Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
use std::char;
|
|
|
|
|
|
|
|
macro_rules! tys {
|
|
|
|
($($a:ident)*) => (tys! { @ ($($a)*) 0 });
|
|
|
|
(@ () $v:expr) => {};
|
|
|
|
(@ ($a:ident $($b:ident)*) $v:expr) => {
|
|
|
|
const $a: u32 = $v;
|
|
|
|
tys!(@ ($($b)*) $v+1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// NB: this list must be kept in sync with `src/describe.rs`
|
|
|
|
tys! {
|
|
|
|
I8
|
|
|
|
U8
|
|
|
|
I16
|
|
|
|
U16
|
|
|
|
I32
|
|
|
|
U32
|
|
|
|
I64
|
|
|
|
U64
|
|
|
|
F32
|
|
|
|
F64
|
|
|
|
BOOLEAN
|
|
|
|
FUNCTION
|
|
|
|
CLOSURE
|
|
|
|
STRING
|
|
|
|
REF
|
|
|
|
REFMUT
|
|
|
|
SLICE
|
|
|
|
VECTOR
|
|
|
|
ANYREF
|
|
|
|
ENUM
|
|
|
|
RUST_STRUCT
|
2018-05-22 12:34:41 -05:00
|
|
|
CHAR
|
2018-07-19 14:44:23 -05:00
|
|
|
OPTIONAL
|
2018-09-17 18:26:45 -07:00
|
|
|
UNIT
|
2018-09-24 13:49:12 -07:00
|
|
|
CLAMPED
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
}
|
|
|
|
|
First refactor for WebIDL bindings
This commit starts the `wasm-bindgen` CLI tool down the road to being a
true polyfill for WebIDL bindings. This refactor is probably the first
of a few, but is hopefully the largest and most sprawling and everything
will be a bit more targeted from here on out.
The goal of this refactoring is to separate out the massive
`crates/cli-support/src/js/mod.rs` into a number of separate pieces of
functionality. It currently takes care of basically everything
including:
* Binding intrinsics
* Handling anyref transformations
* Generating all JS for imports/exports
* All the logic for how to import and how to name imports
* Execution and management of wasm-bindgen closures
Many of these are separable concerns and most overlap with WebIDL
bindings. The internal refactoring here is intended to make it more
clear who's responsible for what as well as making some existing
operations much more straightforward. At a high-level, the following
changes are done:
1. A `src/webidl.rs` module is introduced. The purpose of this module is
to take all of the raw wasm-bindgen custom sections from the module
and transform them into a WebIDL bindings section.
This module has a placeholder `WebidlCustomSection` which is nowhere
near the actual custom section but if you squint is in theory very
similar. It's hoped that this will eventually become the true WebIDL
custom section, currently being developed in an external crate.
Currently, however, the WebIDL bindings custom section only covers a
subset of the functionality we export to wasm-bindgen users. To avoid
leaving them high and dry this module also contains an auxiliary
custom section named `WasmBindgenAux`. This custom section isn't
intended to have a binary format, but is intended to represent a
theoretical custom section necessary to couple with WebIDL bindings to
achieve all our desired functionality in `wasm-bindgen`. It'll never
be standardized, but it'll also never be serialized :)
2. The `src/webidl.rs` module now takes over quite a bit of
functionality from `src/js/mod.rs`. Namely it handles synthesis of an
`export_map` and an `import_map` mapping export/import IDs to exactly
what's expected to be hooked up there. This does not include type
information (as that's in the bindings section) but rather includes
things like "this is the method of class A" or "this import is from
module `foo`" and things like that. These could arguably be subsumed
by future JS features as well, but that's for another time!
3. All handling of wasm-bindgen "descriptor functions" now happens in a
dedicated `src/descriptors.rs` module. The output of this module is
its own custom section (intended to be immediately consumed by the
WebIDL module) which is in theory what we want to ourselves emit one
day but rustc isn't capable of doing so right now.
4. Invocations and generations of imports are completely overhauled.
Using the `import_map` generated in the WebIDL step all imports are
now handled much more precisely in one location rather than
haphazardly throughout the module. This means we have precise
information about each import of the module and we only modify
exactly what we're looking at. This also vastly simplifies intrinsic
generation since it's all simply a codegen part of the `rust2js.rs`
module now.
5. Handling of direct imports which don't have a JS shim generated is
slightly different from before and is intended to be
future-compatible with WebIDL bindings in its full glory, but we'll
need to update it to handle cases for constructors and method calls
eventually as well.
6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`)
and have a separated definition for their symbol name and signature.
