOffset>)>>,
2019-02-26 20:56:10 +08:00
assembler: Option<Assembler>,
native_trampolines: Arc<NativeTrampolines>,
func_import_count: usize,
2019-02-12 00:52:17 +08:00
}
pub struct X64FunctionCode {
signatures: Arc<Map<SigIndex, FuncSig>>,
function_signatures: Arc<Map<FuncIndex, SigIndex>>,
2019-02-26 20:56:10 +08:00
native_trampolines: Arc<NativeTrampolines>,
id: usize,
begin_label: DynamicLabel,
2019-02-15 02:21:52 +08:00
begin_offset: AssemblyOffset,
2019-02-12 00:52:17 +08:00
assembler: Option<Assembler>,
2019-03-09 02:57:23 +08:00
function_labels: Option<HashMap<usize, (DynamicLabel, Option<AssemblyOffset>)>>,
2019-02-24 12:00:35 +08:00
br_table_data: Option<Vec<Vec<usize>>>,
2019-02-14 00:53:06 +08:00
returns: Vec<WpType>,
2019-02-12 00:52:17 +08:00
locals: Vec<Local>,
num_params: usize,
2019-02-12 00:52:17 +08:00
current_stack_offset: usize,
value_stack: ValueStack,
control_stack: Option<ControlStack>,
2019-02-21 21:14:10 +08:00
unreachable_depth: usize,
2019-02-12 00:52:17 +08:00
}
2019-03-09 02:57:23 +08:00
enum FuncPtrInner {}
#[repr(transparent)]
struct FuncPtr(*const FuncPtrInner);
unsafe impl Send for FuncPtr {}
unsafe impl Sync for FuncPtr {}
2019-02-15 02:21:52 +08:00
pub struct X64ExecutionContext {
code: ExecutableBuffer,
functions: Vec<X64FunctionCode>,
signatures: Arc<Map<SigIndex, FuncSig>>,
2019-03-09 02:57:23 +08:00
function_signatures: Arc<Map<FuncIndex, SigIndex>>,
function_pointers: Vec<FuncPtr>,
2019-02-24 12:00:35 +08:00
br_table_data: Vec<Vec<usize>>,
func_import_count: usize,
2019-02-15 02:21:52 +08:00
}
2019-03-09 02:57:23 +08:00
impl FuncResolver for X64ExecutionContext {
fn get(
&self,
_module: &ModuleInner,
_local_func_index: LocalFuncIndex,
) -> Option<NonNull<vm::Func>> {
NonNull::new(
self.function_pointers[_local_func_index.index() as usize + self.func_import_count].0
as *mut vm::Func,
)
}
}
2019-02-15 02:21:52 +08:00
impl ProtectedCaller for X64ExecutionContext {
fn call(
&self,
_module: &ModuleInner,
_func_index: FuncIndex,
_params: &[Value],
_import_backing: &ImportBacking,
_vmctx: *mut vm::Ctx,
_: Token,
) -> RuntimeResult<Vec<Value>> {
let index = _func_index.index() - self.func_import_count;
2019-02-15 02:21:52 +08:00
let ptr = self.code.ptr(self.functions[index].begin_offset);
let return_ty = self.functions[index].returns.last().cloned();
if self.functions[index].num_params != _params.len() {
return Err(RuntimeError::Trap {
2019-02-15 02:21:52 +08:00
msg: "param count mismatch".into(),
});
}
let f = &self.functions[index];
2019-02-25 23:38:33 +08:00
let total_size = f.num_params * 8;
2019-02-25 23:38:33 +08:00
if f.num_params > 0 && f.locals[f.num_params - 1].stack_offset != total_size {
panic!("internal error: inconsistent stack layout");
2019-02-15 02:21:52 +08:00
}
let mut param_buf: Vec<u8> = vec![0; total_size];
for i in 0..f.num_params {
let local = &f.locals[i];
let buf = &mut param_buf[total_size - local.stack_offset..];
let size = get_size_of_type(&local.ty).unwrap();
if is_dword(size) {
match _params[i] {
Value::I32(x) => LittleEndian::write_u32(buf, x as u32),
Value::F32(x) => LittleEndian::write_u32(buf, f32::to_bits(x)),
_ => {
return Err(RuntimeError::Trap {
msg: "signature mismatch".into(),
})
}
}
} else {
match _params[i] {
Value::I64(x) => LittleEndian::write_u64(buf, x as u64),
Value::F64(x) => LittleEndian::write_u64(buf, f64::to_bits(x)),
_ => {
return Err(RuntimeError::Trap {
msg: "signature mismatch".into(),
})
}
}
}
}
2019-02-28 23:58:02 +08:00
let memory_base: *mut u8 = if _module.info.memories.len() > 0 {
2019-03-14 10:30:24 +08:00
if _module.info.memories.len() != 1 || _module.info.imported_memories.len() != 0 {
return Err(RuntimeError::Trap {
2019-02-28 23:58:02 +08:00
msg: "only one linear memory is supported".into(),
});
}
unsafe { (**(*_vmctx).memories).base }
2019-03-14 10:30:24 +08:00
} else if _module.info.imported_memories.len() > 0 {
if _module.info.memories.len() != 0 || _module.info.imported_memories.len() != 1 {
return Err(RuntimeError::Trap {
msg: "only one linear memory is supported".into(),
});
}
unsafe { (**(*_vmctx).imported_memories).base }
2019-02-28 23:58:02 +08:00
} else {
::std::ptr::null_mut()
};
//println!("MEMORY = {:?}", memory_base);
2019-03-09 02:57:23 +08:00
CURRENT_EXECUTION_CONTEXT.with(|x| x.borrow_mut().push(self));
2019-03-09 00:07:13 +08:00
let ret = unsafe {
CALL_WASM(
param_buf.as_ptr(),
param_buf.len(),
ptr,
memory_base,
_vmctx,
)
};
2019-03-09 02:57:23 +08:00
CURRENT_EXECUTION_CONTEXT.with(|x| x.borrow_mut().pop().unwrap());
Ok(if let Some(ty) = return_ty {
2019-03-13 18:23:50 +08:00
vec![match ty {
WpType::I32 => Value::I32(ret as i32),
WpType::I64 => Value::I64(ret),
WpType::F32 => Value::F32(f32::from_bits(ret as i32 as u32)),
WpType::F64 => Value::F64(f64::from_bits(ret as u64)),
_ => unreachable!(),
}]
} else {
vec![]
})
2019-02-15 02:21:52 +08:00
}
fn get_early_trapper(&self) -> Box<dyn UserTrapper> {
pub struct Trapper;
impl UserTrapper for Trapper {
unsafe fn do_early_trap(&self, data: Box<Any>) -> ! {
panic!("do_early_trap");
2019-02-15 02:21:52 +08:00
}
}
Box::new(Trapper)
}
}
#[derive(Copy, Clone, Debug)]
2019-02-12 00:52:17 +08:00
struct Local {
ty: WpType,
stack_offset: usize,
}
impl X64ModuleCodeGenerator {
pub fn new() -> X64ModuleCodeGenerator {
2019-02-26 20:56:10 +08:00
let mut assembler = Assembler::new().unwrap();
let nt = NativeTrampolines {
trap_unreachable: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
do_trap,
0usize,
TrapCode::Unreachable,
),
2019-03-14 10:30:24 +08:00
memory_size_dynamic_local: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_size,
MemoryKind::DynamicLocal,
0usize,
),
memory_size_static_local: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_size,
MemoryKind::StaticLocal,
0usize,
),
memory_size_shared_local: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_size,
MemoryKind::SharedLocal,
0usize,
),
memory_size_dynamic_import: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_size,
MemoryKind::DynamicImport,
0usize,
),
memory_size_static_import: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_size,
MemoryKind::StaticImport,
0usize,
),
memory_size_shared_import: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_size,
MemoryKind::SharedImport,
0usize,
),
memory_grow_dynamic_local: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_grow,
MemoryKind::DynamicLocal,
0usize,
),
memory_grow_static_local: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_grow,
MemoryKind::StaticLocal,
0usize,
),
memory_grow_shared_local: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_grow,
MemoryKind::SharedLocal,
0usize,
),
memory_grow_dynamic_import: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_grow,
MemoryKind::DynamicImport,
0usize,
),
memory_grow_static_import: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_grow,
MemoryKind::StaticImport,
0usize,
),
memory_grow_shared_import: X64FunctionCode::emit_native_call_trampoline(
&mut assembler,
_memory_grow,
MemoryKind::SharedImport,
0usize,
),
2019-02-26 20:56:10 +08:00
};
X64ModuleCodeGenerator {
functions: vec![],
signatures: None,
function_signatures: None,
function_labels: Some(HashMap::new()),
2019-02-26 20:56:10 +08:00
assembler: Some(assembler),
native_trampolines: Arc::new(nt),
func_import_count: 0,
2019-02-26 20:56:10 +08:00
}
2019-02-12 00:52:17 +08:00
}
}
2019-02-15 02:21:52 +08:00
impl ModuleCodeGenerator<X64FunctionCode, X64ExecutionContext> for X64ModuleCodeGenerator {
2019-02-12 00:52:17 +08:00
fn next_function(&mut self) -> Result<&mut X64FunctionCode, CodegenError> {
2019-02-24 12:00:35 +08:00
let (mut assembler, mut function_labels, br_table_data) = match self.functions.last_mut() {
Some(x) => (
x.assembler.take().unwrap(),
x.function_labels.take().unwrap(),
2019-02-24 12:00:35 +08:00
x.br_table_data.take().unwrap(),
),
None => (
self.assembler.take().unwrap(),
self.function_labels.take().unwrap(),
vec![],
),
};
2019-02-15 02:21:52 +08:00
let begin_offset = assembler.offset();
2019-03-09 02:57:23 +08:00
let begin_label_info = function_labels
.entry(self.functions.len() + self.func_import_count)
.or_insert_with(|| (assembler.new_dynamic_label(), None));
begin_label_info.1 = Some(begin_offset);
let begin_label = begin_label_info.0;
dynasm!(
assembler
; => begin_label
2019-02-21 22:04:43 +08:00
//; int 3
);
2019-02-12 00:52:17 +08:00
let code = X64FunctionCode {
signatures: self.signatures.as_ref().unwrap().clone(),
function_signatures: self.function_signatures.as_ref().unwrap().clone(),
2019-02-26 20:56:10 +08:00
native_trampolines: self.native_trampolines.clone(),
id: self.functions.len(),
begin_label: begin_label,
2019-02-15 02:21:52 +08:00
begin_offset: begin_offset,
assembler: Some(assembler),
function_labels: Some(function_labels),
2019-02-24 12:00:35 +08:00
br_table_data: Some(br_table_data),
2019-02-14 00:53:06 +08:00
returns: vec![],
2019-02-12 00:52:17 +08:00
locals: vec![],
num_params: 0,
2019-02-12 00:52:17 +08:00
current_stack_offset: 0,
value_stack: ValueStack::new(4), // FIXME: Use of R8 and above registers generates incorrect assembly.
