Files
wasm-bindgen/crates/cli-support/src/wit/mod.rs

1445 lines
53 KiB
Rust
Raw Normal View History

First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
use crate::decode;
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
use crate::descriptor::{Descriptor, Function};
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
use crate::descriptors::WasmBindgenDescriptorsSection;
use crate::intrinsic::Intrinsic;
use anyhow::{anyhow, bail, Error};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
use std::collections::HashMap;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
use std::str;
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
use walrus::MemoryId;
use walrus::{ExportId, FunctionId, ImportId, Module};
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
use wasm_bindgen_shared::struct_function_export_name;
const PLACEHOLDER_MODULE: &str = "__wbindgen_placeholder__";
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
mod incoming;
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
mod nonstandard;
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
mod outgoing;
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
pub mod section;
mod standard;
pub use self::nonstandard::*;
pub use self::standard::*;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
struct Context<'a> {
start_found: bool,
module: &'a mut Module,
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
adapters: NonstandardWitSection,
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
aux: WasmBindgenAux,
function_exports: HashMap<String, (ExportId, FunctionId)>,
function_imports: HashMap<String, (ImportId, FunctionId)>,
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
memory: Option<MemoryId>,
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
vendor_prefixes: HashMap<String, Vec<String>>,
unique_crate_identifier: &'a str,
descriptors: HashMap<String, Descriptor>,
anyref_enabled: bool,
Add support for emitting a Wasm Interface Types section This commit adds support to `wasm-bindgen` to emit a WebAssembly module that contains a WebAssembly Interface Types section. As of today there are no native consumers of these WebAssembly modules, and the actual binary format here is basically arbitrary (chosen by the `wasm-webidl-bindings` crate). The intention is that we'll be following the [WebAssembly Interface Types proposal][proposal] very closely and update here as necessary. The main feature added in this PR is that a new experimental environment variable, `WASM_INTERFACE_TYPES=1`, is recognized by the `wasm-bindgen` CLI tool. When present the CLI tool will act differently than it does today: * The `anyref` feature will be implicitly enabled * A WebAssembly interface types section will be emitted in the WebAssembly module * For now, the WebAssembly module is strictly validated to require zero JS glue. This means that `wasm-bindgen` is producing a fully standalone WebAssembly module. The last point here is one that will change before this functionality is stabilized in `wasm-bindgen`. For now it reflects the major use case of this feature which is to produce a standalone WebAssembly module with no support JS glue, and to do that we need to verify properties like it's not using JS global names, nonstandard binding expressions, etc. The error messages here aren't the best but they at least fail compilation at some point instead of silently producing weird wasm modules. Eventually it's envisioned that a WebAssembly module will contain an interface types section but *also* have JS glue so binding expressions can be used when available but otherwise we'd still generate JS glue for things like nonstandard expressions and accessing JS global values. It should be noted that a major feature not implemented in `wasm-bindgen` yet is the multi-value proposal for WebAssembly. This is coming soon (as soon as we can) in `walrus` and later for a pass here, but for now this means that returning multiple values (like a string which has a pointer/length) is a bit of a hack. To enable this use case a `wasm-bindgen`-specific-convention which will never be stabilized is invented here by using binding expression to indicate "this return value is actually returned through an out-ptr as the first argument list". This is a gross hack and is guaranteed to be removed. Eventually we will support multi-value and the wasm module emitted will simply use multi-value and contain internal polyfills for Rust's ABI which returns values through out-ptrs. Overall this should make `wasm-bindgen` usable for playing around with the WebIDL bindings proposal and helping us get a taste of what it looks like to have entirely standalone WebAssembly modules running in multiple environments, no extra fluff necessary! [proposal]: https://github.com/webassembly/webidl-bindings
2019-06-25 01:21:38 -07:00
wasm_interface_types: bool,
support_start: bool,
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
struct InstructionBuilder<'a, 'b> {
input: Vec<AdapterType>,
output: Vec<AdapterType>,
instructions: Vec<InstructionData>,
cx: &'a mut Context<'b>,
return_position: bool,
}
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
pub fn process(
module: &mut Module,
anyref_enabled: bool,
Add support for emitting a Wasm Interface Types section This commit adds support to `wasm-bindgen` to emit a WebAssembly module that contains a WebAssembly Interface Types section. As of today there are no native consumers of these WebAssembly modules, and the actual binary format here is basically arbitrary (chosen by the `wasm-webidl-bindings` crate). The intention is that we'll be following the [WebAssembly Interface Types proposal][proposal] very closely and update here as necessary. The main feature added in this PR is that a new experimental environment variable, `WASM_INTERFACE_TYPES=1`, is recognized by the `wasm-bindgen` CLI tool. When present the CLI tool will act differently than it does today: * The `anyref` feature will be implicitly enabled * A WebAssembly interface types section will be emitted in the WebAssembly module * For now, the WebAssembly module is strictly validated to require zero JS glue. This means that `wasm-bindgen` is producing a fully standalone WebAssembly module. The last point here is one that will change before this functionality is stabilized in `wasm-bindgen`. For now it reflects the major use case of this feature which is to produce a standalone WebAssembly module with no support JS glue, and to do that we need to verify properties like it's not using JS global names, nonstandard binding expressions, etc. The error messages here aren't the best but they at least fail compilation at some point instead of silently producing weird wasm modules. Eventually it's envisioned that a WebAssembly module will contain an interface types section but *also* have JS glue so binding expressions can be used when available but otherwise we'd still generate JS glue for things like nonstandard expressions and accessing JS global values. It should be noted that a major feature not implemented in `wasm-bindgen` yet is the multi-value proposal for WebAssembly. This is coming soon (as soon as we can) in `walrus` and later for a pass here, but for now this means that returning multiple values (like a string which has a pointer/length) is a bit of a hack. To enable this use case a `wasm-bindgen`-specific-convention which will never be stabilized is invented here by using binding expression to indicate "this return value is actually returned through an out-ptr as the first argument list". This is a gross hack and is guaranteed to be removed. Eventually we will support multi-value and the wasm module emitted will simply use multi-value and contain internal polyfills for Rust's ABI which returns values through out-ptrs. Overall this should make `wasm-bindgen` usable for playing around with the WebIDL bindings proposal and helping us get a taste of what it looks like to have entirely standalone WebAssembly modules running in multiple environments, no extra fluff necessary! [proposal]: https://github.com/webassembly/webidl-bindings
2019-06-25 01:21:38 -07:00
wasm_interface_types: bool,
support_start: bool,
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
) -> Result<(NonstandardWitSectionId, WasmBindgenAuxId), Error> {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
let mut storage = Vec::new();
let programs = extract_programs(module, &mut storage)?;
let mut cx = Context {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
adapters: Default::default(),
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
aux: Default::default(),
function_exports: Default::default(),
function_imports: Default::default(),
vendor_prefixes: Default::default(),
descriptors: Default::default(),
unique_crate_identifier: "",
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
memory: wasm_bindgen_wasm_conventions::get_memory(module).ok(),
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
module,
start_found: false,
anyref_enabled,
Add support for emitting a Wasm Interface Types section This commit adds support to `wasm-bindgen` to emit a WebAssembly module that contains a WebAssembly Interface Types section. As of today there are no native consumers of these WebAssembly modules, and the actual binary format here is basically arbitrary (chosen by the `wasm-webidl-bindings` crate). The intention is that we'll be following the [WebAssembly Interface Types proposal][proposal] very closely and update here as necessary. The main feature added in this PR is that a new experimental environment variable, `WASM_INTERFACE_TYPES=1`, is recognized by the `wasm-bindgen` CLI tool. When present the CLI tool will act differently than it does today: * The `anyref` feature will be implicitly enabled * A WebAssembly interface types section will be emitted in the WebAssembly module * For now, the WebAssembly module is strictly validated to require zero JS glue. This means that `wasm-bindgen` is producing a fully standalone WebAssembly module. The last point here is one that will change before this functionality is stabilized in `wasm-bindgen`. For now it reflects the major use case of this feature which is to produce a standalone WebAssembly module with no support JS glue, and to do that we need to verify properties like it's not using JS global names, nonstandard binding expressions, etc. The error messages here aren't the best but they at least fail compilation at some point instead of silently producing weird wasm modules. Eventually it's envisioned that a WebAssembly module will contain an interface types section but *also* have JS glue so binding expressions can be used when available but otherwise we'd still generate JS glue for things like nonstandard expressions and accessing JS global values. It should be noted that a major feature not implemented in `wasm-bindgen` yet is the multi-value proposal for WebAssembly. This is coming soon (as soon as we can) in `walrus` and later for a pass here, but for now this means that returning multiple values (like a string which has a pointer/length) is a bit of a hack. To enable this use case a `wasm-bindgen`-specific-convention which will never be stabilized is invented here by using binding expression to indicate "this return value is actually returned through an out-ptr as the first argument list". This is a gross hack and is guaranteed to be removed. Eventually we will support multi-value and the wasm module emitted will simply use multi-value and contain internal polyfills for Rust's ABI which returns values through out-ptrs. Overall this should make `wasm-bindgen` usable for playing around with the WebIDL bindings proposal and helping us get a taste of what it looks like to have entirely standalone WebAssembly modules running in multiple environments, no extra fluff necessary! [proposal]: https://github.com/webassembly/webidl-bindings
2019-06-25 01:21:38 -07:00
wasm_interface_types,
support_start,
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
};
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
cx.init()?;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
for program in programs {
cx.program(program)?;
}
if !cx.start_found {
cx.discover_main()?;
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
if let Some(standard) = cx.module.customs.delete_typed() {
Add support as a vanilla polyfill of WebIDL bindings This commit adds support to `wasm-bindgen` to be a drop-in polyfill for the WebIDL bindings proposal. Lots of internal refactoring has happened previously to `wasm-bindgen` to make this possible, so this actually ends up being a very small PR! Most of `wasm-bindgen` is geared towards Rust-specific types and Rust-specific support, but with the advent of WebIDL bindings this is a standard way for a WebAssembly module to communicate its intended interface in terms of higher level types. This PR allows `wasm-bindgen` to be a polyfill for any WebAssembly module that has a valid WebIDL bindings section, regardless of its producer. A standard WebIDL bindings section is recognized in any input wasm module and that is slurped up into wasm-bindgen's own internal data structures to get processed in the same way that all Rust imports/exports are already processed. The workflow for `wasm-bindgen` looks the same way that it does in Rust today. You'd execute `wasm-bindgen path/to/foo.wasm --out-dir .` which would output a new wasm file and a JS shim with the desired interface, and the new wasm file would be suitable for loading in MVP implementations of WebAssembly. Note that this isn't super thoroughly tested, so there's likely still some lingering assumptions that `wasm-bindgen` makes (such as `__wbindgen_malloc` and others) which will need to be patched in the future, but the intention of this commit is to start us down a road of becoming a drop-in polyfill for WebIDL bindings, regardless of the source. Also note that there's not actually any producer (AFAIK) of a WebIDL bindings custom section, so it'd be that much harder to write tests to do so!
