
Authentication and Authenticated Key Exchanges 1

Whitfield Diffie2

Sun Microsystems, 2550 Garcia Ave., Mountain View, CA 94043 USA

Paul C. van Oorschot and Michael J. Wiener

Bell-Northern Research, P.O. Box 3511 Station C, Ottawa, Ontario K1Y 4H7 Canada

1992 March 6

Abstract. We discuss two-party mutual authentication protocols providing
authenticated key exchange, focusing on those using asymmetric techniques. A simple,
efficient protocol referred to as the station-to-station (STS) protocol is introduced,
examined in detail, and considered in relation to existing protocols. The definition of a
secure protocol is considered, and desirable characteristics of secure protocols are
discussed.

1. Introduction

The goal of an authentication protocol is to provide the communicating parties with some
assurance that they know each other’s true identities. In an authenticated key exchange,
there is the additional goal that the two parties end up sharing a common key known only
to them. This secret key can then be used for some time thereafter to provide privacy,
data integrity, or both. In this paper, we discuss the security of public-key based
authentication protocols, with and without an associated key exchange. We restrict our
attention to two-party mutual authentication, rather than multi-party and one-way
authentication protocols. We assume that individual underlying cryptographic
mechanisms are not vulnerable, and restrict our attention to attacks on protocols
themselves. An enemy (attacker, intruder, adversary) can see all exchanged messages,
can delete, alter, inject, and redirect messages, can initiate communications with another
party, and can reuse messages from past communications.

Much work has been done in recent years involving identification and authentication
schemes using asymmetric techniques. Identity-based schemes, as introduced by Shamir
[Sham84], rely on the existence of a trusted central authority, that holds secret
information from which other secrets are generated and distributed to individual users
when those users join the system. Günther [Gun89] has proposed an identity-based

1 Appeared in Designs, Codes and Cryptography, 2, 107-125 (1992), Kluwer Academic Publishers
2 This work was done while Whitfield Diffie was with Northern Telecom, Mountain View, California

2

protocol providing authenticated key establishment, making use of the ideas of Diffie-
Hellman key exchange [Diff76] and the ElGamal signature scheme [ElGa85]. The
authentication is indirect and does not offer perfect forward secrecy (see Section 4),
although the latter can be provided at the cost of incorporating an extra exchange of
Diffie-Hellman exponentials. Okamoto and Tanaka [Okam89] have proposed an
identity-based authenticated key establishment protocol based on exponential key
exchange and RSA. They offer versions which provide both indirect and direct
authentication, although the latter, as presented, employs timestamps (Section 4), and
some of the fields in the exchange may be unnecessary or redundant. Interactive
identification protocols which provide proof of identity and make use of ideas involving
zero-knowledge have been proposed by Fiat and Shamir [Fiat87], and more efficient
protocols have been subsequently proposed by Guillou and Quisquater [Guil88] and
Schnorr [Schn89], among others. These identification protocols differ from authenticated
key exchanges in that the former do not provide keys for use in subsequent
communications (e.g. for data integrity or data confidentiality).

As has been pointed out by many others [Bird91], [Burr90], [Gaar91], [Mit89],
[Moor88], the design of cryptographic protocols in general, and authentication protocols
in particular, is extremely error prone. The literature is filled with protocols which have
been found to contain security flaws ranging from minor to fatal in severity.
Furthermore, aside from security issues, it is a concern in practice that many of the
published protocols contain redundancies or are inefficient with respect to the number of
communications required, the number of cryptographic operations required (implying
high computational demands), or the number and types of fields required in the
communicated messages. This motivates the search for authentication protocols that are
simple, require a minimum number of communications, a small number of fields in each
message or token, and a small number of cryptographic operations. These considerations
motivate the present work on public-key based protocols. Similar considerations
motivated Bird et al. [Bird91] in their work on symmetric authentication protocols, which
helped focus our attention on the idea of matching protocol runs (see Section 3). Our
work extends the definition of a secure protocol to public-key based protocols with
optional key exchange.