The actual implementation of each intrinsic lives in `rust2js.rs`
There's a number of TODO items to finish before this merges. This
includes reimplementing the anyref pass and actually implementing import
maps for other targets. Those will come soon in follow-up commits, but
the entire `tests/wasm/main.rs` suite is currently passing and this
seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
|
|
|
#[derive(Debug, Clone)]
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
pub enum Descriptor {
|
|
|
|
I8,
|
|
|
|
U8,
|
2019-06-11 11:51:36 -07:00
|
|
|
ClampedU8,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
I16,
|
|
|
|
U16,
|
|
|
|
I32,
|
|
|
|
U32,
|
|
|
|
I64,
|
|
|
|
U64,
|
|
|
|
F32,
|
|
|
|
F64,
|
|
|
|
Boolean,
|
|
|
|
Function(Box<Function>),
|
2018-04-17 11:29:03 -07:00
|
|
|
Closure(Box<Closure>),
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
Ref(Box<Descriptor>),
|
|
|
|
RefMut(Box<Descriptor>),
|
|
|
|
Slice(Box<Descriptor>),
|
|
|
|
Vector(Box<Descriptor>),
|
|
|
|
String,
|
|
|
|
Anyref,
|
2019-01-28 14:12:02 -08:00
|
|
|
Enum { hole: u32 },
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
RustStruct(String),
|
2018-05-22 12:34:41 -05:00
|
|
|
Char,
|
2018-07-19 14:44:23 -05:00
|
|
|
Option(Box<Descriptor>),
|
2018-09-17 18:26:45 -07:00
|
|
|
Unit,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
}
|
|
|
|
|
First refactor for WebIDL bindings
This commit starts the `wasm-bindgen` CLI tool down the road to being a
true polyfill for WebIDL bindings. This refactor is probably the first
of a few, but is hopefully the largest and most sprawling and everything
will be a bit more targeted from here on out.
The goal of this refactoring is to separate out the massive
`crates/cli-support/src/js/mod.rs` into a number of separate pieces of
functionality. It currently takes care of basically everything
including:
* Binding intrinsics
* Handling anyref transformations
* Generating all JS for imports/exports
* All the logic for how to import and how to name imports
* Execution and management of wasm-bindgen closures
Many of these are separable concerns and most overlap with WebIDL
bindings. The internal refactoring here is intended to make it more
clear who's responsible for what as well as making some existing
operations much more straightforward. At a high-level, the following
changes are done:
1. A `src/webidl.rs` module is introduced. The purpose of this module is
to take all of the raw wasm-bindgen custom sections from the module
and transform them into a WebIDL bindings section.
This module has a placeholder `WebidlCustomSection` which is nowhere
near the actual custom section but if you squint is in theory very
similar. It's hoped that this will eventually become the true WebIDL
custom section, currently being developed in an external crate.
Currently, however, the WebIDL bindings custom section only covers a
subset of the functionality we export to wasm-bindgen users. To avoid
leaving them high and dry this module also contains an auxiliary
custom section named `WasmBindgenAux`. This custom section isn't
intended to have a binary format, but is intended to represent a
theoretical custom section necessary to couple with WebIDL bindings to
achieve all our desired functionality in `wasm-bindgen`. It'll never
be standardized, but it'll also never be serialized :)
2. The `src/webidl.rs` module now takes over quite a bit of
functionality from `src/js/mod.rs`. Namely it handles synthesis of an
`export_map` and an `import_map` mapping export/import IDs to exactly
what's expected to be hooked up there. This does not include type
information (as that's in the bindings section) but rather includes
things like "this is the method of class A" or "this import is from
module `foo`" and things like that. These could arguably be subsumed
by future JS features as well, but that's for another time!
3. All handling of wasm-bindgen "descriptor functions" now happens in a
dedicated `src/descriptors.rs` module. The output of this module is
its own custom section (intended to be immediately consumed by the
WebIDL module) which is in theory what we want to ourselves emit one
day but rustc isn't capable of doing so right now.
4. Invocations and generations of imports are completely overhauled.
Using the `import_map` generated in the WebIDL step all imports are
now handled much more precisely in one location rather than
haphazardly throughout the module. This means we have precise
information about each import of the module and we only modify
exactly what we're looking at. This also vastly simplifies intrinsic
generation since it's all simply a codegen part of the `rust2js.rs`
module now.
5. Handling of direct imports which don't have a JS shim generated is
slightly different from before and is intended to be
future-compatible with WebIDL bindings in its full glory, but we'll
need to update it to handle cases for constructors and method calls
eventually as well.
6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`)
and have a separated definition for their symbol name and signature.
The actual implementation of each intrinsic lives in `rust2js.rs`
There's a number of TODO items to finish before this merges. This
includes reimplementing the anyref pass and actually implementing import
maps for other targets. Those will come soon in follow-up commits, but
the entire `tests/wasm/main.rs` suite is currently passing and this
seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
|
|
|
#[derive(Debug, Clone)]
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
pub struct Function {
|
|
|
|
pub arguments: Vec<Descriptor>,
|
2018-11-29 12:01:16 -08:00
|
|
|
pub shim_idx: u32,
|
2018-09-17 18:26:45 -07:00
|
|
|
pub ret: Descriptor,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
}
|
|
|
|
|
First refactor for WebIDL bindings
This commit starts the `wasm-bindgen` CLI tool down the road to being a
true polyfill for WebIDL bindings. This refactor is probably the first
of a few, but is hopefully the largest and most sprawling and everything
will be a bit more targeted from here on out.