2019-07-31 11:55:38 -07:00
cx.standard(&standard)?;
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
cx.verify()?;
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
cx.unexport_intrinsics();
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let adapters = cx.module.customs.add(cx.adapters);
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
let aux = cx.module.customs.add(cx.aux);
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
Ok((adapters, aux))
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
impl<'a> Context<'a> {
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
fn init(&mut self) -> Result<(), Error> {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
// Make a map from string name to ids of all exports
for export in self.module.exports.iter() {
if let walrus::ExportItem::Function(f) = export.item {
self.function_exports
.insert(export.name.clone(), (export.id(), f));
}
}
// Make a map from string name to ids of all imports from our
// placeholder module name which we'll want to be sure that we've got a
// location listed of what to import there for each item.
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
let mut intrinsics = Vec::new();
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
for import in self.module.imports.iter() {
if import.module != PLACEHOLDER_MODULE {
continue;
}
if let walrus::ImportKind::Function(f) = import.kind {
self.function_imports
.insert(import.name.clone(), (import.id(), f));
if let Some(intrinsic) = Intrinsic::from_symbol(&import.name) {
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
intrinsics.push((import.id(), intrinsic));
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
}
}
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
for (id, intrinsic) in intrinsics {
self.bind_intrinsic(id, intrinsic)?;
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
self.inject_anyref_initialization()?;
if let Some(custom) = self
.module
.customs
.delete_typed::<WasmBindgenDescriptorsSection>()
{
let WasmBindgenDescriptorsSection {
descriptors,
closure_imports,
} = *custom;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
// Store all the executed descriptors in our own field so we have
// access to them while processing programs.
self.descriptors.extend(descriptors);
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
// Register all the injected closure imports as that they're expected
// to manufacture a particular type of closure.
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
//
// First we register the imported function shim which returns a
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// `JsValue` for the closure. We manufacture this signature
// since it's not listed anywhere.
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
//
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// Next we register the corresponding table element's signature in
// the interface types section. This adapter will later be used to
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
// generate a shim (if necessary) for the table element.
//
// Finally we store all this metadata in the import map which we've
// learned so when a binding for the import is generated we can
// generate all the appropriate shims.
for (id, descriptor) in closure_imports {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let signature = Function {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
shim_idx: 0,
arguments: vec![Descriptor::I32; 3],
ret: Descriptor::Anyref,
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let id = self.import_adapter(id, signature, AdapterJsImportKind::Normal)?;
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
// Synthesize the two integer pointers we pass through which
// aren't present in the signature but are present in the wasm
// signature.
let mut function = descriptor.function.clone();
let nargs = function.arguments.len();
function.arguments.insert(0, Descriptor::I32);
function.arguments.insert(0, Descriptor::I32);
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let adapter = self.table_element_adapter(descriptor.shim_idx, function)?;
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
self.aux.import_map.insert(
id,
AuxImport::Closure {
dtor: descriptor.dtor_idx,
mutable: descriptor.mutable,
nargs,
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
adapter,
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
},
);
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
}
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
Ok(())
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
// Discover a function `main(i32, i32) -> i32` and, if it exists, make that function run at module start.
fn discover_main(&mut self) -> Result<(), Error> {
// find a `main(i32, i32) -> i32`
let main_id = self
.module
.functions()
.find(|x| {
use walrus::ValType::I32;
// name has to be `main`
let name_matches = x.name.as_ref().map_or(false, |x| x == "main");
// type has to be `(i32, i32) -> i32`
let ty = self.module.types.get(x.ty());
let type_matches = ty.params() == [I32, I32] && ty.results() == [I32];
name_matches && type_matches
})
.map(|x| x.id());
let main_id = match main_id {
Some(x) => x,
None => return Ok(()),
};
// build a wrapper to zero out the arguments and ignore the return value
let mut wrapper = walrus::FunctionBuilder::new(&mut self.module.types, &[], &[]);
wrapper
.func_body()
.i32_const(0)
.i32_const(0)
.call(main_id)
.drop()
.return_();
let wrapper = wrapper.finish(vec![], &mut self.module.funcs);
// call that wrapper when the module starts
self.add_start_function(wrapper)?;
Ok(())
}
// Ensure that the `start` function for this module calls the
// `__wbindgen_init_anyref_table` function. This'll ensure that all
// instances of this module have the initial slots of the anyref table
// initialized correctly.
Add support for emitting a Wasm Interface Types section This commit adds support to `wasm-bindgen` to emit a WebAssembly module that contains a WebAssembly Interface Types section. As of today there are no native consumers of these WebAssembly modules, and the actual binary format here is basically arbitrary (chosen by the `wasm-webidl-bindings` crate). The intention is that we'll be following the [WebAssembly Interface Types proposal][proposal] very closely and update here as necessary. The main feature added in this PR is that a new experimental environment variable, `WASM_INTERFACE_TYPES=1`, is recognized by the `wasm-bindgen` CLI tool. When present the CLI tool will act differently than it does today: * The `anyref` feature will be implicitly enabled * A WebAssembly interface types section will be emitted in the WebAssembly module * For now, the WebAssembly module is strictly validated to require zero JS glue. This means that `wasm-bindgen` is producing a fully standalone WebAssembly module. The last point here is one that will change before this functionality is stabilized in `wasm-bindgen`. For now it reflects the major use case of this feature which is to produce a standalone WebAssembly module with no support JS glue, and to do that we need to verify properties like it's not using JS global names, nonstandard binding expressions, etc. The error messages here aren't the best but they at least fail compilation at some point instead of silently producing weird wasm modules. Eventually it's envisioned that a WebAssembly module will contain an interface types section but *also* have JS glue so binding expressions can be used when available but otherwise we'd still generate JS glue for things like nonstandard expressions and accessing JS global values. It should be noted that a major feature not implemented in `wasm-bindgen` yet is the multi-value proposal for WebAssembly. This is coming soon (as soon as we can) in `walrus` and later for a pass here, but for now this means that returning multiple values (like a string which has a pointer/length) is a bit of a hack. To enable this use case a `wasm-bindgen`-specific-convention which will never be stabilized is invented here by using binding expression to indicate "this return value is actually returned through an out-ptr as the first argument list". This is a gross hack and is guaranteed to be removed. Eventually we will support multi-value and the wasm module emitted will simply use multi-value and contain internal polyfills for Rust's ABI which returns values through out-ptrs. Overall this should make `wasm-bindgen` usable for playing around with the WebIDL bindings proposal and helping us get a taste of what it looks like to have entirely standalone WebAssembly modules running in multiple environments, no extra fluff necessary! [proposal]: https://github.com/webassembly/webidl-bindings
2019-06-25 01:21:38 -07:00
//
// Note that this is disabled if WebAssembly interface types are enabled
// since that's a slightly different environment for now which doesn't have
// quite the same initialization.