We are concerned with both authentication and key exchange. It is now well accepted
that these topics should be considered jointly rather than separately [Baus89]. A protocol
providing authentication without key exchange is susceptible to an enemy who waits until
the authentication is complete and then takes over one end of the communications line.
Such an attack is not precluded by a key exchange that is independent of authentication.
Key exchange should be linked to authentication so that a party has assurances that an
exchanged key (which might be used to facilitate privacy or integrity and thus keep
authenticity alive) is in fact shared with the authenticated party, and not an impostor. For
these reasons, it is essential to keep key exchange in mind in the design and analysis of
authentication protocols.

In the remainder of this paper, we first provide some background regarding attacks on
protocols, in an effort to motivate and give context to what follows. We then proceed

3

with a definition of a secure protocol, and discuss characteristics that we consider
desirable in an authentication protocol. We introduce a protocol referred to as the
station-to-station protocol, examine it in detail, and justify its features. Some related
protocols are discussed, and the proposed protocol is considered in relation to these. We
conclude with a summary of principles we feel are important in the design of
authentication protocols.

2. Notation and Motivation

Before discussing protocols in more detail, we first define some notation. For historical
reasons, we give the two parties involved the names Alice and Bob.

{ ⋅} Braces indicate a hash function. {x, y} is the result when a hash function is
applied to x concatenated with y.

sA Alice’s secret key for a signature scheme. sA(x) is Alice’s signature on x.
sA{ x} is Alice’s signature on the hashed version of x.

pA Alice’s public key for a signature scheme. If the signature scheme is a public-
key cryptosystem, then we define pA{ x} and pA(x) to be Alice’s public key
encryption function with and without hashing.

CertA Alice’s certificate, containing Alice’s name (and possibly other information),
her public key, and a trusted authority T’s signature over this information.
CertA = (Alice, pA, ..., sT{Alice, pA, ...}). CertA binds the name Alice to the
public key pA. If Alice sends her certificate to Bob and provides evidence that
she knows the secret key sA corresponding to pA, then she has provided
evidence to Bob that she is in fact Alice.

EK(⋅) Encryption using a symmetric cryptosystem with key K.

To illustrate an attack on a protocol and motivate what follows, consider the following
simple (but flawed) challenge-response protocol where Alice and Bob sign each other’s
random number challenge.

Insecure simple challenge-response:

Alice Bob
RA

CertB, sB(RA), RB

CertA, sA(RB)

4

Alice begins by sending the random challenge RA to Bob. Bob responds with his
certificate, his signature on RA and a random challenge RB. Alice uses Bob’s public key
in CertB to verify Bob’s signature, and then responds with her certificate and signature on
RB. Finally, Bob verifies Alice’s signature.

An enemy Eve can impersonate Alice in a communication with Bob by passing Bob’s
challenge along to Alice:

Attack on the simple challenge-response:

Alice Eve Bob
RE

CertB, sB(RE), RB

Eve now needs Alice’s help to sign RB.
RB

CertA, sA(RB), RA

Eve now has the required signature, drops
this call, and continues the call with Bob.

CertA, sA(RB)

Eve begins by initiating the protocol with Bob. When Bob sends the challenge to Eve,
Eve initiates another instance of the protocol with Alice and gets Alice to sign Bob’s
challenge. Eve can then complete the authentication with Bob and successfully
impersonate Alice. The main problem here is that the challenged party has no influence
over what he will sign. (As a general rule, it is better if both parties have some influence
over the quantity signed.) The challenger can abuse this protocol to get a signature on
any quantity he chooses.

We now turn our attention to secure protocols.

3. Definition of a Secure Protocol

A particular instantiation of an authentication protocol is referred to as a run. Before
presenting a definition of a secure protocol, we first consider the properties of what we
consider to be a “successful” run. In a successful run, two communicating parties, Alice
and Bob, exchange a number of messages at the end of which they have assurances of
each other’s identities and furthermore, optionally share a secret key known only to them.
For every completed run, each party either accepts or rejects the other’s identity and
optionally a secret key. In a successful run, the run is completed and both parties accept.

5

Property 1 of a successful run: Both Alice and Bob accept each other’s identities. If the
authentication involves key exchange, then they both accept the exchanged key also.