control_stack: None,
2019-02-21 21:14:10 +08:00
unreachable_depth: 0,
2019-02-12 00:52:17 +08:00
};
self.functions.push(code);
Ok(self.functions.last_mut().unwrap())
}
2019-02-14 00:53:06 +08:00
2019-02-15 02:21:52 +08:00
fn finalize(mut self) -> Result<X64ExecutionContext, CodegenError> {
2019-02-24 12:00:35 +08:00
let (mut assembler, mut br_table_data) = match self.functions.last_mut() {
Some(x) => (x.assembler.take().unwrap(), x.br_table_data.take().unwrap()),
2019-02-15 02:21:52 +08:00
None => {
return Err(CodegenError {
message: "no function",
})
}
2019-02-14 00:53:06 +08:00
};
let output = assembler.finalize().unwrap();
2019-02-24 12:00:35 +08:00
for table in &mut br_table_data {
for entry in table {
*entry = output.ptr(AssemblyOffset(*entry)) as usize;
}
}
2019-03-09 02:57:23 +08:00
let function_labels = if let Some(x) = self.functions.last() {
x.function_labels.as_ref().unwrap()
} else {
self.function_labels.as_ref().unwrap()
};
let mut out_labels: Vec<FuncPtr> = vec![];
for i in 0..function_labels.len() {
let (_, offset) = match function_labels.get(&i) {
Some(x) => x,
None => {
return Err(CodegenError {
message: "label not found",
})
}
};
let offset = match offset {
Some(x) => x,
None => {
return Err(CodegenError {
message: "offset is none",
})
}
};
out_labels.push(FuncPtr(output.ptr(*offset) as _));
}
2019-02-15 02:21:52 +08:00
Ok(X64ExecutionContext {
code: output,
functions: self.functions,
2019-02-24 12:00:35 +08:00
br_table_data: br_table_data,
func_import_count: self.func_import_count,
2019-03-09 02:57:23 +08:00
signatures: match self.signatures {
Some(x) => x,
None => {
return Err(CodegenError {
message: "no signatures",
})
}
},
function_pointers: out_labels,
function_signatures: match self.function_signatures {
Some(x) => x,
None => {
return Err(CodegenError {
message: "no function signatures",
})
}
},
2019-02-15 02:21:52 +08:00
})
2019-02-14 00:53:06 +08:00
}
fn feed_signatures(
&mut self,
signatures: Map<SigIndex, FuncSig>,
) -> Result<(), CodegenError> {
self.signatures = Some(Arc::new(signatures));
Ok(())
}
fn feed_function_signatures(
&mut self,
assoc: Map<FuncIndex, SigIndex>,
) -> Result<(), CodegenError> {
self.function_signatures = Some(Arc::new(assoc));
Ok(())
}
fn feed_import_function(&mut self) -> Result<(), CodegenError> {
let labels = match self.function_labels.as_mut() {
Some(x) => x,
None => {
return Err(CodegenError {
message: "got function import after code",
})
}
};
let id = labels.len();
2019-03-09 02:57:23 +08:00
let offset = self.assembler.as_mut().unwrap().offset();
let label = X64FunctionCode::emit_native_call_trampoline(
self.assembler.as_mut().unwrap(),
invoke_import,
2019-03-09 00:07:13 +08:00
0,
id,
);
2019-03-09 02:57:23 +08:00
labels.insert(id, (label, Some(offset)));
self.func_import_count += 1;
Ok(())
}
2019-02-12 00:52:17 +08:00
}
impl X64FunctionCode {
fn gen_rt_pop(assembler: &mut Assembler, info: &ValueInfo) -> Result<(), CodegenError> {
match info.location {
ValueLocation::Register(_) => {}
ValueLocation::Stack => {
let size = get_size_of_type(&info.ty)?;
dynasm!(
assembler
; add rsp, 8
);
}
}
Ok(())
}
2019-02-19 20:25:09 +08:00
fn emit_reinterpret(value_stack: &mut ValueStack, in_ty: WpType, out_ty: WpType) -> Result<(), CodegenError> {
let val = value_stack.pop()?;
if val.ty != in_ty {
return Err(CodegenError {
message: "reinterpret type mismatch"
});
}
value_stack.push(out_ty);
Ok(())
}
/// Emits a unary operator.
2019-03-05 00:59:05 +08:00
fn emit_unop<F: FnOnce(&mut Assembler, &ValueStack, Register)>(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
f: F,
2019-03-05 00:59:05 +08:00
in_ty: WpType,
out_ty: WpType,
) -> Result<(), CodegenError> {
let a = value_stack.pop()?;
2019-03-05 00:59:05 +08:00
if a.ty != in_ty {
return Err(CodegenError {
message: "unop(i32) type mismatch",
});
}
2019-03-05 00:59:05 +08:00
value_stack.push(out_ty);
match a.location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
f(assembler, value_stack, reg);
}
ValueLocation::Stack => {
dynasm!(
assembler
2019-03-05 00:59:05 +08:00
; mov rax, [rsp]
);
f(assembler, value_stack, Register::RAX);
dynasm!(
assembler
2019-03-05 00:59:05 +08:00
; mov [rsp], rax
);
}
}
Ok(())
}
2019-03-05 00:59:05 +08:00
fn emit_unop_i32<F: FnOnce(&mut Assembler, &ValueStack, Register)>(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
f: F,
) -> Result<(), CodegenError> {
Self::emit_unop(assembler, value_stack, f, WpType::I32, WpType::I32)
}
fn emit_unop_i64<F: FnOnce(&mut Assembler, &ValueStack, Register)>(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
f: F,
) -> Result<(), CodegenError> {
Self::emit_unop(assembler, value_stack, f, WpType::I64, WpType::I64)
}
2019-02-19 20:25:09 +08:00
/// Emits a binary operator.
///
/// Guarantees that the first Register parameter to callback `f` will never be `Register::RAX`.
2019-03-05 00:59:05 +08:00
fn emit_binop<F: FnOnce(&mut Assembler, &ValueStack, Register, Register)>(
2019-02-19 20:25:09 +08:00
assembler: &mut Assembler,
value_stack: &mut ValueStack,
f: F,
2019-03-05 00:59:05 +08:00
in_ty: WpType,
out_ty: WpType,
2019-02-19 20:25:09 +08:00
) -> Result<(), CodegenError> {
let (a, b) = value_stack.pop2()?;
2019-03-05 00:59:05 +08:00
if a.ty != in_ty || b.ty != in_ty {
2019-02-19 20:25:09 +08:00
return Err(CodegenError {
message: "binop(i32) type mismatch",
2019-02-19 20:25:09 +08:00
});
}
2019-03-05 00:59:05 +08:00
value_stack.push(out_ty);
2019-02-19 20:25:09 +08:00
if a.location.is_register() && b.location.is_register() {
// output is in a_reg.
f(
assembler,
value_stack,
Register::from_scratch_reg(a.location.get_register()?),
Register::from_scratch_reg(b.location.get_register()?),
);
} else if a.location.is_register() {
dynasm!(
assembler
; pop rax
2019-02-19 20:25:09 +08:00
);
f(
assembler,
value_stack,
Register::from_scratch_reg(a.location.get_register()?),
Register::RAX,
);
} else if b.location.is_register() {
unreachable!();
} else {
dynasm!(
assembler
; push rcx
2019-03-05 00:59:05 +08:00
; mov rcx, [rsp + 16]
; mov rax, [rsp + 8]
2019-02-19 20:25:09 +08:00
);
f(assembler, value_stack, Register::RCX, Register::RAX);
dynasm!(
assembler
2019-03-05 00:59:05 +08:00
; mov [rsp + 16], rcx
2019-02-19 20:25:09 +08:00
; pop rcx
; add rsp, 8
2019-02-19 20:25:09 +08:00
);
}
Ok(())
}
2019-03-05 00:59:05 +08:00
fn emit_binop_i32<F: FnOnce(&mut Assembler, &ValueStack, Register, Register)>(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
f: F,
) -> Result<(), CodegenError> {
Self::emit_binop(assembler, value_stack, f, WpType::I32, WpType::I32)
}
fn emit_binop_i64<F: FnOnce(&mut Assembler, &ValueStack, Register, Register)>(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
f: F,
) -> Result<(), CodegenError> {
Self::emit_binop(assembler, value_stack, f, WpType::I64, WpType::I64)
}
2019-03-13 18:23:50 +08:00
fn emit_shift<F: FnOnce(&mut Assembler, Register)>(
assembler: &mut Assembler,
value_stack: &ValueStack,
left: Register,
right: Register,
f: F,
) {
let rcx_used = Register::RCX.is_used(value_stack);
if(rcx_used) {
dynasm!(
assembler
; push rcx
);
}
dynasm!(
assembler
; mov rcx, Rq(right as u8)
);
f(assembler, left);
if(rcx_used) {
dynasm!(
assembler
; pop rcx
);
}
}
2019-02-19 20:25:09 +08:00
fn emit_div_i32(
assembler: &mut Assembler,
value_stack: &ValueStack,
left: Register,
right: Register,
signed: bool,
out: Register,
) {
let dx_save =
Register::RDX.is_used(value_stack) && left != Register::RDX && right != Register::RDX;
if dx_save {
2019-02-19 20:25:09 +08:00
dynasm!(
assembler
; push rdx
);
}
dynasm!(
assembler
; push r15
; mov r15d, Rd(right as u8)
; mov eax, Rd(left as u8)
);
if signed {
dynasm!(
assembler
2019-03-14 09:15:25 +08:00
; cdq
; idiv r15d
);
} else {
2019-02-19 20:25:09 +08:00
dynasm!(
assembler
2019-03-14 09:15:25 +08:00
; xor edx, edx
; div r15d
2019-02-19 20:25:09 +08:00
);
}
dynasm!(
assembler
; mov Rd(left as u8), Rd(out as u8)
; pop r15
);
2019-02-19 20:25:09 +08:00
if dx_save {
dynasm!(
assembler
; pop rdx
);
}
}
2019-02-19 20:25:09 +08:00
fn emit_div_i64(
assembler: &mut Assembler,
value_stack: &ValueStack,
left: Register,
right: Register,
signed: bool,
out: Register,
) {
let dx_save =
Register::RDX.is_used(value_stack) && left != Register::RDX && right != Register::RDX;
if dx_save {
2019-02-19 20:25:09 +08:00
dynasm!(
assembler
; push rdx
2019-02-19 20:25:09 +08:00
);
}
dynasm!(
assembler
; push r15
; mov r15, Rq(right as u8)
; mov rax, Rq(left as u8)
);
if signed {
2019-02-19 20:25:09 +08:00
dynasm!(
assembler
2019-03-14 09:15:25 +08:00
; cqo
; idiv r15
2019-02-19 20:25:09 +08:00
);
} else {
2019-02-19 20:25:09 +08:00
dynasm!(
assembler
2019-03-14 09:15:25 +08:00
; xor rdx, rdx
; div r15
2019-02-19 20:25:09 +08:00
);
}
dynasm!(
assembler
; mov Rq(left as u8), Rq(out as u8)
; pop r15
);
2019-02-19 20:25:09 +08:00
if dx_save {
2019-02-19 20:25:09 +08:00
dynasm!(
assembler
; pop rdx
);
}
}
fn emit_cmp_i32<F: FnOnce(&mut Assembler)>(
assembler: &mut Assembler,