fn inject_anyref_initialization(&mut self) -> Result<(), Error> {
Add support for emitting a Wasm Interface Types section This commit adds support to `wasm-bindgen` to emit a WebAssembly module that contains a WebAssembly Interface Types section. As of today there are no native consumers of these WebAssembly modules, and the actual binary format here is basically arbitrary (chosen by the `wasm-webidl-bindings` crate). The intention is that we'll be following the [WebAssembly Interface Types proposal][proposal] very closely and update here as necessary. The main feature added in this PR is that a new experimental environment variable, `WASM_INTERFACE_TYPES=1`, is recognized by the `wasm-bindgen` CLI tool. When present the CLI tool will act differently than it does today: * The `anyref` feature will be implicitly enabled * A WebAssembly interface types section will be emitted in the WebAssembly module * For now, the WebAssembly module is strictly validated to require zero JS glue. This means that `wasm-bindgen` is producing a fully standalone WebAssembly module. The last point here is one that will change before this functionality is stabilized in `wasm-bindgen`. For now it reflects the major use case of this feature which is to produce a standalone WebAssembly module with no support JS glue, and to do that we need to verify properties like it's not using JS global names, nonstandard binding expressions, etc. The error messages here aren't the best but they at least fail compilation at some point instead of silently producing weird wasm modules. Eventually it's envisioned that a WebAssembly module will contain an interface types section but *also* have JS glue so binding expressions can be used when available but otherwise we'd still generate JS glue for things like nonstandard expressions and accessing JS global values. It should be noted that a major feature not implemented in `wasm-bindgen` yet is the multi-value proposal for WebAssembly. This is coming soon (as soon as we can) in `walrus` and later for a pass here, but for now this means that returning multiple values (like a string which has a pointer/length) is a bit of a hack. To enable this use case a `wasm-bindgen`-specific-convention which will never be stabilized is invented here by using binding expression to indicate "this return value is actually returned through an out-ptr as the first argument list". This is a gross hack and is guaranteed to be removed. Eventually we will support multi-value and the wasm module emitted will simply use multi-value and contain internal polyfills for Rust's ABI which returns values through out-ptrs. Overall this should make `wasm-bindgen` usable for playing around with the WebIDL bindings proposal and helping us get a taste of what it looks like to have entirely standalone WebAssembly modules running in multiple environments, no extra fluff necessary! [proposal]: https://github.com/webassembly/webidl-bindings
2019-06-25 01:21:38 -07:00
if !self.anyref_enabled || self.wasm_interface_types {
return Ok(());
}
let ty = self.module.types.add(&[], &[]);
2019-08-12 11:28:37 -07:00
let (import, import_id) =
self.module
.add_import_func(PLACEHOLDER_MODULE, "__wbindgen_init_anyref_table", ty);
self.module.start = Some(match self.module.start {
Some(prev_start) => {
let mut builder = walrus::FunctionBuilder::new(&mut self.module.types, &[], &[]);
builder.func_body().call(import).call(prev_start);
builder.finish(Vec::new(), &mut self.module.funcs)
}
None => import,
});
self.bind_intrinsic(import_id, Intrinsic::InitAnyrefTable)?;
Ok(())
}
fn bind_intrinsic(&mut self, id: ImportId, intrinsic: Intrinsic) -> Result<(), Error> {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let id = self.import_adapter(id, intrinsic.signature(), AdapterJsImportKind::Normal)?;
self.aux
.import_map
.insert(id, AuxImport::Intrinsic(intrinsic));
Ok(())
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
fn program(&mut self, program: decode::Program<'a>) -> Result<(), Error> {
self.unique_crate_identifier = program.unique_crate_identifier;
let decode::Program {
exports,
enums,
imports,
structs,
typescript_custom_sections,
local_modules,
inline_js,
unique_crate_identifier,
package_json,
} = program;
for module in local_modules {
// All local modules we find should be unique, but the same module
// may have showed up in a few different blocks. If that's the case
// all the same identifiers should have the same contents.
if let Some(prev) = self
.aux
.local_modules
.insert(module.identifier.to_string(), module.contents.to_string())
{
assert_eq!(prev, module.contents);
}
}
if let Some(s) = package_json {
self.aux.package_jsons.insert(s.into());
}
for export in exports {
self.export(export)?;
}
// Register vendor prefixes for all types before we walk over all the
// imports to ensure that if a vendor prefix is listed somewhere it'll
// apply to all the imports.
for import in imports.iter() {
if let decode::ImportKind::Type(ty) = &import.kind {
if ty.vendor_prefixes.len() == 0 {
continue;
}
self.vendor_prefixes
.entry(ty.name.to_string())
.or_insert(Vec::new())
.extend(ty.vendor_prefixes.iter().map(|s| s.to_string()));
}
}
for import in imports {
self.import(import)?;
}
for enum_ in enums {
self.enum_(enum_)?;
}
for struct_ in structs {
self.struct_(struct_)?;
}
for section in typescript_custom_sections {
self.aux.extra_typescript.push_str(section);
self.aux.extra_typescript.push_str("\n\n");
}
self.aux
.snippets
.entry(unique_crate_identifier.to_string())
.or_insert(Vec::new())
.extend(inline_js.iter().map(|s| s.to_string()));
Ok(())
}
fn export(&mut self, export: decode::Export<'_>) -> Result<(), Error> {
let wasm_name = match &export.class {
Some(class) => struct_function_export_name(class, export.function.name),
None => export.function.name.to_string(),
};
let mut descriptor = match self.descriptors.remove(&wasm_name) {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
None => return Ok(()),
Some(d) => d.unwrap_function(),
};
let (export_id, id) = self.function_exports[&wasm_name];
if export.start {
self.add_start_function(id)?;
}
let kind = match export.class {
Some(class) => {
let class = class.to_string();
match export.method_kind {
decode::MethodKind::Constructor => AuxExportKind::Constructor(class),
decode::MethodKind::Operation(op) => match op.kind {
decode::OperationKind::Getter(f) => {
descriptor.arguments.insert(0, Descriptor::I32);
AuxExportKind::Getter {
class,
field: f.to_string(),
}
}
decode::OperationKind::Setter(f) => {
descriptor.arguments.insert(0, Descriptor::I32);
AuxExportKind::Setter {
class,
field: f.to_string(),
}
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
_ if op.is_static => AuxExportKind::StaticFunction {
class,
name: export.function.name.to_string(),
},
_ => {
descriptor.arguments.insert(0, Descriptor::I32);
AuxExportKind::Method {
class,
name: export.function.name.to_string(),
consumed: export.consumed,
}
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
},
}
}
None => AuxExportKind::Function(export.function.name.to_string()),
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let id = self.export_adapter(export_id, descriptor)?;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
self.aux.export_map.insert(
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
id,
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
AuxExport {
debug_name: wasm_name,
comments: concatenate_comments(&export.comments),
arg_names: Some(export.function.arg_names),
kind,
},
);
Ok(())
}
fn add_start_function(&mut self, id: FunctionId) -> Result<(), Error> {
if self.start_found {
bail!("cannot specify two `start` functions");
}
self.start_found = true;
// Skip this when we're generating tests
if !self.support_start {
return Ok(());
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
let prev_start = match self.module.start {
Some(f) => f,
None => {
self.module.start = Some(id);
return Ok(());
}
};
// Note that we call the previous start function, if any, first. This is
// because the start function currently only shows up when it's injected
// through thread/anyref transforms. These injected start functions need
// to happen before user code, so we always schedule them first.
let mut builder = walrus::FunctionBuilder::new(&mut self.module.types, &[], &[]);
builder.func_body().call(prev_start).call(id);
let new_start = builder.finish(Vec::new(), &mut self.module.funcs);
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
self.module.start = Some(new_start);
Ok(())
}
fn import(&mut self, import: decode::Import<'_>) -> Result<(), Error> {
match &import.kind {
decode::ImportKind::Function(f) => self.import_function(&import, f),
decode::ImportKind::Static(s) => self.import_static(&import, s),
decode::ImportKind::Type(t) => self.import_type(&import, t),
decode::ImportKind::Enum(_) => Ok(()),
}
}
fn import_function(
&mut self,
import: &decode::Import<'_>,
function: &decode::ImportFunction<'_>,
) -> Result<(), Error> {
let decode::ImportFunction {
shim,
catch,
variadic,
method,
structural,
function,
assert_no_shim,
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
} = function;
let (import_id, _id) = match self.function_imports.get(*shim) {
Some(pair) => *pair,
None => return Ok(()),
};
let descriptor = match self.descriptors.remove(*shim) {
None => return Ok(()),
Some(d) => d.unwrap_function(),
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// Perform two functions here. First we're saving off our adapter
// signature, indicating what we think our import is going to be. Next
// we're saving off other metadata indicating where this item is going
// to be imported from. The `import_map` table will record, for each
// import, what is getting hooked up to that slot of the import table
// to the WebAssembly instance.
let (id, import) = match method {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
Some(data) => {
let class = self.determine_import(import, &data.class)?;
match &data.kind {
// NB: `structural` is ignored for constructors since the
// js type isn't expected to change anyway.
decode::MethodKind::Constructor => {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let id = self.import_adapter(
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
import_id,
descriptor,
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
AdapterJsImportKind::Constructor,
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
)?;
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
(id, AuxImport::Value(AuxValue::Bare(class)))
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
decode::MethodKind::Operation(op) => {
let (import, method) =
self.determine_import_op(class, function, *structural, op)?;
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
let kind = if method {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
AdapterJsImportKind::Method
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
} else {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
AdapterJsImportKind::Normal
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
(self.import_adapter(import_id, descriptor, kind)?, import)
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
}
}
// NB: `structural` is ignored for free functions since it's
// expected that the binding isn't changing anyway.