The second property of a successful run concerns the records of a protocol run (assuming
the participants had each recorded the exchange). To proceed, we require definitions
regarding the use of the word match when applied to records of a run (a slightly different
definition is given by Bird et al. [Bird91]).

Matching Messages: We say that a message from one record matches a message from
another if one record lists the message as incoming, the other record lists the message
as outgoing, and all fields of the message relevant to authentication are the same in
both records.

The qualification relevant to authentication is necessary to allow individual messages to
match even if they are not bit-wise identical. The motivation here is that if a message
contains unsigned fields which are cryptographically irrelevant to authentication, then
discrepancies in such fields alone should not preclude a message from meeting the
definition of matching.

Matching Records of Runs: We say that two records of a run match if their messages can
be partitioned into sets of matching messages (each set containing one message from
each record), the messages originated by one participant appear in the same order in
both records, and the messages originated by the other participant appear in the same
order in both records. For simplicity, we do not consider protocols in which
messages need not arrive in the order in which they were sent.

Note that messages originated by distinct participants do not have to be in the same order
with respect to each other. This allows the case where messages in transit cross. In such
a case, each participant will record his own message as having been sent before the
crossing message is received.

Property 2 of a successful run: If Alice and Bob had recorded the exchange, then their
records of the run will match.

We now distinguish between a successful run and a secure run. To consider a run
successful by any reasonable definition, the run must be considered secure in the intuitive
sense. On the other hand, it is possible for a run to be unsuccessful even in the absence of
security breaches (e.g., if both legitimate parties reject for some reason). It is also always
possible that an enemy may delay a legitimate message of a run indefinitely. Suppose
that in a particular run, Alice accepts Bob’s identity, sends the last message of the
protocol to Bob, and then an enemy destroys this message. Assuming Bob must receive
this message before accepting Alice’s identity, Bob will not accept Alice’s identity.
Intuitively, while this run is unsuccessful, there have been no security breaches; at the
time that Alice accepted Bob’s identity (before she sent the last message), Bob’s record
of the partial run matched Alice’s record. For our purposes, such a denial of service

6

attack in itself is not considered a security breach; such problems often must be dealt with
by physical security and other techniques.

We are now in a position to define what it means for a run of a (symmetric or
asymmetric) mutual authentication protocol to be insecure:

Definition 1: A particular run of a protocol is an insecure run if any party involved in
the run, say Alice, executes the protocol faithfully, accepts the identity
of another party, and either of the following conditions holds:
• At the time that Alice accepts the other party’s identity (before she

sends or receives a subsequent message), the other party’s record of
the partial or full run does not match Alice’s record.

• The exchanged key accepted by Alice is known to someone other
than the party whose identity Alice accepted. (This condition does
not apply to authentication without key exchange.)

Note that under this definition a conventional key exchange protocol requiring a trusted
third party [Kohl91] is not secure.

It should be clear that Alice’s record, which must match that of the other party in the
above definition, is the actual record she had at the point in time at which she has
received enough information to carry out any computations required to reach the accept
state; messages sent or received subsequent to this are irrelevant.

The goal of the enemy is to cause a run to be insecure. The goal of the designer of the
protocol is to make the enemy’s task impossible (or computationally infeasible) in all
instances. Reversing Definition 1, we get a definition of a secure (symmetric or
asymmetric) mutual authentication protocol:

Definition 2: A secure protocol is a protocol such that the following conditions hold
in all cases where one party, say Alice, executes the protocol faithfully
and accepts the identity of another party:
• At the time that Alice accepts the other party’s identity (before she

sends or receives a subsequent message), the other party’s record of
the partial or full run matches Alice’s record.

• It is computationally infeasible for the exchanged key accepted by
Alice to be recovered by anyone other than Alice and possibly the
party whose identity Alice accepted. (This condition does not apply
to authentication without key exchange.)