The goal of this refactoring is to separate out the massive
`crates/cli-support/src/js/mod.rs` into a number of separate pieces of
functionality. It currently takes care of basically everything
including:
* Binding intrinsics
* Handling anyref transformations
* Generating all JS for imports/exports
* All the logic for how to import and how to name imports
* Execution and management of wasm-bindgen closures
Many of these are separable concerns and most overlap with WebIDL
bindings. The internal refactoring here is intended to make it more
clear who's responsible for what as well as making some existing
operations much more straightforward. At a high-level, the following
changes are done:
1. A `src/webidl.rs` module is introduced. The purpose of this module is
to take all of the raw wasm-bindgen custom sections from the module
and transform them into a WebIDL bindings section.
This module has a placeholder `WebidlCustomSection` which is nowhere
near the actual custom section but if you squint is in theory very
similar. It's hoped that this will eventually become the true WebIDL
custom section, currently being developed in an external crate.
Currently, however, the WebIDL bindings custom section only covers a
subset of the functionality we export to wasm-bindgen users. To avoid
leaving them high and dry this module also contains an auxiliary
custom section named `WasmBindgenAux`. This custom section isn't
intended to have a binary format, but is intended to represent a
theoretical custom section necessary to couple with WebIDL bindings to
achieve all our desired functionality in `wasm-bindgen`. It'll never
be standardized, but it'll also never be serialized :)
2. The `src/webidl.rs` module now takes over quite a bit of
functionality from `src/js/mod.rs`. Namely it handles synthesis of an
`export_map` and an `import_map` mapping export/import IDs to exactly
what's expected to be hooked up there. This does not include type
information (as that's in the bindings section) but rather includes
things like "this is the method of class A" or "this import is from
module `foo`" and things like that. These could arguably be subsumed
by future JS features as well, but that's for another time!
3. All handling of wasm-bindgen "descriptor functions" now happens in a
dedicated `src/descriptors.rs` module. The output of this module is
its own custom section (intended to be immediately consumed by the
WebIDL module) which is in theory what we want to ourselves emit one
day but rustc isn't capable of doing so right now.
4. Invocations and generations of imports are completely overhauled.
Using the `import_map` generated in the WebIDL step all imports are
now handled much more precisely in one location rather than
haphazardly throughout the module. This means we have precise
information about each import of the module and we only modify
exactly what we're looking at. This also vastly simplifies intrinsic
generation since it's all simply a codegen part of the `rust2js.rs`
module now.
5. Handling of direct imports which don't have a JS shim generated is
slightly different from before and is intended to be
future-compatible with WebIDL bindings in its full glory, but we'll
need to update it to handle cases for constructors and method calls
eventually as well.
6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`)
and have a separated definition for their symbol name and signature.
The actual implementation of each intrinsic lives in `rust2js.rs`
There's a number of TODO items to finish before this merges. This
includes reimplementing the anyref pass and actually implementing import
maps for other targets. Those will come soon in follow-up commits, but
the entire `tests/wasm/main.rs` suite is currently passing and this
seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
|
|
|
#[derive(Debug, Clone)]
|
2018-04-17 11:29:03 -07:00
|
|
|
pub struct Closure {
|
2018-11-29 12:01:16 -08:00
|
|
|
pub shim_idx: u32,
|
|
|
|
pub dtor_idx: u32,
|
2018-04-17 11:29:03 -07:00
|
|
|
pub function: Function,
|
|
|
|
pub mutable: bool,
|
|
|
|
}
|
|
|
|
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
#[derive(Copy, Clone)]
|
|
|
|
pub enum VectorKind {
|
|
|
|
I8,
|
|
|
|
U8,
|
2018-09-24 13:49:12 -07:00
|
|
|
ClampedU8,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
I16,
|
|
|
|
U16,
|
|
|
|
I32,
|
|
|
|
U32,
|
2018-05-05 14:10:25 -07:00
|
|
|
I64,
|
|
|
|
U64,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
F32,
|
|
|
|
F64,
|
|
|
|
String,
|
|
|
|
Anyref,
|
|
|
|
}
|
|
|
|
|
2019-03-26 17:29:53 -07:00
|
|
|
pub struct Number {
|
|
|
|
u32: bool,
|
|
|
|
}
|
|
|
|
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
impl Descriptor {
|
|
|
|
pub fn decode(mut data: &[u32]) -> Descriptor {
|
2019-06-11 11:51:36 -07:00
|
|