None => {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let id = self.import_adapter(import_id, descriptor, AdapterJsImportKind::Normal)?;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
let name = self.determine_import(import, function.name)?;
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
(id, AuxImport::Value(AuxValue::Bare(name)))
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// Record this for later as it affects JS binding generation, but note
// that this doesn't affect the WebIDL interface at all.
if *variadic {
self.aux.imports_with_variadic.insert(id);
}
// Note that `catch`/`assert_no_shim` is applied not to the import
// itself but to the adapter shim we generated, so fetch that shim id
// and flag it as catch here. This basically just needs to be kept in
// sync with `js/mod.rs`.
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
//
// For `catch` once we see that we'll need an internal intrinsic later
// for JS glue generation, so be sure to find that here.
let adapter = self.adapters.implements.last().unwrap().2;
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
if *catch {
self.aux.imports_with_catch.insert(adapter);
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
if self.aux.exn_store.is_none() {
self.find_exn_store();
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
}
if *assert_no_shim {
self.aux.imports_with_assert_no_shim.insert(adapter);
}
self.aux.import_map.insert(id, import);
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
Ok(())
}
/// The `bool` returned indicates whether the imported value should be
/// invoked as a method (first arg is implicitly `this`) or if the imported
/// value is a simple function-like shim
fn determine_import_op(
&mut self,
mut class: JsImport,
function: &decode::Function<'_>,
structural: bool,
op: &decode::Operation<'_>,
) -> Result<(AuxImport, bool), Error> {
match op.kind {
decode::OperationKind::Regular => {
if op.is_static {
Ok((
AuxImport::ValueWithThis(class, function.name.to_string()),
false,
))
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
} else if structural {
Ok((
AuxImport::StructuralMethod(function.name.to_string()),
false,
))
} else {
class.fields.push("prototype".to_string());
class.fields.push(function.name.to_string());
Ok((AuxImport::Value(AuxValue::Bare(class)), true))
}
}
decode::OperationKind::Getter(field) => {
if structural {
if op.is_static {
Ok((
AuxImport::StructuralClassGetter(class, field.to_string()),
false,
))
} else {
Ok((AuxImport::StructuralGetter(field.to_string()), false))
}
} else {
let val = if op.is_static {
AuxValue::ClassGetter(class, field.to_string())
} else {
AuxValue::Getter(class, field.to_string())
};
Ok((AuxImport::Value(val), true))
}
}
decode::OperationKind::Setter(field) => {
if structural {
if op.is_static {
Ok((
AuxImport::StructuralClassSetter(class, field.to_string()),
false,
))
} else {
Ok((AuxImport::StructuralSetter(field.to_string()), false))
}
} else {
let val = if op.is_static {
AuxValue::ClassSetter(class, field.to_string())
} else {
AuxValue::Setter(class, field.to_string())
};
Ok((AuxImport::Value(val), true))
}
}
decode::OperationKind::IndexingGetter => {
if !structural {
bail!("indexing getters must always be structural");
}
if op.is_static {
Ok((AuxImport::IndexingGetterOfClass(class), false))
} else {
Ok((AuxImport::IndexingGetterOfObject, false))
}
}
decode::OperationKind::IndexingSetter => {
if !structural {
bail!("indexing setters must always be structural");
}
if op.is_static {
Ok((AuxImport::IndexingSetterOfClass(class), false))
} else {
Ok((AuxImport::IndexingSetterOfObject, false))
}
}
decode::OperationKind::IndexingDeleter => {
if !structural {
bail!("indexing deleters must always be structural");
}
if op.is_static {
Ok((AuxImport::IndexingDeleterOfClass(class), false))
} else {
Ok((AuxImport::IndexingDeleterOfObject, false))
}
}
}
}
fn import_static(
&mut self,
import: &decode::Import<'_>,
static_: &decode::ImportStatic<'_>,
) -> Result<(), Error> {
let (import_id, _id) = match self.function_imports.get(static_.shim) {
Some(pair) => *pair,
None => return Ok(()),
};
let descriptor = match self.descriptors.remove(static_.shim) {
None => return Ok(()),
Some(d) => d,
};
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
// Register the signature of this imported shim
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let id = self.import_adapter(
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
import_id,
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
Function {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
arguments: Vec::new(),
shim_idx: 0,
ret: descriptor,
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
},
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
AdapterJsImportKind::Normal,
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
)?;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
// And then save off that this function is is an instanceof shim for an
// imported item.
let import = self.determine_import(import, &static_.name)?;
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
self.aux.import_map.insert(id, AuxImport::Static(import));
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
Ok(())
}
fn import_type(
&mut self,
import: &decode::Import<'_>,
type_: &decode::ImportType<'_>,
) -> Result<(), Error> {
let (import_id, _id) = match self.function_imports.get(type_.instanceof_shim) {
Some(pair) => *pair,
None => return Ok(()),
};
// Register the signature of this imported shim
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let id = self.import_adapter(
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
import_id,
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
Function {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
arguments: vec![Descriptor::Ref(Box::new(Descriptor::Anyref))],
shim_idx: 0,
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
ret: Descriptor::Boolean,
},
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
AdapterJsImportKind::Normal,
Second large refactor for WebIDL bindings This commit is the second, and hopefully last massive, refactor for using WebIDL bindings internally in `wasm-bindgen`. This commit actually fully executes on the task at hand, moving `wasm-bindgen` to internally using WebIDL bindings throughout its code generation, anyref passes, etc. This actually fixes a number of issues that have existed in the anyref pass for some time now! The main changes here are to basically remove the usage of `Descriptor` from generating JS bindings. Instead two new types are introduced: `NonstandardIncoming` and `NonstandardOutgoing` which are bindings lists used for incoming/outgoing bindings. These mirror the standard terminology and literally have variants which are the standard values. All `Descriptor` types are now mapped into lists of incoming/outgoing bindings and used for process in wasm-bindgen. All JS generation has been refactored and updated to now process these lists of bindings instead of the previous `Descriptor`. In other words this commit takes `js2rust.rs` and `rust2js.rs` and first splits them in two. Interpretation of `Descriptor` and what to do for conversions is in the binding selection modules. The actual generation of JS from the binding selection is now performed by `incoming.rs` and `outgoing.rs`. To boot this also deduplicates all the code between the argument handling of `js2rust.rs` and return value handling of `rust2js.rs`. This means that to implement a new binding you only need to implement it one place and it's implemented for free in the other! This commit is not the end of the story though. I would like to add a mdoe to `wasm-bindgen` that literally emits a WebIDL bindings section. That's left for a third (and hopefully final) refactoring which is also intended to optimize generated JS for bindings. This commit currently loses the optimization where an imported is hooked up by value directly whenever a shim isn't needed. It's planned that the next refactoring to emit a webidl binding section that can be added back in. It shouldn't be too too hard hopefully since all the scaffolding is in place now. cc #1524
2019-06-10 07:09:51 -07:00
)?;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
// And then save off that this function is is an instanceof shim for an
// imported item.
let import = self.determine_import(import, &type_.name)?;
self.aux
.import_map
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
.insert(id, AuxImport::Instanceof(import));
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
Ok(())
}
fn enum_(&mut self, enum_: decode::Enum<'_>) -> Result<(), Error> {
let aux = AuxEnum {
name: enum_.name.to_string(),
comments: concatenate_comments(&enum_.comments),
variants: enum_
.variants
.iter()
.map(|v| (v.name.to_string(), v.value))
.collect(),
};
self.aux.enums.push(aux);
Ok(())
}
fn struct_(&mut self, struct_: decode::Struct<'_>) -> Result<(), Error> {
for field in struct_.fields {
let getter = wasm_bindgen_shared::struct_field_get(&struct_.name, &field.name);
let setter = wasm_bindgen_shared::struct_field_set(&struct_.name, &field.name);
let descriptor = match self.descriptors.remove(&getter) {
None => continue,
Some(d) => d,
};
// Register a webidl transformation for the getter
let (getter_id, _) = self.function_exports[&getter];
let getter_descriptor = Function {
arguments: vec![Descriptor::I32],
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
shim_idx: 0,
ret: descriptor.clone(),
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let getter_id = self.export_adapter(getter_id, getter_descriptor)?;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
self.aux.export_map.insert(
getter_id,
AuxExport {
debug_name: format!("getter for `{}::{}`", struct_.name, field.name),
arg_names: None,
comments: concatenate_comments(&field.comments),
kind: AuxExportKind::Getter {
class: struct_.name.to_string(),
field: field.name.to_string(),
},
},
);
// If present, register information for the setter as well.