By themselves, the above definitions are not particularly helpful in deciding whether a
given protocol is secure, in that they do not lead to constructive procedures to either
verify or expose weaknesses of a protocol. Nonetheless, these definitions can be applied
directly in deciding whether a given potential attack is a real attack. For example, in an
authentication with key exchange, suppose an enemy merely intercepts Alice’s and Bob’s
messages and then passes them along unchanged. Intuitively, the enemy has not

7

compromised the system in this case; the parties have accepted each other’s identities,
have matching records of the run, and exclusively share a secret key. Note that by
Definition 1, such a run is not insecure. In other cases a supposed attack may become
quite convoluted, and it may not be obvious that the attack amounts to just passing along
messages. Definition 1 can be used to distinguish such a pass-along non-attack. In
Section 5, this definition serves well in identifying real attacks; in particular, the second
condition, which appears trivial, is essential.

While formal analysis techniques have been successfully used to uncover weaknesses in
some authentication protocols (see Section 6), proof of correctness is more difficult, and
depends heavily on proper modeling of goals and assumptions. Another technique
available for uncovering weaknesses is that of exhaustive search with respect to
interleaving attacks [Bird91]. Unfortunately, since there are as yet no absolute proofs of
correctness, confidence in a protocol develops only over time as experts conduct analysis
of the protocol and fail to find flaws.

4. Desirable Protocol Characteristics

In addition to being secure, there are other desirable characteristics for a protocol.

Perfect Forward Secrecy

An authenticated key exchange protocol provides perfect forward secrecy if disclosure of
long-term secret keying material does not compromise the secrecy of the exchanged keys
from earlier runs. The property of perfect forward secrecy does not apply to
authentication without key exchange.

Direct Authentication

In some authenticated key exchange protocols, authentication is not complete until both
parties prove knowledge of the shared secret key by using it in subsequent
communications. Such a protocol is called indirect. When authentication is established
by the end of each protocol run, the protocol is direct. An indirect protocol can be
modified to be direct by adding an exchange of known messages or messages with
redundancy encrypted with the exchanged key. For authentication without key exchange,
an indirect protocol provides no security because neither party can accept the other’s
identity.

No Timestamps

While timestamps are convenient for administrative and documentation purposes, it is
desirable in practice to avoid relying on their use for security in authentication protocols.
Difficulties, precautions, and objections to timestamps are well-documented in the
literature [Bell90], [Bird91], [Gaar91]. For convenience, we summarize the more notable
issues below.

8

To use timestamps for authentication, all parties must maintain local clocks that are
periodically synchronized in a secure manner with a reliable source of time. Between
synchronizations with the reliable time source, local clocks may drift. Two parties, Alice
and Bob, must allow a time window for timestamps to compensate for local clock drift
and the fact that messages take time to cross a network. Alice will accept any timestamp
from Bob that is within a window around the time on Alice’s local clock as long as Bob
has not used this particular time value before. Alice can either store all time values used
by all other parties that are within her current window (which is impractical in some
communications environments) or she can store the latest time used by each party and
insist on strictly increasing time values from each party. However, in the strictly
increasing time values case, if Bob uses a time t far into the future for some reason (e.g.
severe clock drift or improper synchronization with the reliable time source), then Bob
will not be able to communicate with Alice until time t is within her window. To prevent
this problem, Alice would have to store time t and not update her record of the latest time
value used by Bob. This could potentially lead to a choice among storing large quantities
of data, sacrificing communications availability, or sacrificing security. Concerning
communications availability, if two parties’ local clocks are too far out of
synchronization, then the parties cannot communicate. This tends to make those
concerned with communications availability want wide time windows which increases
storage requirements. While timestamps are convenient from a theoretical point of view,
they present a number of practical problems. Protocols based on random numbers do not
suffer from these difficulties.

Recently formal analysis has been used in the verification of authentication protocols
[Burr90], [Gaar91]. Starting with a list of initial formal beliefs, the objective is to
logically derive the stated protocol goal by consuming the list of protocol steps. One of
the basic assumptions on which such analysis is typically based is that the parties
involved have the ability to check the freshness of timestamps. In fact, one of the main
results of the work by Gaarder and Snekkenes is the identification of the security
requirement that time clocks be trustworthy in certain protocols. This means that in
practice, the security of timestamp-based protocols relies heavily on the proper
implementation of synchronized and secure time clocks. Unfortunately, despite much
discussion in the literature regarding timestamp-based protocols (e.g. [Den81],
[Habe91]), when it comes to actually implementing such a protocol, the significance of
the security of time clocks is easily lost, and furthermore, the costs associated with a
proper implementation can be significant.