|
let descriptor = Descriptor::_decode(&mut data, false);
|
2018-08-19 17:07:30 -07:00
|
|
|
assert!(data.is_empty(), "remaining data {:?}", data);
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
descriptor
|
|
|
|
}
|
|
|
|
|
2019-06-11 11:51:36 -07:00
|
|
|
fn _decode(data: &mut &[u32], clamped: bool) -> Descriptor {
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
match get(data) {
|
|
|
|
I8 => Descriptor::I8,
|
|
|
|
I16 => Descriptor::I16,
|
|
|
|
I32 => Descriptor::I32,
|
|
|
|
I64 => Descriptor::I64,
|
2019-06-11 11:51:36 -07:00
|
|
|
U8 if clamped => Descriptor::ClampedU8,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
U8 => Descriptor::U8,
|
|
|
|
U16 => Descriptor::U16,
|
|
|
|
U32 => Descriptor::U32,
|
|
|
|
U64 => Descriptor::U64,
|
|
|
|
F32 => Descriptor::F32,
|
|
|
|
F64 => Descriptor::F64,
|
|
|
|
BOOLEAN => Descriptor::Boolean,
|
|
|
|
FUNCTION => Descriptor::Function(Box::new(Function::decode(data))),
|
2018-04-17 11:29:03 -07:00
|
|
|
CLOSURE => Descriptor::Closure(Box::new(Closure::decode(data))),
|
2019-06-11 11:51:36 -07:00
|
|
|
REF => Descriptor::Ref(Box::new(Descriptor::_decode(data, clamped))),
|
|
|
|
REFMUT => Descriptor::RefMut(Box::new(Descriptor::_decode(data, clamped))),
|
|
|
|
SLICE => Descriptor::Slice(Box::new(Descriptor::_decode(data, clamped))),
|
|
|
|
VECTOR => Descriptor::Vector(Box::new(Descriptor::_decode(data, clamped))),
|
|
|
|
OPTIONAL => Descriptor::Option(Box::new(Descriptor::_decode(data, clamped))),
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
STRING => Descriptor::String,
|
|
|
|
ANYREF => Descriptor::Anyref,
|
2019-01-28 14:12:02 -08:00
|
|
|
ENUM => Descriptor::Enum { hole: get(data) },
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
RUST_STRUCT => {
|
|
|
|
let name = (0..get(data))
|
|
|
|
.map(|_| char::from_u32(get(data)).unwrap())
|
|
|
|
.collect();
|
|
|
|
Descriptor::RustStruct(name)
|
|
|
|
}
|
2018-05-22 12:34:41 -05:00
|
|
|
CHAR => Descriptor::Char,
|
2018-09-17 18:26:45 -07:00
|
|
|
UNIT => Descriptor::Unit,
|
2019-06-11 11:51:36 -07:00
|
|
|
CLAMPED => Descriptor::_decode(data, true),
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
other => panic!("unknown descriptor: {}", other),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
First refactor for WebIDL bindings
This commit starts the `wasm-bindgen` CLI tool down the road to being a
true polyfill for WebIDL bindings. This refactor is probably the first
of a few, but is hopefully the largest and most sprawling and everything
will be a bit more targeted from here on out.
The goal of this refactoring is to separate out the massive
`crates/cli-support/src/js/mod.rs` into a number of separate pieces of
functionality. It currently takes care of basically everything
including:
* Binding intrinsics
* Handling anyref transformations
* Generating all JS for imports/exports
* All the logic for how to import and how to name imports
* Execution and management of wasm-bindgen closures
Many of these are separable concerns and most overlap with WebIDL
bindings. The internal refactoring here is intended to make it more
clear who's responsible for what as well as making some existing
operations much more straightforward. At a high-level, the following
changes are done:
1. A `src/webidl.rs` module is introduced. The purpose of this module is
to take all of the raw wasm-bindgen custom sections from the module
and transform them into a WebIDL bindings section.
This module has a placeholder `WebidlCustomSection` which is nowhere
near the actual custom section but if you squint is in theory very
similar. It's hoped that this will eventually become the true WebIDL
custom section, currently being developed in an external crate.
Currently, however, the WebIDL bindings custom section only covers a
subset of the functionality we export to wasm-bindgen users. To avoid
leaving them high and dry this module also contains an auxiliary
custom section named `WasmBindgenAux`. This custom section isn't
intended to have a binary format, but is intended to represent a
theoretical custom section necessary to couple with WebIDL bindings to
achieve all our desired functionality in `wasm-bindgen`. It'll never
be standardized, but it'll also never be serialized :)
2. The `src/webidl.rs` module now takes over quite a bit of
functionality from `src/js/mod.rs`. Namely it handles synthesis of an
`export_map` and an `import_map` mapping export/import IDs to exactly
what's expected to be hooked up there. This does not include type
information (as that's in the bindings section) but rather includes
things like "this is the method of class A" or "this import is from
module `foo`" and things like that. These could arguably be subsumed
by future JS features as well, but that's for another time!