left: Register,
right: Register,
f: F,
) {
dynasm!(
assembler
; cmp Rd(left as u8), Rd(right as u8)
);
f(assembler);
dynasm!(
assembler
; xor Rd(left as u8), Rd(left as u8)
; jmp >label_end
; label_true:
; mov Rd(left as u8), 1
; label_end:
);
}
2019-03-05 00:59:05 +08:00
fn emit_cmp_i64<F: FnOnce(&mut Assembler)>(
assembler: &mut Assembler,
left: Register,
right: Register,
f: F,
) {
dynasm!(
assembler
; cmp Rq(left as u8), Rq(right as u8)
);
f(assembler);
dynasm!(
assembler
; xor Rq(left as u8), Rq(left as u8)
; jmp >label_end
; label_true:
; mov Rq(left as u8), 1
; label_end:
);
}
2019-02-21 22:04:43 +08:00
fn emit_peek_into_ax(
assembler: &mut Assembler,
value_stack: &ValueStack,
) -> Result<WpType, CodegenError> {
2019-02-21 22:04:43 +08:00
let val = match value_stack.values.last() {
Some(x) => *x,
None => {
return Err(CodegenError {
message: "no value",
})
}
};
match val.location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; mov rax, Rq(reg as u8)
);
}
ValueLocation::Stack => {
dynasm!(
assembler
; mov rax, [rsp]
);
2019-02-21 22:04:43 +08:00
}
}
Ok(val.ty)
2019-02-21 22:04:43 +08:00
}
2019-03-02 01:41:31 +08:00
fn emit_pop_into_reg(
2019-02-20 23:21:33 +08:00
assembler: &mut Assembler,
value_stack: &mut ValueStack,
2019-03-02 01:41:31 +08:00
target: Register,
) -> Result<WpType, CodegenError> {
2019-02-20 23:21:33 +08:00
let val = value_stack.pop()?;
match val.location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
2019-03-02 01:41:31 +08:00
; mov Rq(target as u8), Rq(reg as u8)
2019-02-20 23:21:33 +08:00
);
}
ValueLocation::Stack => {
dynasm!(
assembler
2019-03-02 01:41:31 +08:00
; pop Rq(target as u8)
);
2019-02-20 23:21:33 +08:00
}
}
Ok(val.ty)
2019-02-20 23:21:33 +08:00
}
2019-03-02 01:41:31 +08:00
fn emit_pop_into_ax(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
) -> Result<WpType, CodegenError> {
Self::emit_pop_into_reg(assembler, value_stack, Register::RAX)
}
fn emit_push_from_reg(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
ty: WpType,
2019-03-02 01:41:31 +08:00
source: Register,
) -> Result<(), CodegenError> {
let loc = value_stack.push(ty);
match loc {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
2019-03-02 01:41:31 +08:00
; mov Rq(reg as u8), Rq(source as u8)
);
}
ValueLocation::Stack => {
dynasm!(
assembler
2019-03-02 01:41:31 +08:00
; push Rq(source as u8)
);
}
}
Ok(())
}
2019-03-02 01:41:31 +08:00
fn emit_push_from_ax(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
ty: WpType,
) -> Result<(), CodegenError> {
Self::emit_push_from_reg(assembler, value_stack, ty, Register::RAX)
}
fn emit_leave_frame(
assembler: &mut Assembler,
frame: &ControlFrame,
value_stack: &mut ValueStack,
2019-02-21 22:04:43 +08:00
peek: bool,
) -> Result<(), CodegenError> {
let ret_ty = match frame.returns.len() {
1 => Some(frame.returns[0]),
0 => None,
_ => {
return Err(CodegenError {
message: "more than one block returns are not yet supported",
})
}
};
if value_stack.values.len() < frame.value_stack_depth_before + frame.returns.len() {
return Err(CodegenError {
message: "value stack underflow",
});
}
if let Some(ty) = ret_ty {
2019-02-20 23:21:33 +08:00
if value_stack.values.iter().last().map(|x| x.ty) != ret_ty {
return Err(CodegenError {
message: "value type != return type",
});
}
2019-02-21 22:04:43 +08:00
if peek {
Self::emit_peek_into_ax(assembler, value_stack)?;
} else {
Self::emit_pop_into_ax(assembler, value_stack)?;
}
}
Ok(())
}
2019-02-27 23:38:45 +08:00
fn emit_else(
assembler: &mut Assembler,
control_stack: &mut ControlStack,
value_stack: &mut ValueStack,
was_unreachable: bool,
) -> Result<(), CodegenError> {
let frame = match control_stack.frames.last_mut() {
Some(x) => x,
None => {
return Err(CodegenError {
message: "no frame (else)",
2019-02-27 23:38:45 +08:00
})
}
};
if !was_unreachable {
Self::emit_leave_frame(assembler, frame, value_stack, false)?;
if value_stack.values.len() != frame.value_stack_depth_before {
return Err(CodegenError {
message: "value_stack.values.len() != frame.value_stack_depth_before",
});
}
} else {
// No need to actually unwind the stack here.
value_stack.reset_depth(frame.value_stack_depth_before);
}
match frame.if_else {
IfElseState::If(label) => {
dynasm!(
assembler
; jmp =>frame.label
; => label
);
frame.if_else = IfElseState::Else;
}
_ => {
return Err(CodegenError {
message: "unexpected if else state",
})
}
}
Ok(())
}
fn emit_block_end(
assembler: &mut Assembler,
control_stack: &mut ControlStack,
value_stack: &mut ValueStack,
2019-02-21 22:04:43 +08:00
was_unreachable: bool,
) -> Result<(), CodegenError> {
let frame = match control_stack.frames.pop() {
Some(x) => x,
None => {
return Err(CodegenError {
message: "no frame (block end)",
})
}
};
2019-02-21 22:04:43 +08:00
if !was_unreachable {
Self::emit_leave_frame(assembler, &frame, value_stack, false)?;
if value_stack.values.len() != frame.value_stack_depth_before {
return Err(CodegenError {
message: "value_stack.values.len() != frame.value_stack_depth_before",
});
}
} else {
// No need to actually unwind the stack here.
value_stack.reset_depth(frame.value_stack_depth_before);
}
if !frame.loop_like {
2019-02-27 23:38:45 +08:00
match frame.if_else {
IfElseState::None | IfElseState::Else => {
dynasm!(
assembler
; => frame.label
);
}
IfElseState::If(label) => {
dynasm!(
assembler
; => frame.label
; => label
);
if frame.returns.len() != 0 {
return Err(CodegenError {
message: "if without else, with non-empty returns",
});
}
}
}
}
if frame.returns.len() == 1 {
let loc = value_stack.push(frame.returns[0]);
match loc {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; mov Rq(reg as u8), rax
);
}
ValueLocation::Stack => {
dynasm!(
assembler
; push rax
);
}
}
}
Ok(())
}
fn emit_jmp(
assembler: &mut Assembler,
control_stack: &ControlStack,
value_stack: &mut ValueStack,
relative_frame_offset: usize,
) -> Result<(), CodegenError> {
let frame = if relative_frame_offset >= control_stack.frames.len() {
return Err(CodegenError {
message: "jmp offset out of bounds",
});
} else {
&control_stack.frames[control_stack.frames.len() - 1 - relative_frame_offset]
};
if !frame.loop_like {
Self::emit_leave_frame(assembler, frame, value_stack, true)?;
}
let mut sp_diff: usize = 0;
for i in 0..value_stack.values.len() - frame.value_stack_depth_before {
let vi = value_stack.values[value_stack.values.len() - 1 - i];
if vi.location == ValueLocation::Stack {
sp_diff += 8
} else {
break;
}
}
dynasm!(
assembler
; add rsp, sp_diff as i32
; jmp =>frame.label
);
Ok(())
}
2019-02-21 21:14:10 +08:00
fn emit_return(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
returns: &Vec<WpType>,
) -> Result<(), CodegenError> {
match returns.len() {
0 => {}
1 => {
if value_stack.values.iter().last().map(|x| x.ty) != Some(returns[0]) {
return Err(CodegenError {
message: "self.value_stack.last().cloned() != Some(self.returns[0])",
});
}
Self::emit_pop_into_ax(assembler, value_stack)?;
}
_ => {
return Err(CodegenError {
message: "multiple return values is not yet supported",
})
}
}
dynasm!(
assembler
; mov rsp, rbp
; pop rbp
; ret
);
Ok(())
}
2019-02-26 20:56:10 +08:00
fn emit_native_call_trampoline<A: Copy + Sized, B: Copy + Sized>(
assembler: &mut Assembler,
2019-02-26 20:56:10 +08:00
target: unsafe extern "C" fn(
ctx1: A,
ctx2: B,
stack_top: *mut u8,
stack_base: *mut u8,
2019-03-09 00:07:13 +08:00
vmctx: *mut vm::Ctx,
2019-03-09 02:57:23 +08:00
memory_base: *mut u8,
2019-02-26 20:56:10 +08:00
) -> u64,
ctx1: A,
ctx2: B,
) -> DynamicLabel {
let label = assembler.new_dynamic_label();
dynasm!(
assembler
; =>label
);
2019-02-26 20:56:10 +08:00
// FIXME: Check at compile time.
assert_eq!(::std::mem::size_of::<A>(), ::std::mem::size_of::<i64>());
assert_eq!(::std::mem::size_of::<B>(), ::std::mem::size_of::<i64>());
dynasm!(
assembler
2019-02-26 20:56:10 +08:00
; mov rdi, QWORD (unsafe { ::std::mem::transmute_copy::<A, i64>(&ctx1) })
; mov rsi, QWORD (unsafe { ::std::mem::transmute_copy::<B, i64>(&ctx2) })
; mov rdx, rsp
; mov rcx, rbp
2019-03-09 00:07:13 +08:00
; mov r8, r14 // vmctx
2019-03-09 02:57:23 +08:00
; mov r9, r15 // memory_base
; mov rax, QWORD (0xfffffffffffffff0u64 as i64)
; and rsp, rax
; mov rax, QWORD (target as i64)
; call rax
; mov rsp, rbp
; pop rbp
; ret
);
2019-02-26 20:56:10 +08:00
label
}
fn emit_call_raw(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
target: DynamicLabel,
params: &[WpType],
returns: &[WpType],
) -> Result<(), CodegenError> {
let total_size: usize = params.len() * 8;
if params.len() > value_stack.values.len() {
return Err(CodegenError {
message: "value stack underflow in call",
});
}
let mut saved_regs: Vec<Register> = Vec::new();
for v in &value_stack.values[0..value_stack.values.len() - params.len()] {
match v.location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; push Rq(reg as u8)
);
saved_regs.push(reg);
}
ValueLocation::Stack => break,
}
}
dynasm!(
assembler
; lea rax, [>after_call] // TODO: Is this correct?