5. Station-to-Station Protocol

We now introduce a simple, efficient authenticated key exchange protocol called the
station-to-station (STS) protocol. The STS protocol has evolved over time; an early
version of this work was described at the 1987 International Switching Symposium
[OHig87]. The STS protocol reached its present form in 1989. We believe that it is
secure according to Definition 2 and has a number of other desirable properties. In the

9

remainder of this section, we describe the protocol, discuss its properties, and justify its
subtle details by showing how variants of it are vulnerable.

5.1 Basic STS Protocol

The STS protocol consists of Diffie-Hellman key establishment [Diff76], followed by an
exchange of authentication signatures. In the basic version of the protocol, we assume
that the parameters used for the key establishment (i.e., the specification of a particular
cyclic group and the corresponding primitive element α) are fixed and known to all users.
While we refer to the Diffie-Hellman operation as exponentiation, implying that the
underlying group is multiplicative, the description applies equally well to additive groups
(e.g., the group of points of an elliptic curve over a finite field). We also assume in this
section that Alice knows Bob’s authentic public key, and vice versa; this assumption is
dropped in the following section.

The protocol begins with one party, Alice, creating a random number x and sending the
exponential αx to the other party, Bob (see diagram below). Bob creates a random
number y and uses Alice’s exponential to compute the exchanged key K = αxy. Bob
responds with the exponential αy and a token consisting of his signature on the
exponentials, encrypted with K using a suitable symmetric encryption algorithm E (i.e.,
EK(sB{ αy, αx})). Alice computes K, decrypts the token using K, and verifies Bob’s
signature using Bob’s public key. Alice sends to Bob her corresponding encrypted
signature on the exponentials, EK(sA{ αx, αy}). Finally, Bob similarly verifies Alice’s
encrypted signature using K and Alice’s public key. The security of the exponential key
exchange relies on the apparent intractability of the discrete logarithm problem [Odly91].

Basic STS Protocol:

Alice Bob
αx

 αy, EK(sB{ αy, αx})

EK(sA{ αx, αy})

It is possible to create a more symmetric version of this protocol where the parties
exchange exponentials first and then exchange encrypted signatures in separate messages.
This would make it permissible for the exponential messages to cross, and then the
encrypted signature messages to cross. In such a case, neither Alice nor Bob need know
who initiated the call. This is desirable, as situations exist in practice (e.g. in both voice
telephony and X.25 data transfer) in which at certain implementation levels, it is not
known which party initiated a call. This explains why each party forms his signature
with his own exponential listed first. If the exponentials were in the same order in both

10

signatures, then Alice and Bob would have to find a way to agree on whose exponential
should be listed first (such as by basing the decision on which party initiated the call).

At this point, consider what assurances the STS protocol provides to the participants.
From Bob’s point of view, as a result of the Diffie-Hellman key exchange, he shares a
key known only to him and the other participant who may or may not be Alice. Our
assumption in this section is that Bob knows Alice’s public key (this is achieved in the
section below through use of certificates). Because Alice has signed the particular
exponentials associated with this run, one of which Bob himself has just created
specifically for this run, her signature is tied to this run of the protocol. By encrypting
her signature with K, Alice demonstrates to Bob that she was the party who created x.
This gives Bob assurance that the party he carried the key exchange out with was, in fact,
Alice. Alice gets a similar set of assurances from Bob.