if field.readonly {
continue;
}
let (setter_id, _) = self.function_exports[&setter];
let setter_descriptor = Function {
arguments: vec![Descriptor::I32, descriptor],
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
shim_idx: 0,
ret: Descriptor::Unit,
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let setter_id = self.export_adapter(setter_id, setter_descriptor)?;
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
self.aux.export_map.insert(
setter_id,
AuxExport {
debug_name: format!("setter for `{}::{}`", struct_.name, field.name),
arg_names: None,
comments: concatenate_comments(&field.comments),
kind: AuxExportKind::Setter {
class: struct_.name.to_string(),
field: field.name.to_string(),
},
},
);
}
let aux = AuxStruct {
name: struct_.name.to_string(),
comments: concatenate_comments(&struct_.comments),
is_inspectable: struct_.is_inspectable,
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
};
self.aux.structs.push(aux);
let wrap_constructor = wasm_bindgen_shared::new_function(struct_.name);
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
if let Some((import_id, _id)) = self.function_imports.get(&wrap_constructor).cloned() {
let signature = Function {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
shim_idx: 0,
arguments: vec![Descriptor::I32],
ret: Descriptor::Anyref,
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
let id = self.import_adapter(import_id, signature, AdapterJsImportKind::Normal)?;
self.aux
.import_map
.insert(id, AuxImport::WrapInExportedClass(struct_.name.to_string()));
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
Ok(())
}
fn determine_import(&self, import: &decode::Import<'_>, item: &str) -> Result<JsImport, Error> {
let is_local_snippet = match import.module {
decode::ImportModule::Named(s) => self.aux.local_modules.contains_key(s),
decode::ImportModule::RawNamed(_) => false,
decode::ImportModule::Inline(_) => true,
decode::ImportModule::None => false,
};
// Similar to `--target no-modules`, only allow vendor prefixes
// basically for web apis, shouldn't be necessary for things like npm
// packages or other imported items.
let vendor_prefixes = self.vendor_prefixes.get(item);
if let Some(vendor_prefixes) = vendor_prefixes {
assert!(vendor_prefixes.len() > 0);
if is_local_snippet {
bail!(
"local JS snippets do not support vendor prefixes for \
the import of `{}` with a polyfill of `{}`",
item,
&vendor_prefixes[0]
);
}
if let decode::ImportModule::Named(module) = &import.module {
bail!(
"import of `{}` from `{}` has a polyfill of `{}` listed, but
vendor prefixes aren't supported when importing from modules",
item,
module,
&vendor_prefixes[0],
);
}
if let Some(ns) = &import.js_namespace {
bail!(
"import of `{}` through js namespace `{}` isn't supported \
right now when it lists a polyfill",
item,
ns
);
}
return Ok(JsImport {
name: JsImportName::VendorPrefixed {
name: item.to_string(),
prefixes: vendor_prefixes.clone(),
},
fields: Vec::new(),
});
}
let (name, fields) = match import.js_namespace {
Some(ns) => (ns, vec![item.to_string()]),
None => (item, Vec::new()),
};
let name = match import.module {
decode::ImportModule::Named(module) if is_local_snippet => JsImportName::LocalModule {
module: module.to_string(),
name: name.to_string(),
},
decode::ImportModule::Named(module) | decode::ImportModule::RawNamed(module) => {
JsImportName::Module {
module: module.to_string(),
name: name.to_string(),
}
}
decode::ImportModule::Inline(idx) => {
let offset = self
.aux
.snippets
.get(self.unique_crate_identifier)
.map(|s| s.len())
.unwrap_or(0);
JsImportName::InlineJs {
unique_crate_identifier: self.unique_crate_identifier.to_string(),
snippet_idx_in_crate: idx as usize + offset,
name: name.to_string(),
}
}
decode::ImportModule::None => JsImportName::Global {
name: name.to_string(),
},
};
Ok(JsImport { name, fields })
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
fn standard(&mut self, std: &wit_walrus::WasmInterfaceTypes) -> Result<(), Error> {
let mut walrus2us = HashMap::new();
let params_and_results = |id: wit_walrus::TypeId| -> (Vec<_>, Vec<_>) {
let ty = std.types.get(id);
let params = ty
.params()
Add support as a vanilla polyfill of WebIDL bindings This commit adds support to `wasm-bindgen` to be a drop-in polyfill for the WebIDL bindings proposal. Lots of internal refactoring has happened previously to `wasm-bindgen` to make this possible, so this actually ends up being a very small PR! Most of `wasm-bindgen` is geared towards Rust-specific types and Rust-specific support, but with the advent of WebIDL bindings this is a standard way for a WebAssembly module to communicate its intended interface in terms of higher level types. This PR allows `wasm-bindgen` to be a polyfill for any WebAssembly module that has a valid WebIDL bindings section, regardless of its producer. A standard WebIDL bindings section is recognized in any input wasm module and that is slurped up into wasm-bindgen's own internal data structures to get processed in the same way that all Rust imports/exports are already processed. The workflow for `wasm-bindgen` looks the same way that it does in Rust today. You'd execute `wasm-bindgen path/to/foo.wasm --out-dir .` which would output a new wasm file and a JS shim with the desired interface, and the new wasm file would be suitable for loading in MVP implementations of WebAssembly. Note that this isn't super thoroughly tested, so there's likely still some lingering assumptions that `wasm-bindgen` makes (such as `__wbindgen_malloc` and others) which will need to be patched in the future, but the intention of this commit is to start us down a road of becoming a drop-in polyfill for WebIDL bindings, regardless of the source. Also note that there's not actually any producer (AFAIK) of a WebIDL bindings custom section, so it'd be that much harder to write tests to do so!
2019-07-31 11:55:38 -07:00
.iter()
.cloned()
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
.map(AdapterType::from_wit)
.collect();
let results = ty
.results()
Add support as a vanilla polyfill of WebIDL bindings This commit adds support to `wasm-bindgen` to be a drop-in polyfill for the WebIDL bindings proposal. Lots of internal refactoring has happened previously to `wasm-bindgen` to make this possible, so this actually ends up being a very small PR! Most of `wasm-bindgen` is geared towards Rust-specific types and Rust-specific support, but with the advent of WebIDL bindings this is a standard way for a WebAssembly module to communicate its intended interface in terms of higher level types. This PR allows `wasm-bindgen` to be a polyfill for any WebAssembly module that has a valid WebIDL bindings section, regardless of its producer. A standard WebIDL bindings section is recognized in any input wasm module and that is slurped up into wasm-bindgen's own internal data structures to get processed in the same way that all Rust imports/exports are already processed. The workflow for `wasm-bindgen` looks the same way that it does in Rust today. You'd execute `wasm-bindgen path/to/foo.wasm --out-dir .` which would output a new wasm file and a JS shim with the desired interface, and the new wasm file would be suitable for loading in MVP implementations of WebAssembly. Note that this isn't super thoroughly tested, so there's likely still some lingering assumptions that `wasm-bindgen` makes (such as `__wbindgen_malloc` and others) which will need to be patched in the future, but the intention of this commit is to start us down a road of becoming a drop-in polyfill for WebIDL bindings, regardless of the source. Also note that there's not actually any producer (AFAIK) of a WebIDL bindings custom section, so it'd be that much harder to write tests to do so!
2019-07-31 11:55:38 -07:00
.iter()
.cloned()
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
.map(AdapterType::from_wit)
.collect();
(params, results)
Add support as a vanilla polyfill of WebIDL bindings This commit adds support to `wasm-bindgen` to be a drop-in polyfill for the WebIDL bindings proposal. Lots of internal refactoring has happened previously to `wasm-bindgen` to make this possible, so this actually ends up being a very small PR! Most of `wasm-bindgen` is geared towards Rust-specific types and Rust-specific support, but with the advent of WebIDL bindings this is a standard way for a WebAssembly module to communicate its intended interface in terms of higher level types. This PR allows `wasm-bindgen` to be a polyfill for any WebAssembly module that has a valid WebIDL bindings section, regardless of its producer. A standard WebIDL bindings section is recognized in any input wasm module and that is slurped up into wasm-bindgen's own internal data structures to get processed in the same way that all Rust imports/exports are already processed. The workflow for `wasm-bindgen` looks the same way that it does in Rust today. You'd execute `wasm-bindgen path/to/foo.wasm --out-dir .` which would output a new wasm file and a JS shim with the desired interface, and the new wasm file would be suitable for loading in MVP implementations of WebAssembly. Note that this isn't super thoroughly tested, so there's likely still some lingering assumptions that `wasm-bindgen` makes (such as `__wbindgen_malloc` and others) which will need to be patched in the future, but the intention of this commit is to start us down a road of becoming a drop-in polyfill for WebIDL bindings, regardless of the source. Also note that there's not actually any producer (AFAIK) of a WebIDL bindings custom section, so it'd be that much harder to write tests to do so!