; push rax
; push rbp
);
if total_size != 0 {
dynasm!(
assembler
; sub rsp, total_size as i32
);
}
let mut offset: usize = 0;
let mut caller_stack_offset: usize = 0;
2019-03-14 10:30:24 +08:00
for ty in params.iter().rev() {
let val = value_stack.pop()?;
if val.ty != *ty {
return Err(CodegenError {
2019-03-14 10:30:24 +08:00
message: "value type mismatch in call",
});
}
match val.location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; mov [rsp + offset as i32], Rq(reg as u8)
);
}
ValueLocation::Stack => {
dynasm!(
assembler
; mov rax, [rsp + (total_size + 16 + saved_regs.len() * 8 + caller_stack_offset) as i32]
; mov [rsp + offset as i32], rax
);
caller_stack_offset += 8;
}
}
offset += 8;
}
assert_eq!(offset, total_size);
dynasm!(
assembler
; mov rbp, rsp
);
if total_size != 0 {
dynasm!(
assembler
; add rbp, total_size as i32
);
}
dynasm!(
assembler
; jmp =>target
; after_call:
);
2019-02-25 22:47:27 +08:00
for reg in saved_regs.iter().rev() {
dynasm!(
assembler
; pop Rq(*reg as u8)
);
}
if caller_stack_offset != 0 {
dynasm!(
assembler
; add rsp, caller_stack_offset as i32
);
}
match returns.len() {
0 => {}
1 => {
Self::emit_push_from_ax(assembler, value_stack, returns[0])?;
}
_ => {
return Err(CodegenError {
message: "more than 1 function returns are not supported",
})
}
}
Ok(())
}
2019-02-28 23:58:02 +08:00
2019-03-02 01:41:31 +08:00
fn emit_memory_load<F: FnOnce(&mut Assembler, Register)>(
2019-02-28 23:58:02 +08:00
assembler: &mut Assembler,
value_stack: &mut ValueStack,
f: F,
out_ty: WpType,
) -> Result<(), CodegenError> {
2019-03-02 01:41:31 +08:00
let addr_info = value_stack.pop()?;
let out_loc = value_stack.push(out_ty);
if addr_info.ty != WpType::I32 {
2019-02-28 23:58:02 +08:00
return Err(CodegenError {
message: "memory address must be i32",
});
}
2019-03-02 01:41:31 +08:00
assert_eq!(out_loc, addr_info.location);
match addr_info.location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; add Rq(reg as u8), r15
);
f(assembler, reg);
}
ValueLocation::Stack => {
dynasm!(
assembler
; pop rax
; add rax, r15
);
f(assembler, Register::RAX);
dynasm!(
assembler
; push rax
)
}
}
Ok(())
}
fn emit_memory_store<F: FnOnce(&mut Assembler, Register, Register)>(
assembler: &mut Assembler,
value_stack: &mut ValueStack,
f: F,
value_ty: WpType,
) -> Result<(), CodegenError> {
let value_info = value_stack.pop()?;
let addr_info = value_stack.pop()?;
if addr_info.ty != WpType::I32 {
return Err(CodegenError {
message: "memory address must be i32",
});
}
if value_info.ty != value_ty {
return Err(CodegenError {
2019-03-14 10:30:24 +08:00
message: "value type mismatch in memory store",
2019-03-02 01:41:31 +08:00
});
}
match value_info.location {
ValueLocation::Register(x) => {
let value_reg = Register::from_scratch_reg(x);
let addr_reg =
Register::from_scratch_reg(addr_info.location.get_register().unwrap()); // must be a register
dynasm!(
assembler
; add Rq(addr_reg as u8), r15
);
f(assembler, addr_reg, value_reg);
}
ValueLocation::Stack => {
match addr_info.location {
ValueLocation::Register(x) => {
let addr_reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; add Rq(addr_reg as u8), r15
; pop rax
);
f(assembler, addr_reg, Register::RAX);
}
ValueLocation::Stack => {
dynasm!(
assembler
; mov [rsp - 8], rcx // red zone
; pop rax // value
; pop rcx // address
; add rcx, r15
);
f(assembler, Register::RCX, Register::RAX);
dynasm!(
assembler
; mov rcx, [rsp - 24]
);
}
}
}
}
2019-02-28 23:58:02 +08:00
Ok(())
}
}
2019-02-12 00:52:17 +08:00
impl FunctionCodeGenerator for X64FunctionCode {
2019-02-14 00:53:06 +08:00
fn feed_return(&mut self, ty: WpType) -> Result<(), CodegenError> {
self.returns.push(ty);
Ok(())
}
/// Stack layout of a call frame:
/// - Return address
/// - Old RBP
/// - Params in reversed order, caller initialized
/// - Locals in reversed order, callee initialized
2019-02-12 00:52:17 +08:00
fn feed_param(&mut self, ty: WpType) -> Result<(), CodegenError> {
let assembler = self.assembler.as_mut().unwrap();
self.current_stack_offset += 8;
2019-02-12 00:52:17 +08:00
self.locals.push(Local {
ty: ty,
stack_offset: self.current_stack_offset,
});
self.num_params += 1;
2019-02-12 00:52:17 +08:00
Ok(())
}
2019-02-12 00:52:17 +08:00
fn feed_local(&mut self, ty: WpType, n: usize) -> Result<(), CodegenError> {
let assembler = self.assembler.as_mut().unwrap();
2019-02-12 00:52:17 +08:00
let size = get_size_of_type(&ty)?;
if is_dword(size) {
for _ in 0..n {
// FIXME: check range of n
self.current_stack_offset += 4;
self.locals.push(Local {
ty: ty,
stack_offset: self.current_stack_offset,
});
dynasm!(
assembler
; sub rsp, 4
; mov DWORD [rsp], 0
);
}
if n % 2 == 1 {
self.current_stack_offset += 4;
dynasm!(
assembler
; sub rsp, 4
);
}
} else {
for _ in 0..n {
// FIXME: check range of n
self.current_stack_offset += 8;
self.locals.push(Local {
ty: ty,
stack_offset: self.current_stack_offset,
});
dynasm!(
assembler
; push 0
);
}
2019-02-12 00:52:17 +08:00
}
Ok(())
}
fn begin_body(&mut self) -> Result<(), CodegenError> {
self.control_stack = Some(ControlStack::new(
self.assembler.as_mut().unwrap().new_dynamic_label(),
self.returns.clone(),
));
2019-02-12 00:52:17 +08:00
Ok(())
}
2019-03-09 00:32:18 +08:00
fn feed_opcode(&mut self, op: Operator, module_info: &ModuleInfo) -> Result<(), CodegenError> {
2019-02-21 21:14:10 +08:00
let was_unreachable;
if self.unreachable_depth > 0 {
was_unreachable = true;
match op {
Operator::Block { .. } | Operator::Loop { .. } | Operator::If { .. } => {
self.unreachable_depth += 1;
}
Operator::End => {
2019-02-21 21:14:10 +08:00
self.unreachable_depth -= 1;
}
Operator::Else => {
// We are in a reachable true branch
if self.unreachable_depth == 1 {
if let Some(IfElseState::If(_)) = self.control_stack.as_ref().unwrap().frames.last().map(|x| x.if_else) {
self.unreachable_depth -= 1;
}
}
}
2019-02-21 21:14:10 +08:00
_ => {}
}
if self.unreachable_depth > 0 {
return Ok(());
}
} else {
was_unreachable = false;
}
let assembler = self.assembler.as_mut().unwrap();
2019-02-21 21:14:10 +08:00
match op {
2019-03-09 00:32:18 +08:00
Operator::GetGlobal { global_index } => {
2019-03-09 00:38:13 +08:00
let mut global_index = global_index as usize;
if global_index < module_info.imported_globals.len() {
dynasm!(
assembler
; mov rax, r14 => vm::Ctx.imported_globals
);
} else {
global_index -= module_info.imported_globals.len();
if global_index >= module_info.globals.len() {
return Err(CodegenError {
message: "global out of bounds",
});
}
dynasm!(
assembler
; mov rax, r14 => vm::Ctx.globals
);
2019-03-09 00:32:18 +08:00
}
2019-03-09 00:38:13 +08:00
2019-03-09 00:32:18 +08:00
dynasm!(
assembler
; mov rax, [rax + (global_index as i32) * 8]
; mov rax, rax => LocalGlobal.data
);
Self::emit_push_from_ax(
assembler,
&mut self.value_stack,
type_to_wp_type(
module_info.globals[LocalGlobalIndex::new(global_index)]
.desc
.ty,
),
)?;
}
Operator::SetGlobal { global_index } => {
let ty = Self::emit_pop_into_ax(assembler, &mut self.value_stack)?;
2019-03-09 00:38:13 +08:00
let mut global_index = global_index as usize;
if global_index < module_info.imported_globals.len() {
dynasm!(
assembler
; push rbx
; mov rbx, r14 => vm::Ctx.imported_globals
);
} else {
global_index -= module_info.imported_globals.len();
if global_index >= module_info.globals.len() {
return Err(CodegenError {
message: "global out of bounds",
});
}
dynasm!(
assembler
; push rbx
; mov rbx, r14 => vm::Ctx.globals
);
}
2019-03-09 00:32:18 +08:00
if ty
!= type_to_wp_type(
module_info.globals[LocalGlobalIndex::new(global_index)]
.desc
.ty,
)
{
return Err(CodegenError {
message: "type mismatch in SetGlobal",
});
}
dynasm!(
assembler
; mov rbx, [rbx + (global_index as i32) * 8]
; mov rbx => LocalGlobal.data, rax
; pop rbx
);
}
Operator::GetLocal { local_index } => {
let local_index = local_index as usize;
if local_index >= self.locals.len() {
return Err(CodegenError {
message: "local out of bounds",
});
}
let local = self.locals[local_index];
let location = self.value_stack.push(local.ty);
let size = get_size_of_type(&local.ty)?;
match location {
ValueLocation::Register(id) => {
if is_dword(size) {
dynasm!(
assembler
; mov Rd(Register::from_scratch_reg(id) as u8), [rbp - (local.stack_offset as i32)]
);
} else {
dynasm!(
assembler
; mov Rq(Register::from_scratch_reg(id) as u8), [rbp - (local.stack_offset as i32)]
);
}
}
ValueLocation::Stack => {
if is_dword(size) {
dynasm!(
assembler
; mov eax, [rbp - (local.stack_offset as i32)]
; push rax
);
} else {
dynasm!(
assembler
; mov rax, [rbp - (local.stack_offset as i32)]
; push rax
);
}
}
}
}
Operator::SetLocal { local_index } => {
let local_index = local_index as usize;
if local_index >= self.locals.len() {
return Err(CodegenError {
message: "local out of bounds",
});
}
let local = self.locals[local_index];
let ty = Self::emit_pop_into_ax(assembler, &mut self.value_stack)?;
if ty != local.ty {
return Err(CodegenError {
message: "SetLocal type mismatch",
});
}
if is_dword(get_size_of_type(&ty)?) {
dynasm!(
assembler
; mov [rbp - (local.stack_offset as i32)], eax
);
} else {
dynasm!(
assembler
; mov [rbp - (local.stack_offset as i32)], rax
);
}
}
Operator::TeeLocal { local_index } => {
let local_index = local_index as usize;
if local_index >= self.locals.len() {
return Err(CodegenError {
message: "local out of bounds",
});
}
let local = self.locals[local_index];
let ty = Self::emit_peek_into_ax(assembler, &self.value_stack)?;
if ty != local.ty {
return Err(CodegenError {
message: "TeeLocal type mismatch",
});
}
if is_dword(get_size_of_type(&ty)?) {
dynasm!(
assembler
; mov [rbp - (local.stack_offset as i32)], eax
);
} else {
dynasm!(
assembler
; mov [rbp - (local.stack_offset as i32)], rax
);
}
}
Operator::I32Const { value } => {
let location = self.value_stack.push(WpType::I32);
match location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; mov Rd(reg as u8), value
);
}
ValueLocation::Stack => {
dynasm!(
assembler
; push value
);
}
}
}
Operator::I32Add => {
2019-02-19 20:25:09 +08:00
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; add Rd(left as u8), Rd(right as u8)
)
},
)?;
}
Operator::I32Sub => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; sub Rd(left as u8), Rd(right as u8)
)
},
)?;
}
Operator::I32Mul => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; imul Rd(left as u8), Rd(right as u8)
)
},
)?;
}
Operator::I32DivU => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_div_i32(
assembler,
value_stack,
left,
right,
false,
Register::RAX,
);
},
)?;
}
Operator::I32DivS => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_div_i32(
assembler,
value_stack,
left,
right,
true,
Register::RAX,
);
},
)?;
}
Operator::I32RemU => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_div_i32(
assembler,
value_stack,
left,
right,
false,
Register::RDX,
);
},
)?;
}
Operator::I32RemS => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_div_i32(
assembler,
value_stack,
left,
right,
true,
Register::RDX,
);
},
)?;
}
2019-02-24 12:00:35 +08:00
Operator::I32And => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; and Rd(left as u8), Rd(right as u8)
);
},
)?;
}
Operator::I32Or => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; or Rd(left as u8), Rd(right as u8)
);
},
)?;
}
Operator::I32Xor => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; xor Rd(left as u8), Rd(right as u8)
);
},
)?;
}
Operator::I32Eq => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; cmp Rd(left as u8), Rd(right as u8)
; lahf
; shr ax, 14
; and eax, 1
; mov Rd(left as u8), eax
);
},
)?;
}
Operator::I32Ne => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; cmp Rd(left as u8), Rd(right as u8)
; lahf
; shr ax, 14
; and eax, 1
; xor eax, 1
; mov Rd(left as u8), eax
);
},
)?;
}
Operator::I32Eqz => {
Self::emit_unop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; cmp Rd(reg as u8), 0
; lahf
; shr ax, 14
; and eax, 1
);
if reg != Register::RAX {
dynasm!(
assembler
; mov Rd(reg as u8), eax
);
}
},
)?;
}
Operator::I32Clz => {
Self::emit_unop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; lzcnt Rd(reg as u8), Rd(reg as u8)
);
},
)?;
}
Operator::I32Ctz => {
Self::emit_unop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; tzcnt Rd(reg as u8), Rd(reg as u8)
);
},
)?;
}
Operator::I32Popcnt => {
Self::emit_unop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; popcnt Rd(reg as u8), Rd(reg as u8)
);
},
)?;
}
2019-03-13 18:23:50 +08:00
Operator::I32Shl => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; shl Rd(left as u8), cl
)
});
}
)?;
}
Operator::I32ShrU => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; shr Rd(left as u8), cl
)
});
}
)?;
}
Operator::I32ShrS => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; sar Rd(left as u8), cl
)
});
}
)?;
}
Operator::I32Rotl => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; rol Rd(left as u8), cl
)
});
}
)?;
}
Operator::I32Rotr => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; ror Rd(left as u8), cl
)
});
}
)?;
}
// Comparison operators.
