mirror of
https://github.com/fluencelabs/wasm-bindgen
synced 2025-06-24 02:01:35 +00:00
Clean up atomics/futures + polyfill
* Remove now-unneeded `State` enum * Remove timeout argument from polyfill since we don't need it * Call `Atomics.waitAsync` if it's available instead of using our polyfill * Remove some extraneous dead code from the polyfill * Add a `val: i32` argument to the polyfill * Simplify the flow of futures with `Package` since `waitAsync` handles all the heavy lifting for us. * Remove `Arc<Package>` and just use `Package` * Remove `RefCell` from inside of `Package` now that it is no longer needed.
This commit is contained in:
@ -1,4 +1,4 @@
|
||||
use std::cell::{Cell, RefCell};
|
||||
use std::cell::RefCell;
|
||||
use std::fmt;
|
||||
use std::rc::Rc;
|
||||
use std::sync::atomic::{AtomicI32, Ordering};
|
||||
@ -8,8 +8,9 @@ use futures::executor::{self, Notify, Spawn};
|
||||
use futures::future;
|
||||
use futures::prelude::*;
|
||||
use futures::sync::oneshot;
|
||||
use js_sys::{Function, Promise};
|
||||
use js_sys::Function;
|
||||
use wasm_bindgen::prelude::*;
|
||||
use wasm_bindgen::JsCast;
|
||||
|
||||
/// A Rust `Future` backed by a JavaScript `Promise`.
|
||||
///
|
||||
@ -23,14 +24,28 @@ pub struct JsFuture {
|
||||
rx: oneshot::Receiver<Result<JsValue, JsValue>>,
|
||||
}
|
||||
|
||||
// Duplicate a bit here because `then` takes a `JsValue` instead of a `Closure`.
|
||||
#[wasm_bindgen]
|
||||
extern "C" {
|
||||
type Promise;
|
||||
#[wasm_bindgen(method)]
|
||||
fn then(this: &Promise, cb: &JsValue) -> Promise;
|
||||
|
||||
type Atomics;
|
||||
#[wasm_bindgen(static_method_of = Atomics, js_name = waitAsync)]
|
||||
fn wait_async(buf: &JsValue, index: i32, value: i32) -> js_sys::Promise;
|
||||
#[wasm_bindgen(static_method_of = Atomics, js_name = waitAsync, getter)]
|
||||
fn get_wait_async() -> JsValue;
|
||||
}
|
||||
|
||||
impl fmt::Debug for JsFuture {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "JsFuture {{ ... }}")
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Promise> for JsFuture {
|
||||
fn from(js: Promise) -> JsFuture {
|
||||
impl From<js_sys::Promise> for JsFuture {
|
||||
fn from(js: js_sys::Promise) -> JsFuture {
|
||||
// Use the `then` method to schedule two callbacks, one for the
|
||||
// resolved value and one for the rejected value. We're currently
|
||||
// assuming that JS engines will unconditionally invoke precisely one of
|
||||
@ -112,205 +127,132 @@ impl Future for JsFuture {
|
||||
/// If the `future` provided panics then the returned `Promise` **will not
|
||||
/// resolve**. Instead it will be a leaked promise. This is an unfortunate
|
||||
/// limitation of wasm currently that's hoped to be fixed one day!
|
||||
pub fn future_to_promise<F>(future: F) -> Promise
|
||||
where
|
||||
F: Future<Item = JsValue, Error = JsValue> + 'static,
|
||||
pub fn future_to_promise<F>(future: F) -> js_sys::Promise
|
||||
where
|
||||
F: Future<Item = JsValue, Error = JsValue> + 'static,
|
||||
{
|
||||
_future_to_promise(Box::new(future))
|
||||
}
|
||||
|
||||
// Implementation of actually transforming a future into a JavaScript `Promise`.
|
||||
//
|
||||
// The only primitive we have to work with here is `Promise::new`, which gives
|
||||
// us two callbacks that we can use to either reject or resolve the promise.
|
||||
// It's our job to ensure that one of those callbacks is called at the
|
||||
// appropriate time.