The STS protocol has the desirable characteristics discussed in section 4. Rather than
using timestamps, challenges are used. Because the parties demonstrate knowledge of the
exchanged key by encrypting their signatures, the authentication is direct. The STS
protocol also offers perfect forward secrecy. The only long-term secret keying material
stored by users is their secret keys for the signature scheme. If a secret key is
compromised, the security of exchanged keys from earlier runs is not affected because
Diffie-Hellman key exchange is used; Diffie-Hellman key exchange has no long-term
keying material. There are two other desirable properties of the STS protocol. The first
is that public key techniques are used to make key management simpler and more secure
than is possible using conventional cryptography. If parties generate their own secret
keys, these keys need never be disclosed (to anyone, including any supposedly trusted
party), even during initialization. The second is that there is no need for communicating
parties to contact a central facility on a per-call basis. If certificates are used for
distributing public keys (see Section 5.2), once a party has its own certificate and the
trusted authority’s public key, it can exchange keys with, and authenticate other parties
without consulting a central facility. The protocol appears to strike an elegant and
difficult balance, being simple and secure without utilizing unnecessary or redundant
elements.

To illustrate the need for the features of the STS protocol, it is now demonstrated how the
protocol is weakened when the following modifications are made: removing the
encryption of the signatures, signing only one’s own exponential, signing only the other
party’s exponential, or uncoupling authentication from key exchange.

Removing encryption on signatures

Consider a modified STS protocol where the signatures on the exponentials are not
encrypted with the exchanged key K. Because the exponentials are public information,
any other party could sign them as well. Suppose that in the last message of the protocol,
an enemy Eve substitutes her own signature on the exponentials for Alice’s signature. (If
the parties exchange public keys using certificates, Eve would have to substitute her own
certificate for Alice’s certificate.) This may not seem like a serious attack, as Eve does

11

not know the exchanged key. However, if Bob were a bank, Eve could get credit for a
deposit Alice might make. Interestingly, even though Bob has been misled here, Alice is
the party who may be hurt.

Having informally discussed why the above run is insecure, we now apply Definition 1.
Bob executed the protocol faithfully and accepted Eve’s identity, but the exchanged key
is known to a different party, Alice. By Definition 1, the run is insecure. Because an
insecure run is possible, the modified protocol is insecure.

Signing only one’s own exponential

Consider the variant of the STS protocol where each party signs only his own exponential
(i.e. Alice’s encrypted signature is EK(sA{ αx}) and Bob’s is EK(sB{ αy})). We know of no
general attack which applies to this case, but there is an attack which applies when the
signature scheme is RSA [Riv78], the hash function is the identity function, and Diffie-
Hellman key exchange is carried out over GF(p). In this case, Eve can impersonate Alice
in a run with Bob by using x=0 as the exponent in the key exchange. Eve’s exponential is
α0 = 1, and the exchanged key is K = αxy = 1. Eve requires the following encrypted
signature

EK(sA{ αx}) = E1(sA{1})
= E1(sA(1)) because the hash function is the identity function
= E1(1) because signing in RSA is exponentiation and 1z = 1 for all z

Eve can compute E1(1), and hence can impersonate Alice. Although this attack applies
only to a specific case, it illustrates a more general problem in signing only one’s own
exponential: if Eve can obtain a quantity for which she can acquire or compute the
discrete logarithm, and can acquire or compute Alice’s signature on the quantity, then
Eve can use (and reuse) this quantity as an exponential to impersonate Alice. By
introducing the second exponential into the data to be signed, an adversary is forced to
solve a different instance of the problem in real time each time impersonation is
attempted.

Signing only the other party’s exponential

Consider the variant of the STS protocol where each party signs only the other party’s
exponential (i.e. Alice’s encrypted signature is EK(sA{ αy}) and Bob’s is EK(sB{ αx})).
Again, we know of no general attack which applies to this case, but there are some
concerns.

In principle, it is imprudent to sign arbitrary text supplied by a potential adversary. In the
case at hand, in order for an adversary to recover the signature, he would have to know
the key K. To compute K, the adversary would need to know the discrete logarithm of the
quantity being signed. While an adversary would not in general know the logarithm of a
particular fixed quantity he might desire signed, it is trivial to produce such quantities by

12

preselecting logarithms, and it would appear undesirable to allow an adversary the
freedom to acquire signatures on any quantities whose logarithms are known.

In Section 5.3, it is shown that the STS protocol can be reduced to an authentication-only
protocol by replacing exponentials with random numbers and removing the encryption on
the signatures. If each party were to sign only the other party’s exponential, then the
authentication-only variant would be subject to the attack on the simple challenge-
response outlined in Section 2. Similarly, signing only one’s own exponential does not
result in a protocol which reduces to a secure authentication-only variation.