// https://en.wikibooks.org/wiki/X86_Assembly/Control_Flow
// TODO: Is reading flag register directly faster?
Operator::I32LtS => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i32(assembler, left, right, |assembler| {
dynasm!(
assembler
; jl >label_true
);
});
},
)?;
}
Operator::I32LeS => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i32(assembler, left, right, |assembler| {
dynasm!(
assembler
; jle >label_true
);
});
},
)?;
}
Operator::I32GtS => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i32(assembler, left, right, |assembler| {
dynasm!(
assembler
; jg >label_true
);
});
},
)?;
}
Operator::I32GeS => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i32(assembler, left, right, |assembler| {
dynasm!(
assembler
; jge >label_true
);
});
},
)?;
}
Operator::I32LtU => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i32(assembler, left, right, |assembler| {
dynasm!(
assembler
; jb >label_true
);
});
},
)?;
}
Operator::I32LeU => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i32(assembler, left, right, |assembler| {
dynasm!(
assembler
; jbe >label_true
);
});
},
)?;
}
Operator::I32GtU => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i32(assembler, left, right, |assembler| {
dynasm!(
assembler
; ja >label_true
);
});
},
)?;
}
Operator::I32GeU => {
Self::emit_binop_i32(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i32(assembler, left, right, |assembler| {
dynasm!(
assembler
; jae >label_true
);
});
},
)?;
}
2019-03-05 00:59:05 +08:00
Operator::I64Const { value } => {
let location = self.value_stack.push(WpType::I64);
match location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; mov Rq(reg as u8), QWORD value
);
}
ValueLocation::Stack => {
dynasm!(
assembler
; mov rax, QWORD value
; push rax
);
}
}
}
Operator::I64Add => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; add Rq(left as u8), Rq(right as u8)
)
},
)?;
}
Operator::I64Sub => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; sub Rq(left as u8), Rq(right as u8)
)
},
)?;
}
Operator::I64Mul => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; imul Rq(left as u8), Rq(right as u8)
)
},
)?;
}
Operator::I64DivU => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_div_i64(
assembler,
value_stack,
left,
right,
false,
Register::RAX,
);
},
)?;
2019-03-05 00:59:05 +08:00
}
Operator::I64DivS => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_div_i64(
assembler,
value_stack,
left,
right,
true,
Register::RAX,
);
},
)?;
2019-03-05 00:59:05 +08:00
}
Operator::I64RemU => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_div_i64(
assembler,
value_stack,
left,
right,
false,
Register::RDX,
);
},
)?;
2019-03-05 00:59:05 +08:00
}
Operator::I64RemS => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_div_i64(
assembler,
value_stack,
left,
right,
true,
Register::RDX,
);
},
)?;
2019-03-05 00:59:05 +08:00
}
Operator::I64And => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; and Rq(left as u8), Rq(right as u8)
);
},
)?;
}
Operator::I64Or => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; or Rq(left as u8), Rq(right as u8)
);
},
)?;
}
Operator::I64Xor => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; xor Rq(left as u8), Rq(right as u8)
);
},
)?;
}
2019-03-05 00:59:05 +08:00
Operator::I64Eq => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; cmp Rq(left as u8), Rq(right as u8)
; lahf
; shr ax, 14
; and eax, 1
; mov Rd(left as u8), eax
);
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64Ne => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; cmp Rq(left as u8), Rq(right as u8)
; lahf
; shr ax, 14
; and eax, 1
; xor eax, 1
; mov Rd(left as u8), eax
);
},
WpType::I64,
WpType::I32,
)?;
}
2019-03-05 00:59:05 +08:00
Operator::I64Eqz => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; cmp Rq(reg as u8), 0
; lahf
; shr ax, 14
; and eax, 1
);
if reg != Register::RAX {
dynasm!(
assembler
; mov Rd(reg as u8), eax
);
}
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64Clz => {
Self::emit_unop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; lzcnt Rq(reg as u8), Rq(reg as u8)
);
},
)?;
}
Operator::I64Ctz => {
Self::emit_unop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; tzcnt Rq(reg as u8), Rq(reg as u8)
);
},
)?;
}
Operator::I64Popcnt => {
Self::emit_unop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; popcnt Rq(reg as u8), Rq(reg as u8)
);
},
)?;
}
2019-03-13 18:23:50 +08:00
Operator::I64Shl => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; shl Rq(left as u8), cl
)
});
}
)?;
}
Operator::I64ShrU => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; shr Rq(left as u8), cl
)
});
}
)?;
}
Operator::I64ShrS => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; sar Rq(left as u8), cl
)
});
}
)?;
}
Operator::I64Rotl => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; rol Rq(left as u8), cl
)
});
}
)?;
}
Operator::I64Rotr => {
Self::emit_binop_i64(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_shift(assembler, value_stack, left, right, |assembler, left| {
dynasm!(
assembler
; ror Rq(left as u8), cl
)
});
}
)?;
}
2019-03-05 00:59:05 +08:00
// Comparison operators.
// https://en.wikibooks.org/wiki/X86_Assembly/Control_Flow
// TODO: Is reading flag register directly faster?
Operator::I64LtS => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i64(assembler, left, right, |assembler| {
dynasm!(
assembler
; jl >label_true
);
});
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64LeS => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i64(assembler, left, right, |assembler| {
dynasm!(
assembler
; jle >label_true
);
});
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64GtS => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i64(assembler, left, right, |assembler| {
dynasm!(
assembler
; jg >label_true
);
});
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64GeS => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i64(assembler, left, right, |assembler| {
dynasm!(
assembler
; jge >label_true
);
});
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64LtU => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i64(assembler, left, right, |assembler| {
dynasm!(
assembler
; jb >label_true
);
});
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64LeU => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i64(assembler, left, right, |assembler| {
dynasm!(
assembler
; jbe >label_true
);
});
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64GtU => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i64(assembler, left, right, |assembler| {
dynasm!(
assembler
; ja >label_true
);
});
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64GeU => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
Self::emit_cmp_i64(assembler, left, right, |assembler| {
dynasm!(
assembler
; jae >label_true
);
});
},
WpType::I64,
WpType::I32,
)?;
}
Operator::I64ExtendSI32 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movsx Rq(reg as u8), Rd(reg as u8)
);
},
WpType::I32,
WpType::I64,
)?;
}
Operator::I64ExtendUI32 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
// FIXME: Is it correct to do nothing here?
},
WpType::I32,
WpType::I64,
)?;
}
Operator::I32WrapI64 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; mov Rd(reg as u8), Rd(reg as u8) // clear upper 32 bits
);
},
WpType::I64,
WpType::I32,
)?;
}
2019-02-21 22:04:43 +08:00
Operator::Block { ty } => {
self.control_stack
.as_mut()
.unwrap()
.frames
.push(ControlFrame {
label: assembler.new_dynamic_label(),
loop_like: false,
2019-02-27 23:38:45 +08:00
if_else: IfElseState::None,
2019-02-21 22:04:43 +08:00
returns: match ty {
WpType::EmptyBlockType => vec![],
_ => vec![ty],
},
value_stack_depth_before: self.value_stack.values.len(),
});
}
Operator::Unreachable => {
2019-03-13 18:23:50 +08:00
/*
2019-02-26 20:56:10 +08:00
Self::emit_call_raw(
assembler,
&mut self.value_stack,
self.native_trampolines.trap_unreachable,
&[],
&[],
)?;
2019-03-13 18:23:50 +08:00
*/
dynasm!(
assembler
; ud2
);
self.unreachable_depth = 1;
}
Operator::Drop => {
let info = self.value_stack.pop()?;
Self::gen_rt_pop(assembler, &info)?;
}
2019-02-21 21:14:10 +08:00
Operator::Return => {
Self::emit_return(assembler, &mut self.value_stack, &self.returns)?;
self.unreachable_depth = 1;
}
Operator::Call { function_index } => {
let function_index = function_index as usize;
2019-03-09 02:57:23 +08:00
let label = self
.function_labels
.as_mut()
.unwrap()
.entry(function_index)
2019-03-09 02:57:23 +08:00
.or_insert_with(|| (assembler.new_dynamic_label(), None))
.0;
let sig_index = match self.function_signatures.get(FuncIndex::new(function_index)) {
Some(x) => *x,
None => {
return Err(CodegenError {
message: "signature not found",
})
}
};
let sig = match self.signatures.get(sig_index) {
Some(x) => x,
None => {
return Err(CodegenError {
message: "signature does not exist",
})
}
};
let param_types: Vec<WpType> =
sig.params().iter().cloned().map(type_to_wp_type).collect();
let return_types: Vec<WpType> =
sig.returns().iter().cloned().map(type_to_wp_type).collect();
Self::emit_call_raw(
assembler,
&mut self.value_stack,
label,
&param_types,
&return_types,
)?;
}
2019-03-09 02:57:23 +08:00
Operator::CallIndirect { index, table_index } => {
if table_index != 0 {
return Err(CodegenError {
message: "only one table is supported",
});
}
2019-03-14 10:30:24 +08:00
let local_or_import = if module_info.tables.len() > 0 {
if module_info.tables.len() != 1 || module_info.imported_tables.len() != 0 {
return Err(CodegenError {
message: "only one table is supported",
});
}
CallIndirectLocalOrImport::Local
} else if module_info.imported_tables.len() > 0 {
if module_info.tables.len() != 0 || module_info.imported_tables.len() != 1 {
return Err(CodegenError {
message: "only one table is supported",
});
}
CallIndirectLocalOrImport::Import
} else {
2019-03-09 02:57:23 +08:00
return Err(CodegenError {
message: "no tables",
});
2019-03-14 10:30:24 +08:00
};
2019-03-09 02:57:23 +08:00
let sig_index = SigIndex::new(index as usize);
let sig = match self.signatures.get(sig_index) {
Some(x) => x,
None => {
return Err(CodegenError {
message: "signature does not exist",
})
}
};
let mut param_types: Vec<WpType> =
sig.params().iter().cloned().map(type_to_wp_type).collect();
let return_types: Vec<WpType> =
sig.returns().iter().cloned().map(type_to_wp_type).collect();
param_types.push(WpType::I32); // element index
dynasm!(
assembler
; jmp >after_trampoline
);
let trampoline_label = Self::emit_native_call_trampoline(
assembler,
call_indirect,
index as usize,
2019-03-14 10:30:24 +08:00
local_or_import,
2019-03-09 02:57:23 +08:00
);
dynasm!(
assembler
; after_trampoline:
);
Self::emit_call_raw(
assembler,
&mut self.value_stack,
trampoline_label,
&param_types,
&return_types,
)?;
}
2019-02-21 21:14:10 +08:00
Operator::End => {
if self.control_stack.as_ref().unwrap().frames.len() == 1 {
let frame = self.control_stack.as_mut().unwrap().frames.pop().unwrap();
2019-02-21 22:04:43 +08:00
if !was_unreachable {
Self::emit_leave_frame(assembler, &frame, &mut self.value_stack, false)?;
2019-03-13 18:23:50 +08:00
} else {
self.value_stack.reset_depth(0);
2019-02-21 22:04:43 +08:00
}
2019-02-20 23:21:33 +08:00
dynasm!(
assembler
2019-02-21 21:14:10 +08:00
; =>frame.label
2019-02-20 23:21:33 +08:00
);
2019-02-21 21:14:10 +08:00
} else {
Self::emit_block_end(
assembler,
self.control_stack.as_mut().unwrap(),
&mut self.value_stack,
2019-02-21 22:04:43 +08:00
was_unreachable,
2019-02-21 21:14:10 +08:00
)?;
2019-02-14 00:53:06 +08:00
}
}
Operator::Loop { ty } => {
let label = assembler.new_dynamic_label();
self.control_stack
.as_mut()
.unwrap()
.frames
.push(ControlFrame {
label: label,
loop_like: true,
2019-02-27 23:38:45 +08:00
if_else: IfElseState::None,
returns: match ty {
WpType::EmptyBlockType => vec![],
_ => vec![ty],
},
value_stack_depth_before: self.value_stack.values.len(),
});
dynasm!(
assembler
; =>label
);
}
2019-02-27 23:38:45 +08:00
Operator::If { ty } => {
let label_end = assembler.new_dynamic_label();
let label_else = assembler.new_dynamic_label();
Self::emit_pop_into_ax(assembler, &mut self.value_stack)?; // TODO: typeck?