|
||||
// The main primitives used here are `Promise::new` to actually create a JS
|
||||
// promise to return as well as `Atomics.waitAsync` to create a promise that we
|
||||
// can asynchronously wait on. The general idea here is that we'll create a
|
||||
// promise to return and schedule work to happen in `Atomics.waitAsync`
|
||||
// callbacks.
|
||||
//
|
||||
// Now we know that JavaScript (in general) can't block and is largely
|
||||
// notification/callback driven. That means that our future must either have
|
||||
// synchronous computational work to do, or it's "scheduled a notification" to
|
||||
// happen. These notifications are likely callbacks to get executed when things
|
||||
// finish (like a different promise or something like `setTimeout`). The general
|
||||
// idea here is thus to do as much synchronous work as we can and then otherwise
|
||||
// translate notifications of a future's task into "let's poll the future!"
|
||||
//
|
||||
// This isn't necessarily the greatest future executor in the world, but it
|
||||
// should get the job done for now hopefully.
|
||||
fn _future_to_promise(future: Box<dyn Future<Item = JsValue, Error = JsValue>>) -> Promise {
|
||||
// After we've created a promise we start polling a future, and whenever it's
|
||||
// not ready we'll execute `Atomics.waitAsync`. When that resolves we'll keep
|
||||
// polling the future, and this happens until the future is done. Finally
|
||||
// when it's all finished we call either resolver or reject depending on the
|
||||
// result of the future.
|
||||
fn _future_to_promise(future: Box<dyn Future<Item = JsValue, Error = JsValue>>) -> js_sys::Promise {
|
||||
let mut future = Some(executor::spawn(future));
|
||||
return Promise::new(&mut |resolve, reject| {
|
||||
Package::poll(&Arc::new(Package {
|
||||
spawn: RefCell::new(future.take().unwrap()),
|
||||
return js_sys::Promise::new(&mut |resolve, reject| {
|
||||
Package {
|
||||
spawn: future.take().unwrap(),
|
||||
resolve,
|
||||
reject,
|
||||
notified: Cell::new(State::Notified),
|
||||
waker: Arc::new(Waker::default()),
|
||||
}));
|
||||
waker: Arc::new(Waker {
|
||||
value: AtomicI32::new(1), // 1 == "notified, ready to poll"
|
||||
}),
|
||||
}
|
||||
.poll();
|
||||
});
|
||||
|
||||
struct Package {
|
||||
// Our "spawned future". This'll have everything we need to poll the
|
||||
// future and continue to move it forward.
|
||||
spawn: RefCell<Spawn<Box<dyn Future<Item = JsValue, Error = JsValue>>>>,
|
||||
|
||||
// The current state of this future, expressed in an enum below. This
|
||||
// indicates whether we're currently polling the future, received a
|
||||
// notification and need to keep polling, or if we're waiting for a
|
||||
// notification to come in (and no one is polling).
|
||||
notified: Cell<State>,
|
||||
spawn: Spawn<Box<dyn Future<Item = JsValue, Error = JsValue>>>,
|
||||
|
||||
// Our two callbacks connected to the `Promise` that we returned to
|
||||
// JavaScript. We'll be invoking one of these at the end.
|
||||
resolve: Function,
|
||||
reject: Function,
|
||||
|
||||
// Struct to wake a future
|
||||
// Shared state used to communicate waking up this future, this is the
|
||||
// `Send + Sync` piece needed by the async task system.
|
||||
waker: Arc<Waker>,
|
||||
}
|
||||
|
||||
// The possible states our `Package` (future) can be in, tracked internally
|
||||
// and used to guide what happens when polling a future.
|
||||
enum State {
|
||||
// This future is currently and actively being polled. Attempting to
|
||||
// access the future will result in a runtime panic and is considered a
|
||||
// bug.
|
||||
Polling,
|
||||
|
||||
// This future has been notified, while it was being polled. This marker
|
||||
// is used in the `Notify` implementation below, and indicates that a
|
||||
// notification was received that the future is ready to make progress.
|
||||
// If seen, however, it probably means that the future is also currently
|
||||
// being polled.
