tendermint/p2p/secret_connection.go
Emmanuel Odeke 5c34d087d9
p2p: use bytes.Equal for key comparison
Updates https://github.com/tendermint/tendermint/issues/850

My security alarms falsely blarred when I skimmed and noticed
keys being compared with `==`, without the proper context
so I mistakenly filed an issue, yet the purpose of that
comparison was to check if the local ephemeral public key
was just the least, sorted lexicographically.

Anyways, let's use the proper bytes.Equal check, to save future labor.
2017-11-18 23:34:27 -07:00

337 lines
9.0 KiB
Go

// Uses nacl's secret_box to encrypt a net.Conn.
// It is (meant to be) an implementation of the STS protocol.
// Note we do not (yet) assume that a remote peer's pubkey
// is known ahead of time, and thus we are technically
// still vulnerable to MITM. (TODO!)
// See docs/sts-final.pdf for more info
package p2p
import (
"bytes"
crand "crypto/rand"
"crypto/sha256"
"encoding/binary"
"errors"
"io"
"net"
"time"
"golang.org/x/crypto/nacl/box"
"golang.org/x/crypto/nacl/secretbox"
"golang.org/x/crypto/ripemd160"
"github.com/tendermint/go-crypto"
"github.com/tendermint/go-wire"
cmn "github.com/tendermint/tmlibs/common"
)
// 2 + 1024 == 1026 total frame size
const dataLenSize = 2 // uint16 to describe the length, is <= dataMaxSize
const dataMaxSize = 1024
const totalFrameSize = dataMaxSize + dataLenSize
const sealedFrameSize = totalFrameSize + secretbox.Overhead
const authSigMsgSize = (32 + 1) + (64 + 1) // fixed size (length prefixed) byte arrays
// Implements net.Conn
type SecretConnection struct {
conn io.ReadWriteCloser
recvBuffer []byte
recvNonce *[24]byte
sendNonce *[24]byte
remPubKey crypto.PubKeyEd25519
shrSecret *[32]byte // shared secret
}
// Performs handshake and returns a new authenticated SecretConnection.
// Returns nil if error in handshake.
// Caller should call conn.Close()
// See docs/sts-final.pdf for more information.
func MakeSecretConnection(conn io.ReadWriteCloser, locPrivKey crypto.PrivKeyEd25519) (*SecretConnection, error) {
locPubKey := locPrivKey.PubKey().Unwrap().(crypto.PubKeyEd25519)
// Generate ephemeral keys for perfect forward secrecy.
locEphPub, locEphPriv := genEphKeys()
// Write local ephemeral pubkey and receive one too.
// NOTE: every 32-byte string is accepted as a Curve25519 public key
// (see DJB's Curve25519 paper: http://cr.yp.to/ecdh/curve25519-20060209.pdf)
remEphPub, err := shareEphPubKey(conn, locEphPub)
if err != nil {
return nil, err
}
// Compute common shared secret.
shrSecret := computeSharedSecret(remEphPub, locEphPriv)
// Sort by lexical order.
loEphPub, hiEphPub := sort32(locEphPub, remEphPub)
// Check if the local ephemeral public key
// was the least, lexicographically sorted.
locIsLeast := bytes.Equal(locEphPub[:], loEphPub[:])
// Generate nonces to use for secretbox.
recvNonce, sendNonce := genNonces(loEphPub, hiEphPub, locIsLeast)
// Generate common challenge to sign.
challenge := genChallenge(loEphPub, hiEphPub)
// Construct SecretConnection.
sc := &SecretConnection{
conn: conn,
recvBuffer: nil,
recvNonce: recvNonce,
sendNonce: sendNonce,
shrSecret: shrSecret,
}
// Sign the challenge bytes for authentication.