3. All handling of wasm-bindgen "descriptor functions" now happens in a
dedicated `src/descriptors.rs` module. The output of this module is
its own custom section (intended to be immediately consumed by the
WebIDL module) which is in theory what we want to ourselves emit one
day but rustc isn't capable of doing so right now.
4. Invocations and generations of imports are completely overhauled.
Using the `import_map` generated in the WebIDL step all imports are
now handled much more precisely in one location rather than
haphazardly throughout the module. This means we have precise
information about each import of the module and we only modify
exactly what we're looking at. This also vastly simplifies intrinsic
generation since it's all simply a codegen part of the `rust2js.rs`
module now.
5. Handling of direct imports which don't have a JS shim generated is
slightly different from before and is intended to be
future-compatible with WebIDL bindings in its full glory, but we'll
need to update it to handle cases for constructors and method calls
eventually as well.
6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`)
and have a separated definition for their symbol name and signature.
The actual implementation of each intrinsic lives in `rust2js.rs`
There's a number of TODO items to finish before this merges. This
includes reimplementing the anyref pass and actually implementing import
maps for other targets. Those will come soon in follow-up commits, but
the entire `tests/wasm/main.rs` suite is currently passing and this
seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
|
|
|
pub fn unwrap_function(self) -> Function {
|
|
|
|
match self {
|
|
|
|
Descriptor::Function(f) => *f,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
_ => panic!("not a function"),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-03-26 17:29:53 -07:00
|
|
|
/// Returns `Some` if this type is a number, and the returned `Number` type
|
|
|
|
/// can be accessed to learn more about what kind of number this is.
|
|
|
|
pub fn number(&self) -> Option<Number> {
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
match *self {
|
2018-06-27 22:42:34 -07:00
|
|
|
Descriptor::I8
|
|
|
|
| Descriptor::U8
|
|
|
|
| Descriptor::I16
|
|
|
|
| Descriptor::U16
|
|
|
|
| Descriptor::I32
|
|
|
|
| Descriptor::F32
|
|
|
|
| Descriptor::F64
|
2019-03-26 17:29:53 -07:00
|
|
|
| Descriptor::Enum { .. } => Some(Number { u32: false }),
|
|
|
|
Descriptor::U32 => Some(Number { u32: true }),
|
|
|
|
_ => None,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-08-03 18:40:55 +03:00
|
|
|
pub fn is_wasm_native(&self) -> bool {
|
2018-08-03 16:28:35 +03:00
|
|
|
match *self {
|
2018-09-26 08:26:00 -07:00
|
|
|
Descriptor::I32 | Descriptor::U32 | Descriptor::F32 | Descriptor::F64 => true,
|
2018-08-03 16:28:35 +03:00
|
|
|
_ => return false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-08-03 18:40:55 +03:00
|
|
|
pub fn is_abi_as_u32(&self) -> bool {
|
2018-08-03 16:28:35 +03:00
|
|
|
match *self {
|
2018-09-26 08:26:00 -07:00
|
|
|
Descriptor::I8 | Descriptor::U8 | Descriptor::I16 | Descriptor::U16 => true,
|
2018-08-03 16:28:35 +03:00
|
|
|
_ => return false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn get_64(&self) -> Option<bool> {
|
2018-05-05 14:10:25 -07:00
|
|
|
match *self {
|
|
|
|
Descriptor::I64 => Some(true),
|
|
|
|
Descriptor::U64 => Some(false),
|
|
|
|
_ => None,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
pub fn is_ref_anyref(&self) -> bool {
|
|
|
|
match *self {
|
|
|
|
Descriptor::Ref(ref s) => s.is_anyref(),
|
|
|
|
_ => return false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
First refactor for WebIDL bindings
This commit starts the `wasm-bindgen` CLI tool down the road to being a
true polyfill for WebIDL bindings. This refactor is probably the first
of a few, but is hopefully the largest and most sprawling and everything
will be a bit more targeted from here on out.
The goal of this refactoring is to separate out the massive
`crates/cli-support/src/js/mod.rs` into a number of separate pieces of
functionality. It currently takes care of basically everything
including:
* Binding intrinsics
* Handling anyref transformations
* Generating all JS for imports/exports
* All the logic for how to import and how to name imports
* Execution and management of wasm-bindgen closures
Many of these are separable concerns and most overlap with WebIDL
bindings. The internal refactoring here is intended to make it more
clear who's responsible for what as well as making some existing
operations much more straightforward. At a high-level, the following
changes are done:
1. A `src/webidl.rs` module is introduced. The purpose of this module is
to take all of the raw wasm-bindgen custom sections from the module
and transform them into a WebIDL bindings section.
This module has a placeholder `WebidlCustomSection` which is nowhere
near the actual custom section but if you squint is in theory very
similar. It's hoped that this will eventually become the true WebIDL
custom section, currently being developed in an external crate.