self.control_stack
.as_mut()
.unwrap()
.frames
.push(ControlFrame {
label: label_end,
loop_like: false,
if_else: IfElseState::If(label_else),
returns: match ty {
WpType::EmptyBlockType => vec![],
_ => vec![ty],
},
value_stack_depth_before: self.value_stack.values.len(),
});
dynasm!(
assembler
; cmp eax, 0
; je =>label_else
);
}
Operator::Else => {
Self::emit_else(
assembler,
self.control_stack.as_mut().unwrap(),
&mut self.value_stack,
was_unreachable,
)?;
}
2019-02-28 23:12:42 +08:00
Operator::Select => {
Self::emit_pop_into_ax(assembler, &mut self.value_stack)?;
let v_b = self.value_stack.pop()?;
let v_a = self.value_stack.pop()?;
if v_b.ty != v_a.ty {
return Err(CodegenError {
message: "select: type mismatch",
});
}
dynasm!(
assembler
; cmp eax, 0
);
match v_b.location {
ValueLocation::Stack => {
dynasm!(
assembler
; cmove rax, [rsp]
; add rsp, 8
);
}
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; cmove rax, Rq(reg as u8)
);
}
}
match v_a.location {
ValueLocation::Stack => {
dynasm!(
assembler
; cmovne rax, [rsp]
; add rsp, 8
);
}
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; cmovne rax, Rq(reg as u8)
);
}
}
Self::emit_push_from_ax(assembler, &mut self.value_stack, v_a.ty)?;
}
2019-02-20 23:21:33 +08:00
Operator::Br { relative_depth } => {
Self::emit_jmp(
assembler,
self.control_stack.as_ref().unwrap(),
&mut self.value_stack,
relative_depth as usize,
)?;
2019-02-21 21:14:10 +08:00
self.unreachable_depth = 1;
2019-02-20 23:21:33 +08:00
}
2019-02-21 22:04:43 +08:00
Operator::BrIf { relative_depth } => {
let no_br_label = assembler.new_dynamic_label();
Self::emit_pop_into_ax(assembler, &mut self.value_stack)?; // TODO: typeck?
dynasm!(
assembler
; cmp eax, 0
; je =>no_br_label
);
Self::emit_jmp(
assembler,
self.control_stack.as_ref().unwrap(),
&mut self.value_stack,
relative_depth as usize,
)?;
dynasm!(
assembler
; =>no_br_label
);
}
2019-02-24 12:00:35 +08:00
Operator::BrTable { table } => {
let (targets, default_target) = match table.read_table() {
Ok(x) => x,
Err(_) => {
return Err(CodegenError {
message: "cannot read br table",
});
}
};
let cond_ty = Self::emit_pop_into_ax(assembler, &mut self.value_stack)?;
if cond_ty != WpType::I32 {
return Err(CodegenError {
message: "expecting i32 for BrTable condition",
});
}
let mut table = vec![0usize; targets.len()];
dynasm!(
assembler
; cmp eax, targets.len() as i32
; jae >default_br
; shl rax, 3
; push rcx
; mov rcx, QWORD table.as_ptr() as usize as i64
; add rax, rcx
; pop rcx
; mov rax, [rax] // assuming upper 32 bits of rax are zeroed
; jmp rax
);
for (i, target) in targets.iter().enumerate() {
let AssemblyOffset(offset) = assembler.offset();
table[i] = offset;
Self::emit_jmp(
assembler,
self.control_stack.as_ref().unwrap(),
&mut self.value_stack,
*target as usize,
)?; // This does not actually modify value_stack.
}
dynasm!(
assembler
; default_br:
);
Self::emit_jmp(
assembler,
self.control_stack.as_ref().unwrap(),
&mut self.value_stack,
default_target as usize,
)?;
self.br_table_data.as_mut().unwrap().push(table);
self.unreachable_depth = 1;
}
2019-02-28 23:58:02 +08:00
Operator::I32Load { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
2019-03-02 01:41:31 +08:00
|assembler, reg| {
2019-02-28 23:58:02 +08:00
dynasm!(
assembler
2019-03-02 01:41:31 +08:00
; mov Rd(reg as u8), [Rq(reg as u8) + memarg.offset as i32]
2019-02-28 23:58:02 +08:00
);
},
WpType::I32,
)?;
}
Operator::I32Load8U { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
2019-03-02 01:41:31 +08:00
|assembler, reg| {
2019-02-28 23:58:02 +08:00
dynasm!(
assembler
2019-03-02 01:41:31 +08:00
; movzx Rd(reg as u8), BYTE [Rq(reg as u8) + memarg.offset as i32]
2019-02-28 23:58:02 +08:00
);
},
WpType::I32,
)?;
}
Operator::I32Load8S { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
2019-03-02 01:41:31 +08:00
|assembler, reg| {
2019-02-28 23:58:02 +08:00
dynasm!(
assembler
2019-03-02 01:41:31 +08:00
; movsx Rd(reg as u8), BYTE [Rq(reg as u8) + memarg.offset as i32]
2019-02-28 23:58:02 +08:00
);
},
WpType::I32,
)?;
}
Operator::I32Load16U { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
2019-03-02 01:41:31 +08:00
|assembler, reg| {
2019-02-28 23:58:02 +08:00
dynasm!(
assembler
2019-03-02 01:41:31 +08:00
; movzx Rd(reg as u8), WORD [Rq(reg as u8) + memarg.offset as i32]
2019-02-28 23:58:02 +08:00
);
},
WpType::I32,
)?;
}
Operator::I32Load16S { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
2019-03-02 01:41:31 +08:00
|assembler, reg| {
dynasm!(
assembler
; movsx Rd(reg as u8), WORD [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::I32,
)?;
}
Operator::I32Store { memarg } => {
Self::emit_memory_store(
assembler,
&mut self.value_stack,
|assembler, addr_reg, value_reg| {
dynasm!(
assembler
; mov [Rq(addr_reg as u8) + memarg.offset as i32], Rd(value_reg as u8)
);
},
WpType::I32,
)?;
}
Operator::I32Store8 { memarg } => {
Self::emit_memory_store(
assembler,
&mut self.value_stack,
|assembler, addr_reg, value_reg| {
dynasm!(
assembler
; mov [Rq(addr_reg as u8) + memarg.offset as i32], Rb(value_reg as u8)
);
},
WpType::I32,
)?;
}
Operator::I32Store16 { memarg } => {
Self::emit_memory_store(
assembler,
&mut self.value_stack,
|assembler, addr_reg, value_reg| {
2019-02-28 23:58:02 +08:00
dynasm!(
assembler
2019-03-02 01:41:31 +08:00
; mov [Rq(addr_reg as u8) + memarg.offset as i32], Rw(value_reg as u8)
2019-02-28 23:58:02 +08:00
);
},
WpType::I32,
)?;
}
2019-03-05 00:59:05 +08:00
Operator::I64Load { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
|assembler, reg| {
dynasm!(
assembler
; mov Rq(reg as u8), [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::I64,
)?;
}
Operator::I64Load8U { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
|assembler, reg| {
dynasm!(
assembler
; movzx Rq(reg as u8), BYTE [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::I64,
)?;
}
Operator::I64Load8S { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
|assembler, reg| {
dynasm!(
assembler
; movsx Rq(reg as u8), BYTE [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::I64,
)?;
}
Operator::I64Load16U { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
|assembler, reg| {
dynasm!(
assembler
; movzx Rq(reg as u8), WORD [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::I64,
)?;
}
Operator::I64Load16S { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
|assembler, reg| {
dynasm!(
assembler
; movsx Rq(reg as u8), WORD [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::I64,
)?;
}
Operator::I64Load32U { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
|assembler, reg| {
dynasm!(
assembler
; mov Rd(reg as u8), DWORD [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::I64,
)?;
}
Operator::I64Load32S { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
|assembler, reg| {
dynasm!(
assembler
; movsx Rq(reg as u8), DWORD [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::I64,
)?;
}
Operator::I64Store { memarg } => {
Self::emit_memory_store(
assembler,
&mut self.value_stack,
|assembler, addr_reg, value_reg| {
dynasm!(
assembler
; mov [Rq(addr_reg as u8) + memarg.offset as i32], Rq(value_reg as u8)
);
},
WpType::I64,
)?;
}
Operator::I64Store8 { memarg } => {
Self::emit_memory_store(
assembler,
&mut self.value_stack,
|assembler, addr_reg, value_reg| {
dynasm!(
assembler
; mov [Rq(addr_reg as u8) + memarg.offset as i32], Rb(value_reg as u8)
);
},
WpType::I64,
)?;
}
Operator::I64Store16 { memarg } => {
Self::emit_memory_store(
assembler,
&mut self.value_stack,
|assembler, addr_reg, value_reg| {
dynasm!(
assembler
; mov [Rq(addr_reg as u8) + memarg.offset as i32], Rw(value_reg as u8)
);
},
WpType::I64,
)?;
}
Operator::I64Store32 { memarg } => {
Self::emit_memory_store(
assembler,
&mut self.value_stack,
|assembler, addr_reg, value_reg| {
dynasm!(
assembler
; mov [Rq(addr_reg as u8) + memarg.offset as i32], Rd(value_reg as u8)
);
},
WpType::I64,
)?;
}
Operator::F32Const { value } => {
let location = self.value_stack.push(WpType::F32);
match location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; mov Rd(reg as u8), value.bits() as i32
);
}
ValueLocation::Stack => {
dynasm!(
assembler
; push value.bits() as i32
);
}
}
}
Operator::F64Const { value } => {
let location = self.value_stack.push(WpType::F64);
match location {
ValueLocation::Register(x) => {
let reg = Register::from_scratch_reg(x);
dynasm!(
assembler
; mov Rq(reg as u8), QWORD value.bits() as i64
);
}
ValueLocation::Stack => {
dynasm!(
assembler
; mov rax, QWORD value.bits() as i64
; push rax
);
}
}
}
Operator::F32Load { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
|assembler, reg| {
dynasm!(
assembler
; mov Rd(reg as u8), [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::F32,
)?;
}
Operator::F32Store { memarg } => {
Self::emit_memory_store(
assembler,
&mut self.value_stack,
|assembler, addr_reg, value_reg| {
dynasm!(
assembler
; mov [Rq(addr_reg as u8) + memarg.offset as i32], Rd(value_reg as u8)
);
},
WpType::F32,
)?;
}
Operator::F64Load { memarg } => {
Self::emit_memory_load(
assembler,
&mut self.value_stack,
|assembler, reg| {
dynasm!(
assembler
; mov Rq(reg as u8), [Rq(reg as u8) + memarg.offset as i32]
);
},
WpType::F64,
)?;
}
Operator::F64Store { memarg } => {
Self::emit_memory_store(
assembler,
&mut self.value_stack,
|assembler, addr_reg, value_reg| {
dynasm!(
assembler
; mov [Rq(addr_reg as u8) + memarg.offset as i32], Rq(value_reg as u8)
);
},
WpType::F64,
)?;
}
Operator::I32ReinterpretF32 => {
Self::emit_reinterpret(&mut self.value_stack, WpType::F32, WpType::I32)?;
}
Operator::F32ReinterpretI32 => {