|
||||
Notified,
|
||||
|
||||
// The future is blocked, waiting for something to happen. Stored here
|
||||
// is a self-reference to the future itself so we can pull it out in
|
||||
// `Notify` and continue polling.
|
||||
//
|
||||
// Note that the self-reference here is an Arc-cycle that will leak
|
||||
// memory unless the future completes, but currently that should be ok
|
||||
// as we'll have to stick around anyway while the future is executing!
|
||||
//
|
||||
// This state is removed as soon as a notification comes in, so the leak
|
||||
// should only be "temporary"
|
||||
Waiting(Arc<Package>),
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
struct Waker {
|
||||
// worker will be waiting on this value
|
||||
// 0 by default, which means not notified
|
||||
value: AtomicI32,
|
||||
};
|
||||
|
||||
impl Notify for Waker {
|
||||
fn notify(&self, _id: usize) {
|
||||
// since we have only value field here
|
||||
// let it be 1 if notified, 0 if not
|
||||
if self.value.swap(1, Ordering::SeqCst) == 0 {
|
||||
let _ = unsafe {
|
||||
core::arch::wasm32::atomic_notify(
|
||||
&self.value as *const AtomicI32 as *mut i32,
|
||||
std::u32::MAX, // number of threads to notify
|
||||
)
|
||||
};
|
||||
// Attempt to notify us by storing 1. If we're already 1 then we
|
||||
// were previously notified and there's nothing to do. Otherwise
|
||||
// we execute the native `notify` instruction to wake up the
|
||||
// corresponding `waitAsync` that was waiting for the transition
|
||||
// from 0 to 1.
|
||||
let prev = self.value.swap(1, Ordering::SeqCst);
|
||||
if prev == 1 {
|
||||
return;
|
||||
}
|
||||
debug_assert_eq!(prev, 0);
|
||||
unsafe {
|
||||
core::arch::wasm32::atomic_notify(
|
||||
&self.value as *const AtomicI32 as *mut i32,
|
||||
1, // number of threads to notify
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn poll_again(package: Arc<Package>) {
|
||||
let me = match package.notified.replace(State::Notified) {
|
||||
// we need to schedule polling to resume, so keep going
|
||||
State::Waiting(me) => {
|
||||
me
|
||||
}
|
||||
|
||||
// we were already notified, and were just notified again;
|
||||
// having now coalesced the notifications we return as it's
|
||||
// still someone else's job to process this
|
||||
State::Notified => {
|
||||
return;
|
||||
}
|
||||
|
||||
// the future was previously being polled, and we've just
|
||||
// switched it to the "you're notified" state. We don't have
|
||||
// access to the future as it's being polled, so the future
|
||||
// polling process later sees this notification and will
|
||||
// continue polling. For us, though, there's nothing else to do,
|
||||
// so we bail out.
|
||||
// later see
|
||||
State::Polling => {
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
// Use `Promise.then` on a resolved promise to place our execution
|
||||
// onto the next turn of the microtask queue, enqueueing our poll
|
||||
// operation. We don't currently poll immediately as it turns out
|
||||
// `futures` crate adapters aren't compatible with it and it also
|
||||
// helps avoid blowing the stack by accident.
|
||||
let promise =
|
||||
crate::polyfill::wait_async(&package.waker.value).expect("Should create a Promise");
|
||||
let closure = Closure::once(move |_| {
|
||||
Package::poll(&me);
|
||||
});
|
||||
promise.then(&closure);
|
||||
closure.forget();
|
||||
}
|
||||
|
||||
impl Package {
|
||||
// Move the future contained in `me` as far forward as we can. This will
|
||||
// do as much synchronous work as possible to complete the future,
|
||||
// ensuring that when it blocks we're scheduled to get notified via some
|
||||
// callback somewhere at some point (vague, right?)
|
||||
//
|
||||
// TODO: this probably shouldn't do as much synchronous work as possible
|
||||
// as it can starve other computations. Rather it should instead
|
||||
// yield every so often with something like `setTimeout` with the
|
||||
// timeout set to zero.