2019-07-31 11:55:38 -07:00
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// Register all imports, allocating our own id for them and configuring
// where the JS value for the import is coming from.
for import in std.imports.iter() {
let func = std.funcs.get(import.func);
let (params, results) = params_and_results(func.ty);
let id = self.adapters.append(
params,
results,
AdapterKind::Import {
module: import.module.clone(),
name: import.name.clone(),
kind: AdapterJsImportKind::Normal,
},
);
walrus2us.insert(import.func, id);
let js = JsImport {
name: JsImportName::Module {
module: import.module.clone(),
name: import.name.clone(),
},
fields: Vec::new(),
};
let value = AuxValue::Bare(js);
assert!(self
.aux
.import_map
.insert(id, AuxImport::Value(value))
.is_none());
}
Add support as a vanilla polyfill of WebIDL bindings This commit adds support to `wasm-bindgen` to be a drop-in polyfill for the WebIDL bindings proposal. Lots of internal refactoring has happened previously to `wasm-bindgen` to make this possible, so this actually ends up being a very small PR! Most of `wasm-bindgen` is geared towards Rust-specific types and Rust-specific support, but with the advent of WebIDL bindings this is a standard way for a WebAssembly module to communicate its intended interface in terms of higher level types. This PR allows `wasm-bindgen` to be a polyfill for any WebAssembly module that has a valid WebIDL bindings section, regardless of its producer. A standard WebIDL bindings section is recognized in any input wasm module and that is slurped up into wasm-bindgen's own internal data structures to get processed in the same way that all Rust imports/exports are already processed. The workflow for `wasm-bindgen` looks the same way that it does in Rust today. You'd execute `wasm-bindgen path/to/foo.wasm --out-dir .` which would output a new wasm file and a JS shim with the desired interface, and the new wasm file would be suitable for loading in MVP implementations of WebAssembly. Note that this isn't super thoroughly tested, so there's likely still some lingering assumptions that `wasm-bindgen` makes (such as `__wbindgen_malloc` and others) which will need to be patched in the future, but the intention of this commit is to start us down a road of becoming a drop-in polyfill for WebIDL bindings, regardless of the source. Also note that there's not actually any producer (AFAIK) of a WebIDL bindings custom section, so it'd be that much harder to write tests to do so!
2019-07-31 11:55:38 -07:00
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// Register all functions, allocating our own id system for each of the
// functions.
for func in std.funcs.iter() {
if let wit_walrus::FuncKind::Import(_) = func.kind {
continue;
}
let (params, results) = params_and_results(func.ty);
walrus2us.insert(
func.id(),
self.adapters.append(
params,
results,
AdapterKind::Local {
instructions: Vec::new(),
},
),
);
}
// .. and then actually translate all functions using our id mapping,
// now that we're able to remap all the `CallAdapter` instructions.
for func in std.funcs.iter() {
let instrs = match &func.kind {
wit_walrus::FuncKind::Local(instrs) => instrs,
wit_walrus::FuncKind::Import(_) => continue,
};
let instrs = instrs
.iter()
.map(|i| match i {
wit_walrus::Instruction::CallAdapter(f) => {
Instruction::CallAdapter(walrus2us[&f])
}
other => Instruction::Standard(other.clone()),
})
.map(|instr| InstructionData {
instr,
stack_change: StackChange::Unknown,
})
.collect::<Vec<_>>();
// Store the instrs into the adapter function directly.
let adapter = self
.adapters
.adapters
.get_mut(&walrus2us[&func.id()])
.unwrap();
match &mut adapter.kind {
AdapterKind::Local { instructions } => *instructions = instrs,
_ => unreachable!(),
}
}
// next up register all exports, ensuring that our export map says
// what's happening as well for JS
for export in std.exports.iter() {
let id = walrus2us[&export.func];
self.adapters.exports.push((export.name.clone(), id));
let kind = AuxExportKind::Function(export.name.clone());
let export = AuxExport {
debug_name: format!("standard export {:?}", id),
comments: String::new(),
arg_names: None,
kind,
};
assert!(self.aux.export_map.insert(id, export).is_none());
}
// ... and finally the `implements` section
for i in std.implements.iter() {
let import_id = match &self.module.funcs.get(i.core_func).kind {
walrus::FunctionKind::Import(i) => i.import,
_ => panic!("malformed wasm interface typess section"),
};
self.adapters
.implements
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
.push((import_id, i.core_func, walrus2us[&i.adapter_func]));
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
}
Add support as a vanilla polyfill of WebIDL bindings This commit adds support to `wasm-bindgen` to be a drop-in polyfill for the WebIDL bindings proposal. Lots of internal refactoring has happened previously to `wasm-bindgen` to make this possible, so this actually ends up being a very small PR! Most of `wasm-bindgen` is geared towards Rust-specific types and Rust-specific support, but with the advent of WebIDL bindings this is a standard way for a WebAssembly module to communicate its intended interface in terms of higher level types. This PR allows `wasm-bindgen` to be a polyfill for any WebAssembly module that has a valid WebIDL bindings section, regardless of its producer. A standard WebIDL bindings section is recognized in any input wasm module and that is slurped up into wasm-bindgen's own internal data structures to get processed in the same way that all Rust imports/exports are already processed. The workflow for `wasm-bindgen` looks the same way that it does in Rust today. You'd execute `wasm-bindgen path/to/foo.wasm --out-dir .` which would output a new wasm file and a JS shim with the desired interface, and the new wasm file would be suitable for loading in MVP implementations of WebAssembly. Note that this isn't super thoroughly tested, so there's likely still some lingering assumptions that `wasm-bindgen` makes (such as `__wbindgen_malloc` and others) which will need to be patched in the future, but the intention of this commit is to start us down a road of becoming a drop-in polyfill for WebIDL bindings, regardless of the source. Also note that there's not actually any producer (AFAIK) of a WebIDL bindings custom section, so it'd be that much harder to write tests to do so!
2019-07-31 11:55:38 -07:00
Ok(())
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
/// Perform a small verification pass over the module to perform some
/// internal sanity checks.
fn verify(&self) -> Result<(), Error> {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// First up verify that all imports in the wasm module from our
// `$PLACEHOLDER_MODULE` are connected to an adapter via the
// `implements` section.
let mut implemented = HashMap::new();
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
for (core, _, adapter) in self.adapters.implements.iter() {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
implemented.insert(core, adapter);
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
for import in self.module.imports.iter() {
if import.module != PLACEHOLDER_MODULE {
continue;
}
match import.kind {
walrus::ImportKind::Function(_) => {}
_ => bail!("import from `{}` was not a function", PLACEHOLDER_MODULE),
}
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
// These are special intrinsics which were handled in the descriptor
// phase, but we don't have an implementation for them. We don't
// need to error about them in this verification pass though,
// having them lingering in the module is normal.
if import.name == "__wbindgen_describe" || import.name == "__wbindgen_describe_closure"
{
continue;
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
if implemented.remove(&import.id()).is_none() {
bail!("import of `{}` doesn't have an adapter listed", import.name);
}
}
if implemented.len() != 0 {
bail!("more implementations listed than imports");
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// Next up verify that all imported adapter functions have a listing of
// where they're imported from.
let mut imports_counted = 0;
for (id, adapter) in self.adapters.adapters.iter() {
let name = match &adapter.kind {
AdapterKind::Import { name, .. } => name,
AdapterKind::Local { .. } => continue,
};
if !self.aux.import_map.contains_key(id) {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
bail!(
"import of `{}` doesn't have an import map item listed",
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
name
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
);
}
imports_counted += 1;
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// Make sure there's no extraneous adapters that weren't actually
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
// imported in the module.
if self.aux.import_map.len() != imports_counted {
bail!("import map is larger than the number of imports");
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// Make sure the export map and export adapters map contain the same
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
// number of entries.
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
for (_, id) in self.adapters.exports.iter() {
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
if !self.aux.export_map.contains_key(id) {
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
bail!("adapters map has an entry that the export map does not");
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
if self.adapters.exports.len() != self.aux.export_map.len() {
bail!("export map and export adapters map have different sizes");
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
Ok(())
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
/// Creates an import adapter for the `import` which will have the given
/// `signature`.