Self::emit_reinterpret(&mut self.value_stack, WpType::I32, WpType::F32)?;
}
Operator::I64ReinterpretF64 => {
Self::emit_reinterpret(&mut self.value_stack, WpType::F64, WpType::I64)?;
}
Operator::F64ReinterpretI64 => {
Self::emit_reinterpret(&mut self.value_stack, WpType::I64, WpType::F64)?;
}
Operator::F32ConvertSI32 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; cvtsi2ss xmm1, Rd(reg as u8)
; movd Rd(reg as u8), xmm1
);
},
WpType::I32,
WpType::F32,
)?;
}
Operator::F32ConvertUI32 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; mov Rd(reg as u8), Rd(reg as u8) // clear upper 32 bits
; cvtsi2ss xmm1, Rq(reg as u8)
; movd Rd(reg as u8), xmm1
);
},
WpType::I32,
WpType::F32,
)?;
}
Operator::F32ConvertSI64 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; cvtsi2ss xmm1, Rq(reg as u8)
; movd Rd(reg as u8), xmm1
);
},
WpType::I64,
WpType::F32,
)?;
}
/*
0: 48 85 ff test %rdi,%rdi
3: 78 0b js 10 <ulong2double+0x10>
5: c4 e1 fb 2a c7 vcvtsi2sd %rdi,%xmm0,%xmm0
a: c3 retq
b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
10: 48 89 f8 mov %rdi,%rax
13: 83 e7 01 and $0x1,%edi
16: 48 d1 e8 shr %rax
19: 48 09 f8 or %rdi,%rax
1c: c4 e1 fb 2a c0 vcvtsi2sd %rax,%xmm0,%xmm0
21: c5 fb 58 c0 vaddsd %xmm0,%xmm0,%xmm0
25: c3 retq
*/
Operator::F32ConvertUI64 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; test Rq(reg as u8), Rq(reg as u8)
; js >do_convert
// fast path: positive as signed
; cvtsi2ss xmm1, Rq(reg as u8)
; movd Rd(reg as u8), xmm1
; jmp >end_convert
; do_convert:
// use r15 as temporary register
; movq xmm5, r15
; mov r15, Rq(reg as u8)
; and r15, 1
; shr Rq(reg as u8), 1
; or Rq(reg as u8), r15
; cvtsi2ss xmm1, Rq(reg as u8)
; addsd xmm1, xmm1
; movq r15, xmm5
; movd Rd(reg as u8), xmm1
; end_convert:
);
},
WpType::I64,
WpType::F32,
)?;
}
Operator::F64ConvertSI32 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; cvtsi2sd xmm1, Rd(reg as u8)
; movq Rq(reg as u8), xmm1
);
},
WpType::I32,
WpType::F64,
)?;
}
Operator::F64ConvertUI32 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; mov Rd(reg as u8), Rd(reg as u8) // clear upper 32 bits
; cvtsi2sd xmm1, Rq(reg as u8)
; movq Rq(reg as u8), xmm1
);
},
WpType::I32,
WpType::F64,
)?;
}
Operator::F64ConvertSI64 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; cvtsi2sd xmm1, Rq(reg as u8)
; movq Rq(reg as u8), xmm1
);
},
WpType::I64,
WpType::F64,
)?;
}
Operator::F64ConvertUI64 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; test Rq(reg as u8), Rq(reg as u8)
; js >do_convert
// fast path: positive as signed
; cvtsi2sd xmm1, Rq(reg as u8)
; movq Rq(reg as u8), xmm1
; jmp >end_convert
; do_convert:
// use r15 as temporary register
; movq xmm5, r15
; mov r15, Rq(reg as u8)
; and r15, 1
; shr Rq(reg as u8), 1
; or Rq(reg as u8), r15
; cvtsi2sd xmm1, Rq(reg as u8)
; addsd xmm1, xmm1
; movq r15, xmm5
; movq Rq(reg as u8), xmm1
; end_convert:
);
},
WpType::I64,
WpType::F64,
)?;
}
Operator::F64PromoteF32 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movd xmm1, Rd(reg as u8)
; cvtss2sd xmm1, xmm1
; movq Rq(reg as u8), xmm1
);
},
WpType::F32,
WpType::F64,
)?;
}
Operator::F32DemoteF64 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movq xmm1, Rq(reg as u8)
; cvtsd2ss xmm1, xmm1
; movd Rd(reg as u8), xmm1
);
},
WpType::F64,
WpType::F32,
)?;
}
Operator::F32Add => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; addss xmm1, xmm2
; movd Rd(left as u8), xmm1
);
},
WpType::F32,
WpType::F32,
)?;
}
Operator::F32Sub => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; subss xmm1, xmm2
; movd Rd(left as u8), xmm1
);
},
WpType::F32,
WpType::F32,
)?;
}
Operator::F32Mul => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; mulss xmm1, xmm2
; movd Rd(left as u8), xmm1
);
},
WpType::F32,
WpType::F32,
)?;
}
Operator::F32Div => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; divss xmm1, xmm2
; movd Rd(left as u8), xmm1
);
},
WpType::F32,
WpType::F32,
)?;
}
Operator::F32Max => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; maxss xmm1, xmm2
; movd Rd(left as u8), xmm1
);
},
WpType::F32,
WpType::F32,
)?;
}
Operator::F32Min => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; minss xmm1, xmm2
; movd Rd(left as u8), xmm1
);
},
WpType::F32,
WpType::F32,
)?;
}
Operator::F32Eq => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; cmpeqss xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F32,
WpType::I32,
)?;
}
Operator::F32Ne => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; cmpneqss xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F32,
WpType::I32,
)?;
}
Operator::F32Gt => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; vcmpgtss xmm1, xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F32,
WpType::I32,
)?;
}
Operator::F32Ge => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; vcmpgess xmm1, xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F32,
WpType::I32,
)?;
}
Operator::F32Lt => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; cmpltss xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F32,
WpType::I32,
)?;
}
Operator::F32Le => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; cmpless xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F32,
WpType::I32,
)?;
}
Operator::F32Copysign => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movd xmm1, Rd(left as u8)
; movd xmm2, Rd(right as u8)
; mov eax, 0x7fffffffu32 as i32
; movd xmm3, eax
; pand xmm1, xmm3
; mov eax, 0x80000000u32 as i32
; movd xmm3, eax
; pand xmm2, xmm3
; por xmm1, xmm2
; movd Rd(left as u8), xmm1
);
},
WpType::F32,
WpType::F32,
)?;
}
Operator::F32Sqrt => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movd xmm1, Rd(reg as u8)
; sqrtss xmm1, xmm1
; movd Rd(reg as u8), xmm1
);
},
WpType::F32,
WpType::F32
)?;
}
Operator::F32Abs => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; and Rd(reg as u8), 0x7fffffffu32 as i32
);
},
WpType::F32,
WpType::F32
)?;
}
Operator::F32Neg => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; btc Rd(reg as u8), 31
);
},
WpType::F32,
WpType::F32
)?;
}
2019-03-15 01:10:31 +08:00
Operator::F32Nearest => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movd xmm1, Rd(reg as u8)
; roundss xmm1, xmm1, 0
; movd Rd(reg as u8), xmm1
);
},
WpType::F32,
WpType::F32
)?;
}
Operator::F32Floor => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movd xmm1, Rd(reg as u8)
; roundss xmm1, xmm1, 1
; movd Rd(reg as u8), xmm1
);
},
WpType::F32,
WpType::F32
)?;
}
Operator::F32Ceil => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movd xmm1, Rd(reg as u8)
; roundss xmm1, xmm1, 2
; movd Rd(reg as u8), xmm1
);
},
WpType::F32,
WpType::F32
)?;
}
Operator::F32Trunc => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movd xmm1, Rd(reg as u8)
; roundss xmm1, xmm1, 3
; movd Rd(reg as u8), xmm1
);
},
WpType::F32,
WpType::F32
)?;
}
Operator::I32TruncUF32 | Operator::I32TruncSF32 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movd xmm1, Rd(reg as u8)
; roundss xmm1, xmm1, 3
; cvtss2si Rd(reg as u8), xmm1
);
},
WpType::F32,
WpType::I32
)?;
}
Operator::I64TruncUF32 | Operator::I64TruncSF32 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movd xmm1, Rd(reg as u8)
; roundss xmm1, xmm1, 3
; cvtss2si Rq(reg as u8), xmm1
);
},
WpType::F32,
WpType::I64
)?;
}
Operator::F64Add => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; addsd xmm1, xmm2
; movq Rq(left as u8), xmm1
);
},
WpType::F64,
WpType::F64,
)?;
}
Operator::F64Sub => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; subsd xmm1, xmm2
; movq Rq(left as u8), xmm1
);
},
WpType::F64,
WpType::F64,
)?;
}
Operator::F64Mul => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; mulsd xmm1, xmm2
; movq Rq(left as u8), xmm1
);
},
WpType::F64,
WpType::F64,
)?;
}
Operator::F64Div => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; divsd xmm1, xmm2
; movq Rq(left as u8), xmm1
);
},
WpType::F64,
WpType::F64,
)?;
}
Operator::F64Max => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; maxsd xmm1, xmm2
; movq Rq(left as u8), xmm1
);
},
WpType::F64,
WpType::F64,
)?;
}
Operator::F64Min => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; minsd xmm1, xmm2
; movq Rq(left as u8), xmm1
);
},
WpType::F64,
WpType::F64,
)?;
}
Operator::F64Eq => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; cmpeqsd xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F64,
WpType::I32,
)?;
}
Operator::F64Ne => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; cmpneqsd xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F64,
WpType::I32,
)?;
}
Operator::F64Gt => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; vcmpgtsd xmm1, xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F64,
WpType::I32,
)?;
}
Operator::F64Ge => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; vcmpgesd xmm1, xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F64,
WpType::I32,
)?;
}
Operator::F64Lt => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; cmpltsd xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F64,
WpType::I32,
)?;
}
Operator::F64Le => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; cmplesd xmm1, xmm2
; movd Rd(left as u8), xmm1
; and Rd(left as u8), 1
);
},
WpType::F64,
WpType::I32,
)?;
}
Operator::F64Copysign => {
Self::emit_binop(
assembler,
&mut self.value_stack,
|assembler, value_stack, left, right| {
dynasm!(
assembler
; movq xmm1, Rq(left as u8)
; movq xmm2, Rq(right as u8)
; mov rax, QWORD 0x7fffffffffffffffu64 as i64
; movq xmm3, rax
; pand xmm1, xmm3
; mov rax, QWORD 0x8000000000000000u64 as i64
; movq xmm3, rax
; pand xmm2, xmm3
; por xmm1, xmm2
; movq Rq(left as u8), xmm1