|
||||
fn poll(me: &Arc<Package>) {
|
||||
loop {
|
||||
match me.notified.replace(State::Polling) {
|
||||
// We received a notification while previously polling, or
|
||||
// this is the initial poll. We've got work to do below!
|
||||
State::Notified => {}
|
||||
|
||||
// We've gone through this loop once and no notification was
|
||||
// received while we were executing work. That means we got
|
||||
// `NotReady` below and we're scheduled to receive a
|
||||
// notification. Block ourselves and wait for later.
|
||||
//
|
||||
// When the notification comes in it'll notify our task, see
|
||||
// our `Waiting` state, and resume the polling process
|
||||
State::Polling => {
|
||||
me.notified.set(State::Waiting(me.clone()));
|
||||
|
||||
poll_again(me.clone());
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
State::Waiting(_) => panic!("shouldn't see waiting state!"),
|
||||
}
|
||||
|
||||
let (val, f) = match me.spawn.borrow_mut().poll_future_notify(&me.waker, 0) {
|
||||
fn poll(mut self) {
|
||||
// Poll in a loop waiting for the future to become ready. Note that
|
||||
// we probably shouldn't maximize synchronous work here but rather
|
||||
// we should occasionally yield back to the runtime and schedule
|
||||
// ourselves to resume this future later on.
|
||||
//
|
||||
// Note that 0 here means "need a notification" and 1 means "we got
|
||||
// a notification". That means we're storing 0 into the `notified`
|
||||
// slot and we're trying to read 1 to keep on going.
|
||||
while self.waker.value.swap(0, Ordering::SeqCst) == 1 {
|
||||
let (val, f) = match self.spawn.poll_future_notify(&self.waker, 0) {
|
||||
// If the future is ready, immediately call the
|
||||
// resolve/reject callback and then return as we're done.
|
||||
Ok(Async::Ready(value)) => (value, &me.resolve),
|
||||
Err(value) => (value, &me.reject),
|
||||
Ok(Async::Ready(value)) => (value, &self.resolve),
|
||||
Err(value) => (value, &self.reject),
|
||||
|
||||
// Otherwise keep going in our loop, if we weren't notified
|
||||
// we'll break out and start waiting.
|
||||
Ok(Async::NotReady) => continue,
|
||||
// ... otherwise let's break out and wait
|
||||
Ok(Async::NotReady) => break,
|
||||
};
|
||||
|
||||
// Call the resolution function, and then when we're done
|
||||
// destroy ourselves through `drop` since our future is no
|
||||
// longer needed.
|
||||
drop(f.call1(&JsValue::undefined(), &val));
|
||||
break;
|
||||
return;
|
||||
}
|
||||
|
||||
// Create a `js_sys::Promise` using `Atomics.waitAsync` (or our
|
||||
// polyfill) and then register its completion callback as simply
|
||||
// calling this function again.
|
||||
let promise = wait_async(&self.waker.value, 0).unchecked_into::<Promise>();
|
||||
let closure = Closure::once_into_js(move || {
|
||||
self.poll();
|
||||
});
|
||||
promise.then(&closure);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn wait_async(ptr: &AtomicI32, val: i32) -> js_sys::Promise {
|
||||
// If `Atomics.waitAsync` isn't defined (as it isn't defined anywhere today)
|
||||
// then we use our fallback, otherwise we use the native function.
|
||||
if Atomics::get_wait_async().is_undefined() {
|
||||
crate::polyfill::wait_async(ptr, val)
|
||||
} else {
|
||||
let mem = wasm_bindgen::memory().unchecked_into::<js_sys::WebAssembly::Memory>();
|
||||
Atomics::wait_async(&mem.buffer(), ptr as *const AtomicI32 as i32 / 4, val)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/// Converts a Rust `Future` on a local task queue.
|
||||
///
|
||||
/// The `future` provided must adhere to `'static` because it'll be scheduled
|
||||
@ -320,8 +262,8 @@ fn _future_to_promise(future: Box<dyn Future<Item = JsValue, Error = JsValue>>)
|
||||
///
|
||||
/// This function has the same panic behavior as `future_to_promise`.