///
/// Note that the JS function imported will be invoked as `kind`.
fn import_adapter(
&mut self,
import: ImportId,
signature: Function,
kind: AdapterJsImportKind,
) -> Result<AdapterId, Error> {
let import = self.module.imports.get(import);
let (import_module, import_name) = (import.module.clone(), import.name.clone());
let import_id = import.id();
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
let core_id = match import.kind {
walrus::ImportKind::Function(f) => f,
_ => bail!("bound import must be assigned to function"),
};
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
// Process the returned type first to see if it needs an out-pointer. This
// happens if the results of the incoming arguments translated to wasm take
// up more than one type.
let mut ret = self.instruction_builder(true);
ret.incoming(&signature.ret)?;
let uses_retptr = ret.output.len() > 1;
// Process the argument next, allocating space of the return value if one
// was present. Additionally configure the `module` and `adapters` to allow
// usage of closures going out to the import.
let mut args = ret.cx.instruction_builder(false);
if uses_retptr {
args.input.push(AdapterType::I32);
}
for arg in signature.arguments.iter() {
args.outgoing(arg)?;
}
// Build up the list of instructions for our adapter function. We start out
// with all the outgoing instructions which convert all wasm params to the
// desired types to call our import...
let mut instructions = args.instructions;
// ... and then we actually call our import. We synthesize an adapter
// definition for it with the appropriate types here on the fly.
let f = args.cx.adapters.append(
args.output,
ret.input,
AdapterKind::Import {
module: import_module,
name: import_name,
kind,
},
);
instructions.push(InstructionData {
instr: Instruction::CallAdapter(f),
stack_change: StackChange::Unknown,
});
// ... and then we follow up with a conversion of the incoming type
// back to wasm.
instructions.extend(ret.instructions);
// ... and if a return pointer is in use then we need to store the types on
// the stack into the wasm return pointer. Note that we iterate in reverse
// here because the last result is the top value on the stack.
let results = if uses_retptr {
let mem = args.cx.memory()?;
for (i, ty) in ret.output.into_iter().enumerate().rev() {
instructions.push(InstructionData {
instr: Instruction::StoreRetptr { offset: i, ty, mem },
stack_change: StackChange::Modified {
pushed: 0,
popped: 1,
},
});
}
Vec::new()
} else {
ret.output
};
let id = args
.cx
.adapters
.append(args.input, results, AdapterKind::Local { instructions });
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
args.cx.adapters.implements.push((import_id, core_id, id));
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
Ok(f)
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
/// Creates an adapter function for the `export` given to have the
/// `signature` specified.
fn export_adapter(
&mut self,
export: ExportId,
signature: Function,
) -> Result<AdapterId, Error> {
let export = self.module.exports.get(export);
let name = export.name.clone();
// Do the actual heavy lifting elsewhere to generate the `binding`.
let call = Instruction::CallExport(export.id());
let id = self.register_export_adapter(call, signature)?;
self.adapters.exports.push((name, id));
Ok(id)
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
fn table_element_adapter(&mut self, idx: u32, signature: Function) -> Result<AdapterId, Error> {
let call = Instruction::CallTableElement(idx);
// like above, largely just defer the work elsewhere
Ok(self.register_export_adapter(call, signature)?)
}
fn register_export_adapter(
&mut self,
call: Instruction,
signature: Function,
) -> Result<AdapterId, Error> {
// Figure out how to translate all the incoming arguments ...
let mut args = self.instruction_builder(false);
for arg in signature.arguments.iter() {
args.incoming(arg)?;
}
// ... then the returned value being translated back
let mut ret = args.cx.instruction_builder(true);
ret.outgoing(&signature.ret)?;
let uses_retptr = ret.input.len() > 1;
// Our instruction stream starts out with the return pointer as the first
// argument to the wasm function, if one is in use. Then we convert
// everything to wasm types.
//
// After calling the core wasm function we need to load all the return
// pointer arguments if there were any, otherwise we simply convert
// everything into the outgoing arguments.
let mut instructions = Vec::new();
if uses_retptr {
instructions.push(InstructionData {
instr: Instruction::Retptr,
stack_change: StackChange::Modified {
pushed: 1,
popped: 0,
},
});
}
instructions.extend(args.instructions);
instructions.push(InstructionData {
instr: call,
stack_change: StackChange::Unknown,
});
if uses_retptr {
let mem = ret.cx.memory()?;
for (i, ty) in ret.input.into_iter().enumerate() {
instructions.push(InstructionData {
instr: Instruction::LoadRetptr { offset: i, ty, mem },
stack_change: StackChange::Modified {
pushed: 1,
popped: 0,
},
});
}
}
instructions.extend(ret.instructions);
Ok(ret
.cx
.adapters
.append(args.input, ret.output, AdapterKind::Local { instructions }))
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
fn instruction_builder<'b>(&'b mut self, return_position: bool) -> InstructionBuilder<'b, 'a> {
InstructionBuilder {
cx: self,
input: Vec::new(),
output: Vec::new(),
instructions: Vec::new(),
return_position,
}
}
fn malloc(&self) -> Result<FunctionId, Error> {
self.function_exports
.get("__wbindgen_malloc")
.cloned()
.map(|p| p.1)
.ok_or_else(|| anyhow!("failed to find declaration of `__wbindgen_malloc` in module"))
}
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
fn realloc(&self) -> Option<FunctionId> {
self.function_exports
.get("__wbindgen_realloc")
.cloned()
.map(|p| p.1)
}
Rewrite wasm-bindgen with updated interface types proposal (#1882) This commit is a pretty large scale rewrite of the internals of wasm-bindgen. No user-facing changes are expected as a result of this PR, but due to the scale of changes here it's likely inevitable that at least something will break. I'm hoping to get more testing in though before landing! The purpose of this PR is to update wasm-bindgen to the current state of the interface types proposal. The wasm-bindgen tool was last updated when it was still called "WebIDL bindings" so it's been awhile! All support is now based on https://github.com/bytecodealliance/wasm-interface-types which defines parsers/binary format/writers/etc for wasm-interface types. This is a pretty massive PR and unfortunately can't really be split up any more afaik. I don't really expect realistic review of all the code here (or commits), but some high-level changes are: * Interface types now consists of a set of "adapter functions". The IR in wasm-bindgen is modeled the same way not. * Each adapter function has a list of instructions, and these instructions work at a higher level than wasm itself, for example with strings. * The wasm-bindgen tool has a suite of instructions which are specific to it and not present in the standard. (like before with webidl bindings) * The anyref/multi-value transformations are now greatly simplified. They're simply "optimization passes" over adapter functions, removing instructions that are otherwise present. This way we don't have to juggle so much all over the place, and instructions always have the same meaning.
2019-12-03 11:16:44 -06:00
fn free(&self) -> Result<FunctionId, Error> {
self.function_exports
.get("__wbindgen_free")
.cloned()
.map(|p| p.1)
.ok_or_else(|| anyhow!("failed to find declaration of `__wbindgen_free` in module"))
}
fn memory(&self) -> Result<MemoryId, Error> {
self.memory
.ok_or_else(|| anyhow!("failed to find memory declaration in module"))
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
Add reference output tests for JS operations (#1894) * Add reference output tests for JS operations This commit starts adding a test suite which checks in, to the repository, test assertions for both the JS and wasm file outputs of a Rust crate compiled with `#[wasm_bindgen]`. These aren't intended to be exhaustive or large scale tests, but rather micro-tests to help observe the changes in `wasm-bindgen`'s output over time. The motivation for this commit is basically overhauling how all the GC passes work in `wasm-bindgen` today. The reorganization is also included in this commit as well. Previously `wasm-bindgen` would, in an ad-hoc fashion, run the GC passes of `walrus` in a bunch of places to ensure that less "garbage" was seen by future passes. This not only was a source of slowdown but it also was pretty brittle since `wasm-bindgen` kept breaking if extra iteams leaked through. The strategy taken in this commit is to have one precise location for a GC pass, and everything goes through there. This is achieved by: * All internal exports are removed immediately when generating the nonstandard wasm interface types section. Internal exports, intrinsics, and runtime support are all referenced by the various instructions and/or sections that use them. This means that we now have precise tracking of what an adapter uses. * This in turn enables us to implement the `add_gc_roots` function for `walrus` custom sections, which in turn allows walrus GC passes to do what `unexport_unused_intrinsics` did before. That function is now no longer necessary, but effectively works the same way. All intrinsics are unexported at the beginning and then they're selectively re-imported and re-exported through the JS glue generation pass as necessary and defined by the bindings. * Passes like the `anyref` pass are now much more precise about the intrinsics that they work with. The `anyref` pass also deletes any internal intrinsics found and also does some rewriting of the adapters aftewards now to hook up calls to the heap count import to the heap count intrinsic in the wasm module. * Fix handling of __wbindgen_realloc The final user of the `require_internal_export` function was `__wbindgen_realloc`. This usage has now been removed by updating how we handle usage of the `realloc` function. The wasm interface types standard doesn't have a `realloc` function slot, nor do I think it ever will. This means that as a polyfill for wasm interface types we'll always have to support the lack of `realloc`. For direct Rust to JS, however, we can still optionally handle `realloc`. This is all handled with a few internal changes. * Custom `StringToMemory` instructions now exist. These have an extra `realloc` slot to store an intrinsic, if found. * Our custom instructions are lowered to the standard instructions when generating an interface types section. * The `realloc` function, if present, is passed as an argument like the malloc function when passing strings to wasm. If it's not present we use a slower fallback, but if it's present we use the faster implementation. This should mean that there's little-to-no impact on existing users of `wasm-bindgen`, but this should continue to still work for wasm interface types polyfills and such. Additionally the GC passes now work in that they don't delete `__wbindgen_realloc` which we later try to reference. * Add an empty test for the anyref pass * Precisely track I32FromOptionAnyref's dependencies This depends on the anyref table and a function to allocate an index if the anyref pass is running, so be sure to track that in the instruction itself for GC rooting. * Trim extraneous exports from nop anyref module Or if you're otherwise not using anyref slices, don't force some intrinsics to exist. * Remove globals from reference tests Looks like these values adjust in slight but insignificant ways over time * Update the anyref xform tests
2019-12-04 12:01:39 -06:00
/// Removes the export item for all `__wbindgen` intrinsics which are
/// generally only purely internal helpers.
