trust-graph-test/src/certificate.rs
Alexey Proshutinskiy db4165e663 add tests
2021-09-06 18:13:08 +03:00

605 lines
19 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2020 Fluence Labs Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use crate::certificate::CertificateError::{
CertificateLengthError, DecodeError, DecodeTrustError, ExpirationError,
IncorrectCertificateFormat, KeyInCertificateError, MalformedRoot, NoTrustedRoot,
VerificationError,
};
use crate::trust::{Trust, TrustError};
use fluence_keypair::key_pair::KeyPair;
use fluence_keypair::public_key::PublicKey;
use std::str::FromStr;
use std::time::Duration;
use thiserror::Error as ThisError;
/// Serialization format of a certificate.
/// TODO
const FORMAT: &[u8; 2] = &[0, 0];
/// Serialization format version of a certificate.
/// TODO
const VERSION: &[u8; 4] = &[0, 0, 0, 0];
const TRUST_NUMBER_LEN: usize = 1;
/// Chain of trusts started from self-signed root trust.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Certificate {
pub chain: Vec<Trust>,
}
#[derive(ThisError, Debug)]
pub enum CertificateError {
#[error("Incorrect format of the certificate: {0}")]
IncorrectCertificateFormat(String),
#[error("Incorrect length of an array. Should be 2 bytes of a format, 4 bytes of a version and 104 bytes for each trust")]
IncorrectByteLength,
#[error("Error while decoding a trust in a certificate: {0}")]
DecodeError(#[source] TrustError),
#[error("Certificate is expired. Issued at {issued_at} and expired at {expires_at}")]
ExpirationError {
expires_at: String,
issued_at: String,
},
#[error("Certificate does not contain a trusted root.")]
NoTrustedRoot,
#[error("Root trust did not pass verification: {0}")]
MalformedRoot(#[source] TrustError),
#[error("There is no `issued_by` public key in a certificate")]
KeyInCertificateError,
#[error("The certificate must have at least 1 trust")]
CertificateLengthError,
#[error("Cannot convert trust number {0} from string: {1}")]
DecodeTrustError(usize, #[source] TrustError),
#[error("Trust {0} in chain did not pass verification: {1}")]
VerificationError(usize, #[source] TrustError),
#[error("there cannot be paths without any nodes after adding verified certificates")]
Unexpected,
}
impl Certificate {
pub fn new_unverified(chain: Vec<Trust>) -> Self {
Self { chain }
}
pub fn new_from_root_trust(root_trust: Trust, issued_trust: Trust, cur_time: Duration) -> Result<Self, CertificateError> {
Trust::verify(&root_trust, &root_trust.issued_for, cur_time).map_err(MalformedRoot)?;
Trust::verify(&issued_trust, &root_trust.issued_for, cur_time).map_err(|e| VerificationError(1, e))?;
Ok(Self { chain: vec![root_trust, issued_trust] })
}
pub fn issue_with_trust(issued_by: PublicKey, trust: Trust, extend_cert: &Certificate, cur_time: Duration) -> Result<Self, CertificateError> {
if trust.expires_at.lt(&trust.issued_at) {
return Err(ExpirationError {
expires_at: format!("{:?}", trust.expires_at),
issued_at: format!("{:?}", trust.issued_at),
});
}
Certificate::verify(extend_cert, &[extend_cert.chain[0].issued_for.clone()], cur_time)?;
// check if `issued_by` is allowed to issue a certificate (i.e., theres a trust for it in a chain)
let mut previous_trust_num: i32 = -1;
for pk_id in 0..extend_cert.chain.len() {
if extend_cert.chain[pk_id].issued_for == issued_by {
previous_trust_num = pk_id as i32;
}
}
if previous_trust_num == -1 {
return Err(KeyInCertificateError);
};
// splitting old chain to add new trust after given public key
let mut new_chain = extend_cert
.chain
.split_at((previous_trust_num + 1) as usize)
.0
.to_vec();
new_chain.push(trust);
Ok(Self { chain: new_chain })
}
/// Creates new certificate with root trust (self-signed public key) from a key pair.
#[allow(dead_code)]
pub fn issue_root(
root_kp: &KeyPair,
for_pk: PublicKey,
expires_at: Duration,
issued_at: Duration,
) -> Self {
let root_expiration = Duration::from_secs(u64::max_value());
let root_trust = Trust::create(root_kp, root_kp.public(), root_expiration, issued_at);
let trust = Trust::create(root_kp, for_pk, expires_at, issued_at);
let chain = vec![root_trust, trust];
Self { chain }
}
/// Adds a new trust into chain of trust in certificate.