locSignature := signChallenge(challenge, locPrivKey)
// Share (in secret) each other's pubkey & challenge signature
authSigMsg, err := shareAuthSignature(sc, locPubKey, locSignature)
if err != nil {
return nil, err
}
remPubKey, remSignature := authSigMsg.Key, authSigMsg.Sig
if !remPubKey.VerifyBytes(challenge[:], remSignature) {
return nil, errors.New("Challenge verification failed")
}
// We've authorized.
sc.remPubKey = remPubKey.Unwrap().(crypto.PubKeyEd25519)
return sc, nil
}
// Returns authenticated remote pubkey
func (sc *SecretConnection) RemotePubKey() crypto.PubKeyEd25519 {
return sc.remPubKey
}
// Writes encrypted frames of `sealedFrameSize`
// CONTRACT: data smaller than dataMaxSize is read atomically.
func (sc *SecretConnection) Write(data []byte) (n int, err error) {
for 0 < len(data) {
var frame []byte = make([]byte, totalFrameSize)
var chunk []byte
if dataMaxSize < len(data) {
chunk = data[:dataMaxSize]
data = data[dataMaxSize:]
} else {
chunk = data
data = nil
}
chunkLength := len(chunk)
binary.BigEndian.PutUint16(frame, uint16(chunkLength))
copy(frame[dataLenSize:], chunk)
// encrypt the frame
var sealedFrame = make([]byte, sealedFrameSize)
secretbox.Seal(sealedFrame[:0], frame, sc.sendNonce, sc.shrSecret)
// fmt.Printf("secretbox.Seal(sealed:%X,sendNonce:%X,shrSecret:%X\n", sealedFrame, sc.sendNonce, sc.shrSecret)
incr2Nonce(sc.sendNonce)
// end encryption
_, err := sc.conn.Write(sealedFrame)
if err != nil {
return n, err
} else {
n += len(chunk)
}
}
return
}
// CONTRACT: data smaller than dataMaxSize is read atomically.
func (sc *SecretConnection) Read(data []byte) (n int, err error) {
if 0 < len(sc.recvBuffer) {
n_ := copy(data, sc.recvBuffer)
sc.recvBuffer = sc.recvBuffer[n_:]
return
}
sealedFrame := make([]byte, sealedFrameSize)
_, err = io.ReadFull(sc.conn, sealedFrame)
if err != nil {
return
}
// decrypt the frame
var frame = make([]byte, totalFrameSize)
// fmt.Printf("secretbox.Open(sealed:%X,recvNonce:%X,shrSecret:%X\n", sealedFrame, sc.recvNonce, sc.shrSecret)
_, ok := secretbox.Open(frame[:0], sealedFrame, sc.recvNonce, sc.shrSecret)
if !ok {
return n, errors.New("Failed to decrypt SecretConnection")
}
incr2Nonce(sc.recvNonce)
// end decryption
var chunkLength = binary.BigEndian.Uint16(frame) // read the first two bytes
if chunkLength > dataMaxSize {
return 0, errors.New("chunkLength is greater than dataMaxSize")
}
var chunk = frame[dataLenSize : dataLenSize+chunkLength]
n = copy(data, chunk)
sc.recvBuffer = chunk[n:]
return
}
// Implements net.Conn
func (sc *SecretConnection) Close() error { return sc.conn.Close() }
func (sc *SecretConnection) LocalAddr() net.Addr { return sc.conn.(net.Conn).LocalAddr() }
func (sc *SecretConnection) RemoteAddr() net.Addr { return sc.conn.(net.Conn).RemoteAddr() }
func (sc *SecretConnection) SetDeadline(t time.Time) error { return sc.conn.(net.Conn).SetDeadline(t) }
func (sc *SecretConnection) SetReadDeadline(t time.Time) error {
return sc.conn.(net.Conn).SetReadDeadline(t)
}
func (sc *SecretConnection) SetWriteDeadline(t time.Time) error {
return sc.conn.(net.Conn).SetWriteDeadline(t)