Currently, however, the WebIDL bindings custom section only covers a
subset of the functionality we export to wasm-bindgen users. To avoid
leaving them high and dry this module also contains an auxiliary
custom section named `WasmBindgenAux`. This custom section isn't
intended to have a binary format, but is intended to represent a
theoretical custom section necessary to couple with WebIDL bindings to
achieve all our desired functionality in `wasm-bindgen`. It'll never
be standardized, but it'll also never be serialized :)
2. The `src/webidl.rs` module now takes over quite a bit of
functionality from `src/js/mod.rs`. Namely it handles synthesis of an
`export_map` and an `import_map` mapping export/import IDs to exactly
what's expected to be hooked up there. This does not include type
information (as that's in the bindings section) but rather includes
things like "this is the method of class A" or "this import is from
module `foo`" and things like that. These could arguably be subsumed
by future JS features as well, but that's for another time!
3. All handling of wasm-bindgen "descriptor functions" now happens in a
dedicated `src/descriptors.rs` module. The output of this module is
its own custom section (intended to be immediately consumed by the
WebIDL module) which is in theory what we want to ourselves emit one
day but rustc isn't capable of doing so right now.
4. Invocations and generations of imports are completely overhauled.
Using the `import_map` generated in the WebIDL step all imports are
now handled much more precisely in one location rather than
haphazardly throughout the module. This means we have precise
information about each import of the module and we only modify
exactly what we're looking at. This also vastly simplifies intrinsic
generation since it's all simply a codegen part of the `rust2js.rs`
module now.
5. Handling of direct imports which don't have a JS shim generated is
slightly different from before and is intended to be
future-compatible with WebIDL bindings in its full glory, but we'll
need to update it to handle cases for constructors and method calls
eventually as well.
6. Intrinsic definitions now live in their own file (`src/intrinsic.rs`)
and have a separated definition for their symbol name and signature.
The actual implementation of each intrinsic lives in `rust2js.rs`
There's a number of TODO items to finish before this merges. This
includes reimplementing the anyref pass and actually implementing import
maps for other targets. Those will come soon in follow-up commits, but
the entire `tests/wasm/main.rs` suite is currently passing and this
seems like a good checkpoint.
2019-05-23 09:15:26 -07:00
|
|
|
pub fn unwrap_closure(self) -> Closure {
|
|
|
|
match self {
|
|
|
|
Descriptor::Closure(s) => *s,
|
|
|
|
_ => panic!("not a closure"),
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn is_anyref(&self) -> bool {
|
|
|
|
match *self {
|
|
|
|
Descriptor::Anyref => true,
|
|
|
|
_ => false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn vector_kind(&self) -> Option<VectorKind> {
|
|
|
|
let inner = match *self {
|
|
|
|
Descriptor::String => return Some(VectorKind::String),
|
|
|
|
Descriptor::Vector(ref d) => &**d,
|
2019-06-11 11:51:36 -07:00
|
|
|
Descriptor::Slice(ref d) => &**d,
|
2018-06-27 22:42:34 -07:00
|
|
|
Descriptor::Ref(ref d) => match **d {
|
|
|
|
Descriptor::Slice(ref d) => &**d,
|
|
|
|
Descriptor::String => return Some(VectorKind::String),
|
|
|
|
_ => return None,
|
|
|
|
},
|
|
|
|
Descriptor::RefMut(ref d) => match **d {
|
|
|
|
Descriptor::Slice(ref d) => &**d,
|
|
|
|
_ => return None,
|
|
|
|
},
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
_ => return None,
|
|
|
|
};
|
|
|
|
match *inner {
|
|
|
|
Descriptor::I8 => Some(VectorKind::I8),
|
|
|
|
Descriptor::I16 => Some(VectorKind::I16),
|
|
|
|
Descriptor::I32 => Some(VectorKind::I32),
|
2018-05-05 14:10:25 -07:00
|
|
|
Descriptor::I64 => Some(VectorKind::I64),
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
Descriptor::U8 => Some(VectorKind::U8),
|
2019-06-11 11:51:36 -07:00
|
|
|
Descriptor::ClampedU8 => Some(VectorKind::ClampedU8),
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
Descriptor::U16 => Some(VectorKind::U16),
|
|
|
|
Descriptor::U32 => Some(VectorKind::U32),
|
2018-05-05 14:10:25 -07:00
|
|
|
Descriptor::U64 => Some(VectorKind::U64),