#[allow(dead_code)]
pub fn issue(
issued_by: &KeyPair,
for_pk: PublicKey,
extend_cert: &Certificate,
expires_at: Duration,
issued_at: Duration,
cur_time: Duration,
) -> Result<Self, CertificateError> {
if expires_at.lt(&issued_at) {
return Err(ExpirationError {
expires_at: format!("{:?}", expires_at),
issued_at: format!("{:?}", issued_at),
});
}
// first, verify given certificate
Certificate::verify(extend_cert, &[extend_cert.chain[0].issued_for.clone()], cur_time)?;
let issued_by_pk = issued_by.public();
// check if `issued_by_pk` is allowed to issue a certificate (i.e., theres a trust for it in a chain)
let mut previous_trust_num: i32 = -1;
for pk_id in 0..extend_cert.chain.len() {
if extend_cert.chain[pk_id].issued_for == issued_by_pk {
previous_trust_num = pk_id as i32;
}
}
if previous_trust_num == -1 {
return Err(KeyInCertificateError);
};
// splitting old chain to add new trust after given public key
let mut new_chain = extend_cert
.chain
.split_at((previous_trust_num + 1) as usize)
.0
.to_vec();
let trust = Trust::create(issued_by, for_pk, expires_at, issued_at);
new_chain.push(trust);
Ok(Self { chain: new_chain })
}
/// Verifies that a certificate is valid and you trust to this certificate.
pub fn verify(
cert: &Certificate,
trusted_roots: &[PublicKey],
cur_time: Duration,
) -> Result<(), CertificateError> {
let chain = &cert.chain;
if chain.is_empty() {
return Err(CertificateLengthError);
}
// check root trust and its existence in trusted roots list
let root = &chain[0];
Trust::verify(root, &root.issued_for, cur_time).map_err(MalformedRoot)?;
if !trusted_roots.contains(&root.issued_for) {
return Err(NoTrustedRoot);
}
// check if every element in a chain is not expired and has the correct signature
for trust_id in (1..chain.len()).rev() {
let trust = &chain[trust_id];
let trust_giver = &chain[trust_id - 1];
Trust::verify(trust, &trust_giver.issued_for, cur_time)
.map_err(|e| VerificationError(trust_id, e))?;
}
Ok(())
}
/// Convert certificate to byte format
/// 2 format + 4 version + 1 trusts number + ((1 trust size byte + trust) for each trust)
#[allow(dead_code)]
pub fn encode(&self) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.extend_from_slice(FORMAT);
encoded.extend_from_slice(VERSION);
encoded.push(self.chain.len() as u8);
for t in &self.chain {
let trust = t.encode();
encoded.push(trust.len() as u8);
encoded.extend(trust);
}
encoded
}
fn check_arr_len(arr: &[u8], check_len: usize) -> Result<(), CertificateError> {
if arr.len() < check_len {
Err(CertificateLengthError)
} else {
Ok(())
}
}
#[allow(dead_code)]
pub fn decode(arr: &[u8]) -> Result<Self, CertificateError> {
// TODO do match different formats and versions
Self::check_arr_len(arr, FORMAT.len() + VERSION.len() + TRUST_NUMBER_LEN)?;
let mut offset = 0;
let _format = &arr[offset..offset + FORMAT.len()];
offset += FORMAT.len();
let _version = &arr[offset..offset + VERSION.len()];
offset += VERSION.len();
let number_of_trusts = arr[offset] as usize;
offset += TRUST_NUMBER_LEN;
if number_of_trusts < 2 {
return Err(CertificateLengthError);
}
let mut chain = Vec::with_capacity(number_of_trusts);
for _ in 0..number_of_trusts {
Self::check_arr_len(arr, offset + 1)?;
let trust_len = arr[offset] as usize;
let from = offset + 1;
let to = from + trust_len;
Self::check_arr_len(arr, to)?;
let slice = &arr[from..to];
let t = Trust::decode(slice).map_err(DecodeError)?;
chain.push(t);
offset += 1 + trust_len;
}
Ok(Self { chain })
}
}
impl std::fmt::Display for Certificate {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
writeln!(f, "{}", bs58::encode(FORMAT).into_string())?;
writeln!(f, "{}", bs58::encode(VERSION).into_string())?;
for trust in self.chain.iter() {
writeln!(f, "{}", trust.to_string())?;
}
Ok(())
}
}
impl FromStr for Certificate {