///
/// References to these functions are preserved through adapter instructions
/// if necessary, otherwise they can all be gc'd out. By the time this
/// function is called our discovery of these intrinsics has completed and
/// there's no need to keep around these exports.
fn unexport_intrinsics(&mut self) {
let mut to_remove = Vec::new();
for export in self.module.exports.iter() {
match export.name.as_str() {
n if n.starts_with("__wbindgen") => {
to_remove.push(export.id());
}
_ => {}
}
}
for id in to_remove {
self.module.exports.delete(id);
}
}
/// Attempts to locate the `__wbindgen_exn_store` intrinsic and stores it in
/// our auxiliary information.
///
/// This is only invoked if the intrinsic will actually be needed for JS
/// glue generation somewhere.
fn find_exn_store(&mut self) {
self.aux.exn_store = self
.module
.exports
.iter()
.find(|e| e.name == "__wbindgen_exn_store")
.and_then(|e| match e.item {
walrus::ExportItem::Function(f) => Some(f),
_ => None,
});
}
First refactor for WebIDL bindings This commit starts the `wasm-bindgen` CLI tool down the road to being a true polyfill for WebIDL bindings. This refactor is probably the first of a few, but is hopefully the largest and most sprawling and everything will be a bit more targeted from here on out. The goal of this refactoring is to separate out the massive `crates/cli-support/src/js/mod.rs` into a number of separate pieces of functionality. It currently takes care of basically everything including: * Binding intrinsics * Handling anyref transformations * Generating all JS for imports/exports * All the logic for how to import and how to name imports * Execution and management of wasm-bindgen closures Many of these are separable concerns and most overlap with WebIDL bindings. The internal refactoring here is intended to make it more clear who's responsible for what as well as making some existing operations much more straightforward. At a high-level, the following changes are done: 1. A `src/webidl.rs` module is introduced. The purpose of this module is to take all of the raw wasm-bindgen custom sections from the module and transform them into a WebIDL bindings section. This module has a placeholder `WebidlCustomSection` which is nowhere near the actual custom section but if you squint is in theory very similar. It's hoped that this will eventually become the true WebIDL custom section, currently being developed in an external crate. Currently, however, the WebIDL bindings custom section only covers a subset of the functionality we export to wasm-bindgen users. To avoid leaving them high and dry this module also contains an auxiliary custom section named `WasmBindgenAux`. This custom section isn't intended to have a binary format, but is intended to represent a theoretical custom section necessary to couple with WebIDL bindings to achieve all our desired functionality in `wasm-bindgen`. It'll never be standardized, but it'll also never be serialized :) 2. The `src/webidl.rs` module now takes over quite a bit of functionality from `src/js/mod.rs`. Namely it handles synthesis of an `export_map` and an `import_map` mapping export/import IDs to exactly what's expected to be hooked up there. This does not include type information (as that's in the bindings section) but rather includes things like "this is the method of class A" or "this import is from module `foo`" and things like that. These could arguably be subsumed by future JS features as well, but that's for another time! 3. All handling of wasm-bindgen "descriptor functions" now happens in a dedicated `src/descriptors.rs` module. The output of this module is its own custom section (intended to be immediately consumed by the WebIDL module) which is in theory what we want to ourselves emit one day but rustc isn't capable of doing so right now. 4. Invocations and generations of imports are completely overhauled. Using the `import_map` generated in the WebIDL step all imports are now handled much more precisely in one location rather than haphazardly throughout the module. This means we have precise information about each import of the module and we only modify exactly what we're looking at. This also vastly simplifies intrinsic generation since it's all simply a codegen part of the `rust2js.rs` module now. 5. Handling of direct imports which don't have a JS shim generated is slightly different from before and is intended to be future-compatible with WebIDL bindings in its full glory, but we'll need to update it to handle cases for constructors and method calls eventually as well. 6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`) and have a separated definition for their symbol name and signature. The actual implementation of each intrinsic lives in `rust2js.rs` There's a number of TODO items to finish before this merges. This includes reimplementing the anyref pass and actually implementing import maps for other targets. Those will come soon in follow-up commits, but the entire `tests/wasm/main.rs` suite is currently passing and this seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
}
fn extract_programs<'a>(
module: &mut Module,
program_storage: &'a mut Vec<Vec<u8>>,
) -> Result<Vec<decode::Program<'a>>, Error> {
let my_version = wasm_bindgen_shared::version();
assert!(program_storage.is_empty());
while let Some(raw) = module.customs.remove_raw("__wasm_bindgen_unstable") {
log::debug!(
"custom section '{}' looks like a wasm bindgen section",
raw.name
);
program_storage.push(raw.data);
}
let mut ret = Vec::new();
for program in program_storage.iter() {
let mut payload = &program[..];
while let Some(data) = get_remaining(&mut payload) {
// Historical versions of wasm-bindgen have used JSON as the custom
// data section format. Newer versions, however, are using a custom
// serialization protocol that looks much more like the wasm spec.
//
// We, however, want a sanity check to ensure that if we're running
// against the wrong wasm-bindgen we get a nicer error than an
// internal decode error. To that end we continue to verify a tiny
// bit of json at the beginning of each blob before moving to the
// next blob. This should keep us compatible with older wasm-bindgen
// instances as well as forward-compatible for now.
//
// Note, though, that as `wasm-pack` picks up steam it's hoped we
// can just delete this entirely. The `wasm-pack` project already
// manages versions for us, so we in theory should need this check
// less and less over time.
if let Some(their_version) = verify_schema_matches(data)? {
bail!(
"
it looks like the Rust project used to create this wasm file was linked against
a different version of wasm-bindgen than this binary:
rust wasm file: {}
this binary: {}
Currently the bindgen format is unstable enough that these two version must
exactly match, so it's required that these two version are kept in sync by
either updating the wasm-bindgen dependency or this binary. You should be able
to update the wasm-bindgen dependency with:
cargo update -p wasm-bindgen
or you can update the binary with
cargo install -f wasm-bindgen-cli
if this warning fails to go away though and you're not sure what to do feel free
to open an issue at https://github.com/rustwasm/wasm-bindgen/issues!
",
their_version,
my_version,
);
}
let next = get_remaining(&mut payload).unwrap();
log::debug!("found a program of length {}", next.len());
ret.push(<decode::Program as decode::Decode>::decode_all(next));
}
}
Ok(ret)
}
fn get_remaining<'a>(data: &mut &'a [u8]) -> Option<&'a [u8]> {
if data.len() == 0 {
return None;
}
let len = ((data[0] as usize) << 0)
| ((data[1] as usize) << 8)
| ((data[2] as usize) << 16)
| ((data[3] as usize) << 24);
let (a, b) = data[4..].split_at(len);
*data = b;
Some(a)
}
fn verify_schema_matches<'a>(data: &'a [u8]) -> Result<Option<&'a str>, Error> {
macro_rules! bad {
() => {
bail!("failed to decode what looked like wasm-bindgen data")
};
}
let data = match str::from_utf8(data) {
Ok(s) => s,
Err(_) => bad!(),
};
log::debug!("found version specifier {}", data);
if !data.starts_with("{") || !data.ends_with("}") {
bad!()
}
let needle = "\"schema_version\":\"";
let rest = match data.find(needle) {
Some(i) => &data[i + needle.len()..],
None => bad!(),
};
let their_schema_version = match rest.find("\"") {
Some(i) => &rest[..i],
None => bad!(),
};
if their_schema_version == wasm_bindgen_shared::SCHEMA_VERSION {
return Ok(None);
}
let needle = "\"version\":\"";
let rest = match data.find(needle) {
Some(i) => &data[i + needle.len()..],
None => bad!(),
};
let their_version = match rest.find("\"") {
Some(i) => &rest[..i],
None => bad!(),
};
Ok(Some(their_version))
}
fn concatenate_comments(comments: &[&str]) -> String {
comments
.iter()
.map(|s| s.trim_matches('"'))
.collect::<Vec<_>>()
.join("\n")
}