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
Descriptor::F32 => Some(VectorKind::F32),
|
|
|
|
Descriptor::F64 => Some(VectorKind::F64),
|
|
|
|
Descriptor::Anyref => Some(VectorKind::Anyref),
|
2018-06-27 22:42:34 -07:00
|
|
|
_ => None,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn rust_struct(&self) -> Option<&str> {
|
|
|
|
let inner = match *self {
|
|
|
|
Descriptor::Ref(ref d) => &**d,
|
|
|
|
Descriptor::RefMut(ref d) => &**d,
|
|
|
|
ref d => d,
|
|
|
|
};
|
|
|
|
match *inner {
|
|
|
|
Descriptor::RustStruct(ref s) => Some(s),
|
|
|
|
_ => None,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-04-13 14:13:14 -07:00
|
|
|
pub fn stack_closure(&self) -> Option<(&Function, bool)> {
|
|
|
|
let (inner, mutable) = match *self {
|
|
|
|
Descriptor::Ref(ref d) => (&**d, false),
|
|
|
|
Descriptor::RefMut(ref d) => (&**d, true),
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
_ => return None,
|
|
|
|
};
|
|
|
|
match *inner {
|
2018-04-13 14:13:14 -07:00
|
|
|
Descriptor::Function(ref f) => Some((f, mutable)),
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
_ => None,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn is_by_ref(&self) -> bool {
|
|
|
|
match *self {
|
2018-06-27 22:42:34 -07:00
|
|
|
Descriptor::Ref(_) | Descriptor::RefMut(_) => true,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
_ => false,
|
|
|
|
}
|
|
|
|
}
|
2018-05-01 10:06:35 -07:00
|
|
|
|
|
|
|
pub fn is_mut_ref(&self) -> bool {
|
|
|
|
match *self {
|
|
|
|
Descriptor::RefMut(_) => true,
|
|
|
|
_ => false,
|
|
|
|
}
|
|
|
|
}
|
2019-05-31 10:54:03 -07:00
|
|
|
|
|
|
|
pub fn abi_returned_through_pointer(&self) -> bool {
|
|
|
|
if self.vector_kind().is_some() {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if self.get_64().is_some() {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
match self {
|
|
|
|
Descriptor::Option(inner) => match &**inner {
|
|
|
|
Descriptor::Anyref
|
|
|
|
| Descriptor::RustStruct(_)
|
|
|
|
| Descriptor::Enum { .. }
|
|
|
|
| Descriptor::Char
|
|
|
|
| Descriptor::Boolean
|
|
|
|
| Descriptor::I8
|
|
|
|
| Descriptor::U8
|
|
|
|
| Descriptor::I16
|
|
|
|
| Descriptor::U16 => false,
|
|
|
|
_ => true,
|
|
|
|
},
|
|
|
|
_ => false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn abi_arg_count(&self) -> usize {
|
|
|
|
if let Descriptor::Option(inner) = self {
|
|
|
|
if inner.get_64().is_some() {
|
|
|
|
return 4;
|
|
|
|
}
|
|
|
|
if let Descriptor::Ref(inner) = &**inner {
|
|
|
|
match &**inner {
|
|
|
|
Descriptor::Anyref => return 1,
|
|
|
|
_ => {}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if self.stack_closure().is_some() {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
if self.abi_returned_through_pointer() {
|
|
|
|
2
|
|
|
|
} else {
|
|
|
|
1
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn assert_abi_return_correct(&self, before: usize, after: usize) {
|
|
|
|
if before != after {
|
|
|
|
assert_eq!(
|
|
|
|
before + 1,
|
|
|
|
after,
|
|
|
|
"abi_returned_through_pointer wrong for {:?}",
|
|
|
|
self,
|
|
|
|
);
|
|
|
|
assert!(
|
|
|
|
self.abi_returned_through_pointer(),
|
|
|
|
"abi_returned_through_pointer wrong for {:?}",
|
|
|
|
self,
|
|
|
|
);
|
|
|
|
} else {
|
|
|
|
assert!(
|
|
|
|
!self.abi_returned_through_pointer(),
|
|
|
|
"abi_returned_through_pointer wrong for {:?}",
|
|
|
|
self,
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn assert_abi_arg_correct(&self, before: usize, after: usize) {
|
|
|
|
assert_eq!(
|
|
|
|
before + self.abi_arg_count(),
|
|
|
|
after,
|
|
|
|
"abi_arg_count wrong for {:?}",
|
|
|
|
self,
|
|
|
|
);
|
|
|
|
}
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
fn get(a: &mut &[u32]) -> u32 {
|
|
|
|
let ret = a[0];
|
|
|
|
*a = &a[1..];
|
|
|
|
ret
|
|
|
|
}
|
|
|
|
|
2018-04-17 11:29:03 -07:00
|
|
|
impl Closure {
|
|
|
|
fn decode(data: &mut &[u32]) -> Closure {
|
2018-11-29 12:01:16 -08:00
|
|
|
let shim_idx = get(data);
|
|
|
|
let dtor_idx = get(data);
|
2018-04-17 11:29:03 -07:00
|
|
|
let mutable = get(data) == REFMUT;
|
|
|
|
assert_eq!(get(data), FUNCTION);
|
|
|
|
Closure {
|
2018-11-29 12:01:16 -08:00
|
|
|
shim_idx,
|
|
|
|
dtor_idx,
|
2018-04-17 11:29:03 -07:00
|
|
|
mutable,
|
|
|
|
function: Function::decode(data),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
impl Function {
|
|
|
|
fn decode(data: &mut &[u32]) -> Function {