type Err = CertificateError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let str_lines: Vec<&str> = s.lines().collect();
// TODO for future purposes
let _format = str_lines[0];
let _version = str_lines[1];
if (str_lines.len() - 2) % 4 != 0 {
return Err(IncorrectCertificateFormat(s.to_string()));
}
let num_of_trusts = (str_lines.len() - 2) / 4;
let mut trusts = Vec::with_capacity(num_of_trusts);
for i in (2..str_lines.len()).step_by(4) {
let trust = Trust::convert_from_strings(
str_lines[i],
str_lines[i + 1],
str_lines[i + 2],
str_lines[i + 3],
)
.map_err(|e| DecodeTrustError(i, e))?;
trusts.push(trust);
}
Ok(Self::new_unverified(trusts))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::misc::current_time;
use fluence_keypair::KeyPair;
use std::time::{Duration, SystemTime, UNIX_EPOCH};
pub fn one_second() -> Duration {
Duration::from_secs(1)
}
pub fn one_minute() -> Duration {
Duration::from_secs(60)
}
pub fn one_year() -> Duration {
Duration::from_secs(31_557_600)
}
#[test]
pub fn test_string_encoding_decoding_ed25519() {
let (_root_kp, second_kp, cert) = generate_root_cert();
let cur_time = current_time();
let third_kp = KeyPair::generate_ed25519();
let new_cert = Certificate::issue(
&second_kp,
third_kp.public(),
&cert,
cur_time.checked_add(one_second()).unwrap(),
cur_time,
cur_time,
)
.unwrap();
let serialized = new_cert.to_string();
let deserialized = Certificate::from_str(&serialized);
assert!(deserialized.is_ok());
let after_cert = deserialized.unwrap();
assert_eq!(&new_cert.chain[0], &after_cert.chain[0]);
assert_eq!(&new_cert, &after_cert);
}
#[test]
pub fn test_serialization_deserialization_ed25519() {
let (_root_kp, second_kp, cert) = generate_root_cert();
let cur_time = current_time();
let third_kp = KeyPair::generate_ed25519();
let new_cert = Certificate::issue(
&second_kp,
third_kp.public(),
&cert,
cur_time.checked_add(one_second()).unwrap(),
cur_time,
cur_time,
)
.unwrap();
let serialized = new_cert.encode();
let deserialized = Certificate::decode(serialized.as_slice());
assert!(deserialized.is_ok());
let after_cert = deserialized.unwrap();
assert_eq!(&new_cert.chain[0], &after_cert.chain[0]);
assert_eq!(&new_cert, &after_cert);
}
#[test]
fn test_small_chain_ed25519() {
let bad_cert = Certificate { chain: Vec::new() };
let check = Certificate::verify(&bad_cert, &[], current_time());
assert!(check.is_err());
}
fn generate_root_cert() -> (KeyPair, KeyPair, Certificate) {
let root_kp = KeyPair::generate_ed25519();
let second_kp = KeyPair::generate_ed25519();
let cur_time = current_time();
(
root_kp.clone(),
second_kp.clone(),
Certificate::issue_root(
&root_kp,
second_kp.public(),
cur_time.checked_add(one_year()).unwrap(),
cur_time,
),
)
}
#[test]
fn test_issue_cert_ed25519() {
let (root_kp, second_kp, cert) = generate_root_cert();
let trusted_roots = [root_kp.public()];
// we don't need nanos for serialization, etc
let cur_time = Duration::from_secs(
SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs() as u64,
);
let third_kp = KeyPair::generate_ed25519();
let new_cert = Certificate::issue(
&second_kp,
third_kp.public(),
&cert,
cur_time.checked_add(one_year()).unwrap(),
cur_time,
cur_time,
);
assert_eq!(new_cert.is_ok(), true);
let new_cert = new_cert.unwrap();
println!("cert is\n{}", new_cert.to_string());
assert_eq!(new_cert.chain.len(), 3);
assert_eq!(new_cert.chain[0].issued_for, root_kp.public());
assert_eq!(new_cert.chain[1].issued_for, second_kp.public());
assert_eq!(new_cert.chain[2].issued_for, third_kp.public());
assert!(Certificate::verify(&new_cert, &trusted_roots, cur_time).is_ok());
}
#[test]
fn test_cert_expiration_ed25519() {
let (root_kp, second_kp, cert) = generate_root_cert();
let trusted_roots = [root_kp.public()];
let cur_time = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let third_kp = KeyPair::generate_ed25519();
