Implement AsRef<JsValue> for Closure<T>

This commit adds an implementation of `AsRef<JsValue>` for the `Closure<T>`
type. Previously this was not possible because the `JsValue` didn't actually
exist until the closure was passed to JS, but the implementation has been
changed to ... something a bit more unconventional. The end result, however, is
that `Closure<T>` now always contains a `JsValue`.

The end result of this work is intended to be a precursor to binding callbacks
in `web-sys` as `JsValue` everywhere but still allowing usage with `Closure<T>`.
This commit is contained in:
Alex Crichton
2018-09-05 23:59:49 -07:00
parent cda71757d3
commit 5a3cd893e0
9 changed files with 687 additions and 138 deletions

View File

@ -35,17 +35,22 @@ pub struct Interpreter {
// calculations)
imports: usize,
// Function index of the `__wbindgen_describe` imported function. We special
// case this to know when the environment's imported function is called.
// Function index of the `__wbindgen_describe` and
// `__wbindgen_describe_closure` imported functions. We special case this
// to know when the environment's imported function is called.
describe_idx: Option<u32>,
describe_closure_idx: Option<u32>,
// A mapping of string names to the function index, filled with all exported
// functions.
name_map: HashMap<String, u32>,
// The numerical index of the code section in the wasm module, indexed into
// The numerical index of the sections in the wasm module, indexed into
// the module's list of sections.
code_idx: Option<usize>,
types_idx: Option<usize>,
functions_idx: Option<usize>,
elements_idx: Option<usize>,
// The current stack pointer (global 0) and wasm memory (the stack). Only
// used in a limited capacity.
@ -60,6 +65,18 @@ pub struct Interpreter {
// very specific to wasm-bindgen and is the purpose for the existence of
// this module.
descriptor: Vec<u32>,
// When invoking the `__wbindgen_describe_closure` imported function, this
// stores the last table index argument, used for finding a different
// descriptor.
descriptor_table_idx: Option<u32>,
}
struct Sections<'a> {
code: &'a CodeSection,
types: &'a TypeSection,
functions: &'a FunctionSection,
elements: &'a ElementSection,
}
impl Interpreter {
@ -82,6 +99,9 @@ impl Interpreter {
for (i, s) in module.sections().iter().enumerate() {
match s {
Section::Code(_) => ret.code_idx = Some(i),
Section::Element(_) => ret.elements_idx = Some(i),
Section::Type(_) => ret.types_idx = Some(i),
Section::Function(_) => ret.functions_idx = Some(i),
_ => {}
}
}
@ -101,10 +121,11 @@ impl Interpreter {
if entry.module() != "__wbindgen_placeholder__" {
continue
}
if entry.field() != "__wbindgen_describe" {
continue
if entry.field() == "__wbindgen_describe" {
ret.describe_idx = Some(idx - 1 as u32);
} else if entry.field() == "__wbindgen_describe_closure" {
ret.describe_closure_idx = Some(idx - 1 as u32);
}
ret.describe_idx = Some(idx - 1 as u32);
}
}
@ -142,47 +163,171 @@ impl Interpreter {
///
/// Returns `Some` if `func` was found in the `module` and `None` if it was
/// not found in the `module`.
pub fn interpret(&mut self, func: &str, module: &Module) -> Option<&[u32]> {
self.descriptor.truncate(0);
pub fn interpret_descriptor(
&mut self,
func: &str,
module: &Module,
) -> Option<&[u32]> {
let idx = *self.name_map.get(func)?;
let code = match &module.sections()[self.code_idx.unwrap()] {
Section::Code(s) => s,
_ => panic!(),
};
self.with_sections(module, |me, sections| {
me.interpret_descriptor_idx(idx, sections)
})
}
fn interpret_descriptor_idx(
&mut self,
idx: u32,
sections: &Sections,
) -> Option<&[u32]> {
self.descriptor.truncate(0);
// We should have a blank wasm and LLVM stack at both the start and end
// of the call.
assert_eq!(self.sp, self.mem.len() as i32);
assert_eq!(self.stack.len(), 0);
self.call(idx, code);
self.call(idx, sections);
assert_eq!(self.stack.len(), 0);
assert_eq!(self.sp, self.mem.len() as i32);
Some(&self.descriptor)
}
fn call(&mut self, idx: u32, code: &CodeSection) {
/// Interprets a "closure descriptor", figuring out the signature of the
/// closure that was intended.
///
/// This function will take a `code_idx` which is known to internally
/// execute `__wbindgen_describe_closure` and interpret it. The
/// `wasm-bindgen` crate controls all callers of this internal import. It
/// will then take the index passed to `__wbindgen_describe_closure` and
/// interpret it as a function pointer. This means it'll look up within the
/// element section (function table) which index it points to. Upon finding
/// the relevant entry it'll assume that function is a descriptor function,
/// and then it will execute the descriptor function.
///
/// The returned value is the return value of the descriptor function found.
/// The `entry_removal_list` list is also then populated with an index of
/// the entry in the elements section (and then the index within that
/// section) of the function that needs to be snip'd out.
pub fn interpret_closure_descriptor(
&mut self,
code_idx: usize,
module: &Module,
entry_removal_list: &mut Vec<(usize, usize)>,
) -> Option<&[u32]> {
self.with_sections(module, |me, sections| {
me._interpret_closure_descriptor(code_idx, sections, entry_removal_list)
})
}
fn _interpret_closure_descriptor(
&mut self,
code_idx: usize,
sections: &Sections,
entry_removal_list: &mut Vec<(usize, usize)>,