}
func genEphKeys() (ephPub, ephPriv *[32]byte) {
var err error
ephPub, ephPriv, err = box.GenerateKey(crand.Reader)
if err != nil {
cmn.PanicCrisis("Could not generate ephemeral keypairs")
}
return
}
func shareEphPubKey(conn io.ReadWriteCloser, locEphPub *[32]byte) (remEphPub *[32]byte, err error) {
var err1, err2 error
cmn.Parallel(
func() {
_, err1 = conn.Write(locEphPub[:])
},
func() {
remEphPub = new([32]byte)
_, err2 = io.ReadFull(conn, remEphPub[:])
},
)
if err1 != nil {
return nil, err1
}
if err2 != nil {
return nil, err2
}
return remEphPub, nil
}
func computeSharedSecret(remPubKey, locPrivKey *[32]byte) (shrSecret *[32]byte) {
shrSecret = new([32]byte)
box.Precompute(shrSecret, remPubKey, locPrivKey)
return
}
func sort32(foo, bar *[32]byte) (lo, hi *[32]byte) {
if bytes.Compare(foo[:], bar[:]) < 0 {
lo = foo
hi = bar
} else {
lo = bar
hi = foo
}
return
}
func genNonces(loPubKey, hiPubKey *[32]byte, locIsLo bool) (recvNonce, sendNonce *[24]byte) {
nonce1 := hash24(append(loPubKey[:], hiPubKey[:]...))
nonce2 := new([24]byte)
copy(nonce2[:], nonce1[:])
nonce2[len(nonce2)-1] ^= 0x01
if locIsLo {
recvNonce = nonce1
sendNonce = nonce2
} else {
recvNonce = nonce2
sendNonce = nonce1
}
return
}
func genChallenge(loPubKey, hiPubKey *[32]byte) (challenge *[32]byte) {
return hash32(append(loPubKey[:], hiPubKey[:]...))
}
func signChallenge(challenge *[32]byte, locPrivKey crypto.PrivKeyEd25519) (signature crypto.SignatureEd25519) {
signature = locPrivKey.Sign(challenge[:]).Unwrap().(crypto.SignatureEd25519)
return
}
type authSigMessage struct {
Key crypto.PubKey
Sig crypto.Signature
}
func shareAuthSignature(sc *SecretConnection, pubKey crypto.PubKeyEd25519, signature crypto.SignatureEd25519) (*authSigMessage, error) {
var recvMsg authSigMessage
var err1, err2 error
cmn.Parallel(
func() {
msgBytes := wire.BinaryBytes(authSigMessage{pubKey.Wrap(), signature.Wrap()})
_, err1 = sc.Write(msgBytes)
},
func() {
readBuffer := make([]byte, authSigMsgSize)
_, err2 = io.ReadFull(sc, readBuffer)
if err2 != nil {
return
}
n := int(0) // not used.
recvMsg = wire.ReadBinary(authSigMessage{}, bytes.NewBuffer(readBuffer), authSigMsgSize, &n, &err2).(authSigMessage)
})
if err1 != nil {
return nil, err1
}
if err2 != nil {
return nil, err2
}
return &recvMsg, nil
}
//--------------------------------------------------------------------------------
// sha256
func hash32(input []byte) (res *[32]byte) {
hasher := sha256.New()
hasher.Write(input) // does not error
resSlice := hasher.Sum(nil)
res = new([32]byte)
copy(res[:], resSlice)
return
}
// We only fill in the first 20 bytes with ripemd160
func hash24(input []byte) (res *[24]byte) {
hasher := ripemd160.New()
hasher.Write(input) // does not error
resSlice := hasher.Sum(nil)
res = new([24]byte)
copy(res[:], resSlice)
return
}
// increment nonce big-endian by 2 with wraparound.
func incr2Nonce(nonce *[24]byte) {
incrNonce(nonce)
incrNonce(nonce)
}
// increment nonce big-endian by 1 with wraparound.
func incrNonce(nonce *[24]byte) {
for i := 23; 0 <= i; i-- {
nonce[i] += 1
if nonce[i] != 0 {
return
}
}
}