let new_cert = Certificate::issue(
&second_kp,
third_kp.public(),
&cert,
cur_time.checked_sub(one_second()).unwrap(),
cur_time.checked_sub(one_minute()).unwrap(),
cur_time,
)
.unwrap();
assert!(Certificate::verify(&new_cert, &trusted_roots, cur_time).is_err());
}
#[test]
fn test_issue_in_chain_tail_ed25519() {
let (root_kp, second_kp, cert) = generate_root_cert();
let trusted_roots = [root_kp.public()];
let cur_time = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let third_kp = KeyPair::generate_ed25519();
let fourth_kp = KeyPair::generate_ed25519();
let new_cert = Certificate::issue(
&second_kp,
third_kp.public(),
&cert,
cur_time.checked_add(one_second()).unwrap(),
cur_time,
cur_time,
)
.unwrap();
let new_cert = Certificate::issue(
&third_kp,
fourth_kp.public(),
&new_cert,
cur_time.checked_add(one_second()).unwrap(),
cur_time,
cur_time,
);
assert_eq!(new_cert.is_ok(), true);
let new_cert = new_cert.unwrap();
assert_eq!(new_cert.chain.len(), 4);
assert_eq!(new_cert.chain[0].issued_for, root_kp.public());
assert_eq!(new_cert.chain[1].issued_for, second_kp.public());
assert_eq!(new_cert.chain[2].issued_for, third_kp.public());
assert_eq!(new_cert.chain[3].issued_for, fourth_kp.public());
assert!(Certificate::verify(&new_cert, &trusted_roots, cur_time).is_ok());
}
#[test]
fn test_issue_in_chain_body_ed25519() {
let (root_kp, second_kp, cert) = generate_root_cert();
let trusted_roots = [root_kp.public()];
let cur_time = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let third_kp = KeyPair::generate_ed25519();
let fourth_kp = KeyPair::generate_ed25519();
let new_cert = Certificate::issue(
&second_kp,
third_kp.public(),
&cert,
cur_time.checked_add(one_second()).unwrap(),
cur_time,
cur_time,
)
.unwrap();
let new_cert = Certificate::issue(
&second_kp,
fourth_kp.public(),
&new_cert,
cur_time.checked_add(one_second()).unwrap(),
cur_time,
cur_time,
);
assert_eq!(new_cert.is_ok(), true);
let new_cert = new_cert.unwrap();
assert_eq!(new_cert.chain.len(), 3);
assert_eq!(new_cert.chain[0].issued_for, root_kp.public());
assert_eq!(new_cert.chain[1].issued_for, second_kp.public());
assert_eq!(new_cert.chain[2].issued_for, fourth_kp.public());
assert!(Certificate::verify(&new_cert, &trusted_roots, cur_time).is_ok());
}
#[test]
fn test_no_cert_in_chain_ed25519() {
let (_root_kp, _second_kp, cert) = generate_root_cert();
let cur_time = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let bad_kp = KeyPair::generate_ed25519();
let new_cert_bad = Certificate::issue(
&bad_kp,
bad_kp.public(),
&cert,
cur_time.checked_add(one_second()).unwrap(),
cur_time,
cur_time,
);
assert_eq!(new_cert_bad.is_err(), true);
}
#[test]
fn test_no_trusted_root_in_chain() {
let (_root_kp, second_kp, cert) = generate_root_cert();
let cur_time = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let trusted_roots = [second_kp.public()];
assert!(Certificate::verify(&cert, &trusted_roots, cur_time).is_err());
assert!(Certificate::verify(&cert, &[], cur_time).is_err());
}
#[test]
fn test_forged_cert() {
let (root_kp, _second_kp, cert) = generate_root_cert();
let cur_time = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let trusted_roots = [root_kp.public()];
// forged cert
let mut bad_chain = cert.chain;
bad_chain.remove(0);
let bad_cert = Certificate { chain: bad_chain };
assert!(Certificate::verify(&bad_cert, &trusted_roots, cur_time).is_err());
}
#[test]
fn test_generate_root_cert() {
let (root_kp, second_kp, cert) = generate_root_cert();
let cur_time = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let trusted_roots = [root_kp.public()];
assert_eq!(cert.chain.len(), 2);
assert_eq!(cert.chain[0].issued_for, root_kp.public());
assert_eq!(cert.chain[1].issued_for, second_kp.public());
assert!(Certificate::verify(&cert, &trusted_roots, cur_time).is_ok());
}
}