) -> Option<&[u32]> {
// Call the `code_idx` function. This is an internal `#[inline(never)]`
// whose code is completely controlled by the `wasm-bindgen` crate, so
// it should take two arguments and return one (all of which we don't
// care about here). What we're interested in is that while executing
// this function it'll call `__wbindgen_describe_closure` with an
// argument that we look for.
assert!(self.descriptor_table_idx.is_none());
let closure_descriptor_idx = (code_idx + self.imports) as u32;
self.stack.push(0);
self.stack.push(0);
self.call(closure_descriptor_idx, sections);
assert_eq!(self.stack.len(), 1);
self.stack.pop();
let descriptor_table_idx = self.descriptor_table_idx.take().unwrap();
// After we've got the table index of the descriptor function we're
// interested go take a look in the function table to find what the
// actual index of the function is.
let (entry_idx, offset, entry) = sections.elements.entries()
.iter()
.enumerate()
.filter_map(|(i, entry)| {
let code = entry.offset().code();
if code.len() != 2 {
return None
}
if code[1] != Instruction::End {
return None
}
match code[0] {
Instruction::I32Const(x) => Some((i, x as u32, entry)),
_ => None,
}
})
.find(|(_i, offset, entry)| {
*offset <= descriptor_table_idx &&
descriptor_table_idx < (*offset + entry.members().len() as u32)
})
.expect("failed to find index in table elements");
let idx = (descriptor_table_idx - offset) as usize;
let descriptor_idx = entry.members()[idx];
// This is used later to actually remove the entry from the table, but
// we don't do the removal just yet
entry_removal_list.push((entry_idx, idx));
// And now execute the descriptor!
self.interpret_descriptor_idx(descriptor_idx, sections)
}
/// Returns the function space index of the `__wbindgen_describe_closure`
/// imported function.
pub fn describe_closure_idx(&self) -> Option<u32> {
self.describe_closure_idx
}
fn call(&mut self, idx: u32, sections: &Sections) {
use parity_wasm::elements::Instruction::*;
let idx = idx as usize;
assert!(idx >= self.imports); // can't call imported functions
let body = &code.bodies()[idx - self.imports];
let code_idx = idx - self.imports;
let body = &sections.code.bodies()[code_idx];
// Allocate space for our call frame's local variables. All local
// variables should be of the `i32` type.
assert!(body.locals().len() <= 1, "too many local types");
let locals = body.locals()
let nlocals = body.locals()
.get(0)
.map(|i| {
assert_eq!(i.value_type(), ValueType::I32);
i.count()
})
.unwrap_or(0);
let mut locals = vec![0; locals as usize];
let code_sig = sections.functions.entries()[code_idx].type_ref();
let function_ty = match &sections.types.types()[code_sig as usize] {
Type::Function(t) => t,
};
let mut locals = Vec::with_capacity(function_ty.params().len() + nlocals as usize);
// Any function parameters we have get popped off the stack and put into
// the first few locals ...
for param in function_ty.params() {
assert_eq!(*param, ValueType::I32);
locals.push(self.stack.pop().unwrap());
}
// ... and the remaining locals all start as zero ...
for _ in 0..nlocals {
locals.push(0);
}
// ... and we expect one stack slot at the end if there's a returned
// value
let before = self.stack.len();
let stack_after = match function_ty.return_type() {
Some(t) => {
assert_eq!(t, ValueType::I32);
before + 1
}
None => before,
};
// Actual interpretation loop! We keep track of our stack's length to
// recover it as part of the `Return` instruction, and otherwise this is
// a pretty straightforward interpretation loop.
let before = self.stack.len();
for instr in body.code().elements() {
match instr {
I32Const(x) => self.stack.push(*x),
@ -198,8 +343,14 @@ impl Interpreter {
// Otherwise this is a normal call so we recurse.
if Some(*idx) == self.describe_idx {
self.descriptor.push(self.stack.pop().unwrap() as u32);
} else if Some(*idx) == self.describe_closure_idx {
self.descriptor_table_idx =
Some(self.stack.pop().unwrap() as u32);
assert_eq!(self.stack.pop(), Some(0));
assert_eq!(self.stack.pop(), Some(0));
self.stack.push(0);
} else {
self.call(*idx, code);
self.call(*idx, sections);
}
}
GetGlobal(0) => self.stack.push(self.sp),
@ -223,7 +374,7 @@ impl Interpreter {
let addr = self.stack.pop().unwrap() as u32;
self.stack.push(self.mem[((addr + *offset) as usize) / 4]);
}
Return => self.stack.truncate(before),
Return => self.stack.truncate(stack_after),
End => break,
// All other instructions shouldn't be used by our various
@ -238,6 +389,37 @@ impl Interpreter {
s => panic!("unknown instruction {:?}", s),
}
}
assert_eq!(self.stack.len(), before);
assert_eq!(self.stack.len(), stack_after);
}
fn with_sections<'a, T>(
&'a mut self,
module: &Module,
f: impl FnOnce(&'a mut Self, &Sections) -> T,
) -> T {
macro_rules! access_with_defaults {
($(
let $var: ident = module.sections[self.$field:ident]
($name:ident);
)*) => {$(
let default = Default::default();
let $var = match self.$field {
Some(i) => {
match &module.sections()[i] {
Section::$name(s) => s,
_ => panic!(),
}
}
None => &default,
};
)*}
}
access_with_defaults! {
let code = module.sections[self.code_idx] (Code);
let types = module.sections[self.types_idx] (Type);
let functions = module.sections[self.functions_idx] (Function);
let elements = module.sections[self.elements_idx] (Element);
}
f(self, &Sections { code, types, functions, elements })
}
}