|
2018-11-29 12:01:16 -08:00
|
|
|
let shim_idx = get(data);
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
let arguments = (0..get(data))
|
2019-06-11 11:51:36 -07:00
|
|
|
.map(|_| Descriptor::_decode(data, false))
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
.collect::<Vec<_>>();
|
2018-09-17 18:26:45 -07:00
|
|
|
Function {
|
|
|
|
arguments,
|
2018-11-29 12:01:16 -08:00
|
|
|
shim_idx,
|
2019-06-11 11:51:36 -07:00
|
|
|
ret: Descriptor::_decode(data, false),
|
2018-09-17 18:26:45 -07:00
|
|
|
}
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl VectorKind {
|
|
|
|
pub fn js_ty(&self) -> &str {
|
|
|
|
match *self {
|
|
|
|
VectorKind::String => "string",
|
|
|
|
VectorKind::I8 => "Int8Array",
|
|
|
|
VectorKind::U8 => "Uint8Array",
|
2018-09-24 13:49:12 -07:00
|
|
|
VectorKind::ClampedU8 => "Uint8ClampedArray",
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
VectorKind::I16 => "Int16Array",
|
|
|
|
VectorKind::U16 => "Uint16Array",
|
|
|
|
VectorKind::I32 => "Int32Array",
|
|
|
|
VectorKind::U32 => "Uint32Array",
|
2018-05-05 14:10:25 -07:00
|
|
|
VectorKind::I64 => "BigInt64Array",
|
|
|
|
VectorKind::U64 => "BigUint64Array",
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
VectorKind::F32 => "Float32Array",
|
|
|
|
VectorKind::F64 => "Float64Array",
|
|
|
|
VectorKind::Anyref => "any[]",
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn size(&self) -> usize {
|
|
|
|
match *self {
|
|
|
|
VectorKind::String => 1,
|
|
|
|
VectorKind::I8 => 1,
|
|
|
|
VectorKind::U8 => 1,
|
2018-09-24 13:49:12 -07:00
|
|
|
VectorKind::ClampedU8 => 1,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
VectorKind::I16 => 2,
|
|
|
|
VectorKind::U16 => 2,
|
|
|
|
VectorKind::I32 => 4,
|
|
|
|
VectorKind::U32 => 4,
|
2018-05-05 14:10:25 -07:00
|
|
|
VectorKind::I64 => 8,
|
|
|
|
VectorKind::U64 => 8,
|
Overhaul how type information gets to the CLI
This commit is a complete overhaul of how the `#[wasm_bindgen]` macro
communicates type information to the CLI tool, and it's done in a somewhat...
unconventional fashion.
Today we've got a problem where the generated JS needs to understand the types
of each function exported or imported. This understanding is what enables it to
generate the appropriate JS wrappers and such. We want to, however, be quite
flexible and extensible in types that are supported across the boundary, which
means that internally we rely on the trait system to resolve what's what.
Communicating the type information historically was done by creating a four byte
"descriptor" and using associated type projections to communicate that to the
CLI tool. Unfortunately four bytes isn't a lot of space to cram information like
arguments to a generic function, tuple types, etc. In general this just wasn't
flexible enough and the way custom references were treated was also already a
bit of a hack.
This commit takes a radical step of creating a **descriptor function** for each
function imported/exported. The really crazy part is that the `wasm-bindgen` CLI
tool now embeds a wasm interpreter and executes these functions when the CLI
tool is invoked. By allowing arbitrary functions to get executed it's now *much*
easier to inform `wasm-bindgen` about complicated structures of types. Rest
assured though that all these descriptor functions are automatically unexported
and gc'd away, so this should not have any impact on binary sizes
A new internal trait, `WasmDescribe`, is added to represent a description of all
types, sort of like a serialization of the structure of a type that
`wasm-bindgen` can understand. This works by calling a special exported function
with a `u32` value a bunch of times. This means that when we run a descriptor we
effectively get a `Vec<u32>` in the `wasm-bindgen` CLI tool. This list of
integers can then be parsed into a rich `enum` for the JS generation to work
with.
This commit currently only retains feature parity with the previous
implementation. I hope to soon solve issues like #123, #104, and #111 with this
support.
2018-04-13 07:33:46 -07:00
|
|
|
VectorKind::F32 => 4,
|
|
|
|
VectorKind::F64 => 8,
|
|
|
|
VectorKind::Anyref => 4,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2019-03-26 17:29:53 -07:00
|
|
|
|
|
|
|
impl Number {
|
|
|
|
pub fn is_u32(&self) -> bool {
|
|
|
|
self.u32
|
|
|
|
}
|
|
|
|
}
|