|
||||
pub fn spawn_local<F>(future: F)
|
||||
where
|
||||
F: Future<Item = (), Error = ()> + 'static,
|
||||
where
|
||||
F: Future<Item = (), Error = ()> + 'static,
|
||||
{
|
||||
future_to_promise(
|
||||
future
|
||||
|
@ -36,38 +36,21 @@
|
||||
* when possible. The worker communicates with its parent using postMessage.
|
||||
*/
|
||||
|
||||
use js_sys::{encode_uri_component, Array, Promise};
|
||||
use std::cell::RefCell;
|
||||
use std::sync::atomic::{AtomicI32, Ordering};
|
||||
|
||||
use js_sys::{
|
||||
encode_uri_component, Array, Function, Int32Array, JsString, Promise, Reflect,
|
||||
WebAssembly,
|
||||
};
|
||||
use std::sync::atomic::AtomicI32;
|
||||
use wasm_bindgen::prelude::*;
|
||||
use wasm_bindgen::JsCast;
|
||||
use web_sys::{MessageEvent, Worker};
|
||||
|
||||
const DEFAULT_TIMEOUT: f64 = std::f64::INFINITY;
|
||||
|
||||
const HELPER_CODE: &'static str = "
|
||||
onmessage = function (ev) {
|
||||
try {
|
||||
switch (ev.data[0]) {
|
||||
case 'wait': {
|
||||
let [_, ia, index, value, timeout] = ev.data;
|
||||
let result = Atomics.wait(ia, index, value, timeout);
|
||||
postMessage(['ok', result]);
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
throw new Error('Wrong message sent to wait helper: ' + ev.data.join(','));
|
||||
}
|
||||
}
|
||||
} catch (e) {
|
||||
console.log('Exception in wait helper', e);
|
||||
postMessage(['error', 'Exception']);
|
||||
}
|
||||
}
|
||||
let [ia, index, value] = ev.data;
|
||||
ia = new Int32Array(ia.buffer);
|
||||
let result = Atomics.wait(ia, index, value);
|
||||
console.log('done', result);
|
||||
postMessage(result);
|
||||
};
|
||||
";
|
||||
|
||||
thread_local! {
|
||||
@ -84,103 +67,39 @@ fn alloc_helper() -> Worker {
|
||||
let encoded: String = encode_uri_component(HELPER_CODE).into();
|
||||
initialization_string.push_str(&encoded);
|
||||
|
||||
Worker::new(&initialization_string).expect("Should create a Worker")
|
||||
Worker::new(&initialization_string).unwrap_or_else(|js| wasm_bindgen::throw_val(js))
|
||||
})
|
||||
}
|
||||
|
||||
fn free_helper(helper: Worker) {
|
||||
HELPERS.with(move |helpers| {
|
||||
helpers.borrow_mut().push(helper.clone());
|
||||
let mut helpers = helpers.borrow_mut();
|
||||
helpers.push(helper.clone());
|
||||
helpers.truncate(10); // random arbitrary limit chosen here
|
||||
});
|
||||
}
|
||||
|
||||
pub fn wait_async(value: &AtomicI32) -> Result<Promise, JsValue> {
|
||||
wait_async_with_timeout(value, DEFAULT_TIMEOUT)
|
||||
}
|
||||
|
||||
fn get_array_item(array: &JsValue, index: u32) -> JsValue {
|
||||
Reflect::get(array, &JsValue::from(index))
|
||||
.expect(&format!("Array should contain the index {}", index))
|
||||
}
|
||||
|
||||
// Atomics.waitAsync always returns a promise. Throws standard errors
|
||||
// for parameter validation. The promise is resolved with a string as from
|
||||
// Atomics.wait, or, in the case something went completely wrong, it is
|
||||
// rejected with an error string.
|
||||
pub fn wait_async_with_timeout(value: &AtomicI32, timeout: f64) -> Result<Promise, JsValue> {
|
||||
let memory_buffer = wasm_bindgen::memory()
|
||||
.dyn_into::<WebAssembly::Memory>()
|
||||
.expect("Should cast a memory to WebAssembly::Memory")
|
||||
.buffer();
|
||||
|
||||
let indexed_array = Int32Array::new(&memory_buffer);
|
||||
|
||||
let index = value as *const AtomicI32 as u32 / 4;
|
||||
let value_i32 = value.load(Ordering::SeqCst);
|
||||
|
||||
// General case, we must wait.