);
},
WpType::F64,
WpType::F64,
)?;
}
Operator::F64Sqrt => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movq xmm1, Rq(reg as u8)
; sqrtsd xmm1, xmm1
; movq Rq(reg as u8), xmm1
);
},
WpType::F64,
WpType::F64
)?;
}
Operator::F64Abs => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movq xmm1, Rq(reg as u8)
; mov rax, QWORD 0x7fffffffffffffff
; movq xmm2, rax
; por xmm1, xmm2
; movq Rq(reg as u8), xmm1
);
},
WpType::F64,
WpType::F64
)?;
}
Operator::F64Neg => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; btc Rq(reg as u8), 63
);
},
WpType::F64,
WpType::F64
)?;
}
2019-03-15 01:10:31 +08:00
Operator::F64Nearest => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movq xmm1, Rq(reg as u8)
; roundsd xmm1, xmm1, 0
; movq Rq(reg as u8), xmm1
);
},
WpType::F64,
WpType::F64
)?;
}
Operator::F64Floor => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movq xmm1, Rq(reg as u8)
; roundsd xmm1, xmm1, 1
; movq Rq(reg as u8), xmm1
);
},
WpType::F64,
WpType::F64
)?;
}
Operator::F64Ceil => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movq xmm1, Rq(reg as u8)
; roundsd xmm1, xmm1, 2
; movq Rq(reg as u8), xmm1
);
},
WpType::F64,
WpType::F64
)?;
}
Operator::F64Trunc => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movq xmm1, Rq(reg as u8)
; roundsd xmm1, xmm1, 3
; movq Rq(reg as u8), xmm1
);
},
WpType::F64,
WpType::F64
)?;
}
Operator::I32TruncUF64 | Operator::I32TruncSF64 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movq xmm1, Rq(reg as u8)
; roundsd xmm1, xmm1, 3
; cvtsd2si Rd(reg as u8), xmm1
);
},
WpType::F64,
WpType::I32
)?;
}
Operator::I64TruncUF64 | Operator::I64TruncSF64 => {
Self::emit_unop(
assembler,
&mut self.value_stack,
|assembler, value_stack, reg| {
dynasm!(
assembler
; movq xmm1, Rq(reg as u8)
; roundsd xmm1, xmm1, 3
; cvtsd2si Rq(reg as u8), xmm1
);
},
WpType::F64,
WpType::I64
)?;
}
2019-03-13 18:23:50 +08:00
Operator::Nop => {}
2019-03-14 10:30:24 +08:00
Operator::MemorySize { reserved } => {
let memory_index = MemoryIndex::new(reserved as usize);
let label = match memory_index.local_or_import(module_info) {
LocalOrImport::Local(local_mem_index) => {
let mem_desc = &module_info.memories[local_mem_index];
match mem_desc.memory_type() {
MemoryType::Dynamic => self.native_trampolines.memory_size_dynamic_local,
MemoryType::Static => self.native_trampolines.memory_size_static_local,
MemoryType::SharedStatic => self.native_trampolines.memory_size_shared_local,
}
}
LocalOrImport::Import(import_mem_index) => {
let mem_desc = &module_info.imported_memories[import_mem_index].1;
match mem_desc.memory_type() {
MemoryType::Dynamic => self.native_trampolines.memory_size_dynamic_import,
MemoryType::Static => self.native_trampolines.memory_size_static_import,
MemoryType::SharedStatic => self.native_trampolines.memory_size_shared_import,
}
}
};
Self::emit_call_raw(
assembler,
&mut self.value_stack,
label,
&[],
&[WpType::I32]
)?;
}
Operator::MemoryGrow { reserved } => {
let memory_index = MemoryIndex::new(reserved as usize);
let label = match memory_index.local_or_import(module_info) {
LocalOrImport::Local(local_mem_index) => {
let mem_desc = &module_info.memories[local_mem_index];
match mem_desc.memory_type() {
MemoryType::Dynamic => self.native_trampolines.memory_grow_dynamic_local,
MemoryType::Static => self.native_trampolines.memory_grow_static_local,
MemoryType::SharedStatic => self.native_trampolines.memory_grow_shared_local,
}
}
LocalOrImport::Import(import_mem_index) => {
let mem_desc = &module_info.imported_memories[import_mem_index].1;
match mem_desc.memory_type() {
MemoryType::Dynamic => self.native_trampolines.memory_grow_dynamic_import,
MemoryType::Static => self.native_trampolines.memory_grow_static_import,
MemoryType::SharedStatic => self.native_trampolines.memory_grow_shared_import,
}
}
};
Self::emit_call_raw(
assembler,
&mut self.value_stack,
label,
&[WpType::I32],
&[WpType::I32]
)?;
}
2019-03-13 18:23:50 +08:00
_ => {
panic!("{:?}", op);
},
}
2019-02-12 00:52:17 +08:00
Ok(())
}
2019-02-12 00:52:17 +08:00
fn finalize(&mut self) -> Result<(), CodegenError> {
let assembler = self.assembler.as_mut().unwrap();
dynasm!(
assembler
2019-02-21 21:14:10 +08:00
; mov rsp, rbp
; pop rbp
; ret
);
2019-02-20 23:21:33 +08:00
if self.value_stack.values.len() != 0
|| self.control_stack.as_ref().unwrap().frames.len() != 0
{
return Err(CodegenError {
message: "control/value stack not empty at end of function",
});
}
2019-02-12 00:52:17 +08:00
Ok(())
}
}
fn get_size_of_type(ty: &WpType) -> Result<usize, CodegenError> {
match *ty {
WpType::I32 | WpType::F32 => Ok(4),
WpType::I64 | WpType::F64 => Ok(8),
_ => Err(CodegenError {
message: "unknown type",
}),
}
}
fn is_dword(n: usize) -> bool {
n == 4
}
2019-02-15 02:21:52 +08:00
fn value_to_i64(v: &Value) -> i64 {
match *v {
Value::F32(x) => x.to_bits() as u64 as i64,
Value::F64(x) => x.to_bits() as u64 as i64,
Value::I32(x) => x as u64 as i64,
Value::I64(x) => x as u64 as i64,
}
}
fn type_to_wp_type(ty: Type) -> WpType {
match ty {
Type::I32 => WpType::I32,
Type::I64 => WpType::I64,
Type::F32 => WpType::F32,
Type::F64 => WpType::F64,
}
}
2019-02-26 20:56:10 +08:00
unsafe extern "C" fn do_trap(
ctx1: usize,
ctx2: TrapCode,
stack_top: *mut u8,
stack_base: *mut u8,
2019-03-09 00:07:13 +08:00
vmctx: *mut vm::Ctx,
2019-03-09 02:57:23 +08:00
memory_base: *mut u8,
2019-02-26 20:56:10 +08:00
) -> u64 {
panic!("TRAP CODE: {:?}", ctx2);
}
unsafe extern "C" fn invoke_import(
2019-03-09 00:07:13 +08:00
_unused: usize,
import_id: usize,
stack_top: *mut u8,
stack_base: *mut u8,
2019-03-09 00:07:13 +08:00
vmctx: *mut vm::Ctx,
2019-03-09 02:57:23 +08:00
memory_base: *mut u8,
) -> u64 {
2019-03-09 00:07:13 +08:00
let vmctx: &mut vm::Ctx = &mut *vmctx;
let import = (*vmctx.imported_funcs.offset(import_id as isize)).func;
2019-03-13 18:23:50 +08:00
return 0; // TODO: Fix this.
2019-03-09 00:07:13 +08:00
CONSTRUCT_STACK_AND_CALL_NATIVE(stack_top, stack_base, vmctx, import)
}
2019-03-09 02:57:23 +08:00
2019-03-14 10:30:24 +08:00
#[repr(u64)]
#[derive(Copy, Clone, Debug)]
enum CallIndirectLocalOrImport {
Local,
Import
}
2019-03-09 02:57:23 +08:00
unsafe extern "C" fn call_indirect(
sig_index: usize,
2019-03-14 10:30:24 +08:00
local_or_import: CallIndirectLocalOrImport,
2019-03-09 02:57:23 +08:00
mut stack_top: *mut u8,
stack_base: *mut u8,
vmctx: *mut vm::Ctx,
memory_base: *mut u8,
) -> u64 {
let elem_index = *(stack_top as *mut u32) as usize;
stack_top = stack_top.offset(8);
assert!(stack_top as usize <= stack_base as usize);
2019-03-14 10:30:24 +08:00
let table: &LocalTable = match local_or_import {
CallIndirectLocalOrImport::Local => &*(*(*vmctx).tables),
CallIndirectLocalOrImport::Import => &*(*(*vmctx).imported_tables),
} ;
2019-03-09 02:57:23 +08:00
if elem_index >= table.count as usize {
panic!("element index out of bounds");
}
2019-03-12 11:31:55 +08:00
let anyfunc = &*(table.base as *mut vm::Anyfunc).offset(elem_index as isize);
2019-03-09 02:57:23 +08:00
let ctx: &X64ExecutionContext =
&*CURRENT_EXECUTION_CONTEXT.with(|x| *x.borrow().last().unwrap());
2019-03-12 11:31:55 +08:00
let func_index = anyfunc.func_index.unwrap();
2019-03-09 02:57:23 +08:00
2019-03-12 11:31:55 +08:00
/*println!(
"SIG INDEX = {}, FUNC INDEX = {:?}, ELEM INDEX = {}",
sig_index, func_index, elem_index
);*/
2019-03-09 02:57:23 +08:00
if ctx.signatures[SigIndex::new(sig_index)]
2019-03-12 11:31:55 +08:00
!= ctx.signatures[ctx.function_signatures[func_index]]
2019-03-09 02:57:23 +08:00
{
panic!("signature mismatch");
}
2019-03-12 11:31:55 +08:00
let func = ctx.function_pointers[func_index.index() as usize].0;
2019-03-09 02:57:23 +08:00
CALL_WASM(
stack_top,
stack_base as usize - stack_top as usize,
func as _,
memory_base,
vmctx,
) as u64
}
2019-03-14 10:30:24 +08:00
#[repr(u64)]
#[derive(Copy, Clone, Debug)]
enum MemoryKind {
DynamicLocal,
StaticLocal,
SharedLocal,
DynamicImport,
StaticImport,
SharedImport,
}
unsafe extern "C" fn _memory_size(
op: MemoryKind,
index: usize,
mut stack_top: *mut u8,
stack_base: *mut u8,
vmctx: *mut vm::Ctx,
memory_base: *mut u8,
) -> u64 {
use wasmer_runtime_core::vmcalls;
let ret = match op {
MemoryKind::DynamicLocal => vmcalls::local_dynamic_memory_size(&*vmctx, LocalMemoryIndex::new(index)),
MemoryKind::StaticLocal => vmcalls::local_static_memory_size(&*vmctx, LocalMemoryIndex::new(index)),
MemoryKind::SharedLocal => unreachable!(),
MemoryKind::DynamicImport => vmcalls::imported_dynamic_memory_size(&*vmctx, ImportedMemoryIndex::new(index)),
MemoryKind::StaticImport => vmcalls::imported_static_memory_size(&*vmctx, ImportedMemoryIndex::new(index)),
MemoryKind::SharedImport => unreachable!(),
};
ret.0 as u32 as u64
}
unsafe extern "C" fn _memory_grow(
op: MemoryKind,
index: usize,
mut stack_top: *mut u8,
stack_base: *mut u8,
vmctx: *mut vm::Ctx,
memory_base: *mut u8,
) -> u64 {
use wasmer_runtime_core::vmcalls;
assert_eq!(stack_base as usize - stack_top as usize, 8);
let pages = Pages(*(stack_top as *mut u32));
let ret = match op {
MemoryKind::DynamicLocal => vmcalls::local_dynamic_memory_grow(&mut *vmctx, LocalMemoryIndex::new(index), pages),
MemoryKind::StaticLocal => vmcalls::local_static_memory_grow(&mut *vmctx, LocalMemoryIndex::new(index), pages),
MemoryKind::SharedLocal => unreachable!(),
MemoryKind::DynamicImport => vmcalls::imported_dynamic_memory_grow(&mut *vmctx, ImportedMemoryIndex::new(index), pages),
MemoryKind::StaticImport => vmcalls::imported_static_memory_grow(&mut *vmctx, ImportedMemoryIndex::new(index), pages),
MemoryKind::SharedImport => unreachable!(),
};
ret as u32 as u64
}