|
||||
|
||||
Ok(Promise::new(
|
||||
&mut move |resolve: Function, reject: Function| {
|
||||
let helper = alloc_helper();
|
||||
let helper_ref = helper.clone();
|
||||
|
||||
let onmessage_callback = Closure::once_into_js(move |e: MessageEvent| {
|
||||
// Free the helper early so that it can be reused if the resolution
|
||||
// needs a helper.
|
||||
free_helper(helper_ref);
|
||||
match String::from(
|
||||
get_array_item(&e.data(), 0)
|
||||
.as_string()
|
||||
.expect("data[0] should return a String"),
|
||||
)
|
||||
.as_str()
|
||||
{
|
||||
"ok" => {
|
||||
resolve
|
||||
.call1(&JsValue::NULL, &get_array_item(&e.data(), 1))
|
||||
.expect("Should successfully call a resolve callback");
|
||||
}
|
||||
"error" => {
|
||||
// Note, rejection is not in the spec, it is an artifact of the polyfill.
|
||||
// The helper already printed an error to the console.
|
||||
reject
|
||||
.call1(&JsValue::NULL, &get_array_item(&e.data(), 1))
|
||||
.expect("Should successfully call a reject callback");
|
||||
}
|
||||
// it's not specified in the proposal yet
|
||||
_ => (),
|
||||
}
|
||||
});
|
||||
helper.set_onmessage(Some(onmessage_callback.as_ref().unchecked_ref()));
|
||||
|
||||
// onmessage_callback.forget();
|
||||
|
||||
// It's possible to do better here if the ia is already known to the
|
||||
// helper. In that case we can communicate the other data through
|
||||
// shared memory and wake the agent. And it is possible to make ia
|
||||
// known to the helper by waking it with a special value so that it
|
||||
// checks its messages, and then posting the ia to the helper. Some
|
||||
// caching / decay scheme is useful no doubt, to improve performance
|
||||
// and avoid leaks.
|
||||
//
|
||||
// In the event we wake the helper directly, we can micro-wait here
|
||||
// for a quick result. We'll need to restructure some code to make
|
||||
// that work out properly, and some synchronization is necessary for
|
||||
// the helper to know that we've picked up the result and no
|
||||
// postMessage is necessary.
|
||||
|
||||
let data = Array::of5(
|
||||
&JsString::from("wait"),
|
||||
&indexed_array,
|
||||
&JsValue::from(index),
|
||||
&JsValue::from(value_i32),
|
||||
&JsValue::from(timeout),
|
||||
);
|
||||
|
||||
helper
|
||||
.post_message(&data)
|
||||
.expect("Should successfully post data to a Worker");
|
||||
},
|
||||
))
|
||||
pub fn wait_async(ptr: &AtomicI32, value: i32) -> Promise {
|
||||
Promise::new(&mut |resolve, _reject| {
|
||||
let helper = alloc_helper();
|
||||
let helper_ref = helper.clone();
|
||||
|
||||
let onmessage_callback = Closure::once_into_js(move |e: MessageEvent| {
|
||||
// Our helper is done waiting so it's available to wait on a
|
||||
// different location, so return it to the free list.
|
||||
free_helper(helper_ref);
|
||||
drop(resolve.call1(&JsValue::NULL, &e.data()));
|
||||
});
|
||||
helper.set_onmessage(Some(onmessage_callback.as_ref().unchecked_ref()));
|
||||
|
||||
let data = Array::of3(
|
||||
&wasm_bindgen::memory(),
|
||||
&JsValue::from(ptr as *const AtomicI32 as i32 / 4),
|
||||
&JsValue::from(value),
|
||||
);
|
||||
|
||||
helper
|
||||
.post_message(&data)
|
||||
.unwrap_or_else(|js| wasm_bindgen::throw_val(js));
|
||||
})
|
||||
}
|
||||
|
Reference in New Issue
Block a user