Note that even should it turn out that signing both exponentials does not provide more
security than simply signing a single exponential, the only added cost in doing the former
is additional hashing, which in general is relatively minor. No additional operations
involving the signature scheme, symmetric cryptosystem operations, or data transmission
are introduced by signing both exponentials rather than one only.

Uncoupling authentication from key exchange

If the STS protocol is modified so that authentication is uncoupled from key exchange by
having the parties sign some quantity that is independent of the exponentials, the
resulting protocol is subject to the classical intruder-in-the-middle attack (e.g., [Riv84])
on Diffie-Hellman key exchange:

Alice Eve Bob
αx αx'

αy' αy

KA = αxy' KB = αx'y

Eve substitutes her own exponentials for Alice’s and Bob’s exponentials. This results in
Alice and Bob calculating two different keys, both of which can be calculated by Eve.
Eve shares key KA with Alice, and key KB with Bob. During the authentication phase of
the run, Eve can pass Alice’s encrypted messages to Bob and vice versa by decrypting the
messages with one key and re-encrypting with the other. After authentication, Eve is free
to passively eavesdrop or to inject her own messages. By Definition 1, this modified
protocol is insecure because while Alice executed the protocol faithfully and accepted
Bob’s identity, the exchanged key is shared with a different party, Eve. There is a similar
problem from Bob’s point of view.

5.2 STS Protocol in Practice

We now describe the use of the STS protocol in practice, for the specific case where the
key exchange is carried out in the multiplicative group of a finite field. For clarity, we

13

focus on prime fields GF(p). Two parameters are required then for Diffie-Hellman key
exchange: a primitive element α in GF(p), and a suitable prime p. The prime p should be
chosen to preclude Pohlig-Hellman type attacks [Poh78]. In light of recent work on the
discrete logarithm problem ([Odly91] for prime fields; [Odly84] for fields of
characteristic two), it is prudent to use a distinct field for each user (i.e., for GF(p), a
distinct prime p, chosen by the user himself). The best known attacks on Diffie-Hellman
key exchange over finite fields are the index-calculus techniques involving a massive pre-
computation which yields a database specific to a particular field. The database then
allows computation of individual logarithms in that field relatively quickly. If a single
field is used for an entire network, a single database allows the compromise of all key
exchanges – providing great incentive to attempt to construct the database.

To facilitate the distribution of user’s public keys and user-specific Diffie-Hellman
parameters, certificates may be used. In addition to these items, a certificate should
contain the user’s name and the signature of the trusted authority over these data items.
The reason for the inclusion of the (α, p) pair in the certificate is explained below. The
STS protocol is then as follows.

STS Protocol in practice:

Alice Bob
α, p, αx

 αy, CertB, EK(sB{ αy, αx})

CertA, EK(sA{ αx, αy})

CertA = (Alice, pA, α, p, sT{Alice, pA, α, p})

The differences here are as follows. Alice sends her Diffie-Hellman parameters along in
the first message; Bob uses these instead of fixed network-wide parameters. Upon
receiving the third message, Bob verifies that the Diffie-Hellman parameters sent in the
first message agree with those actually in Alice’s certificate. In the second message, Bob
sends Alice his certificate, from which Alice can extract his authentic public key; Alice
verifies authenticity by checking the signature of the trusted authority on Bob’s
certificate. Similarly, in the third message, Alice sends Bob her certificate, allowing Bob
to extract her authenticated public key, after similarly verifying the trusted authority’s
signature on her certificate. Note that Bob does not need Alice’s certificate until the third
message, and in fact may not wish to receive it earlier, since this may require having to
allocate storage to save the certificate until needed upon receipt of the third message. A
further reason for Alice to delay sending her certificate until the third message is to allow
both Alice and Bob the option to encrypt their certificates with the exchanged key.
Although certificates are, in theory, public information, it may be desirable in some

14

applications to prevent an eavesdropper from seeing them in order to prevent a passive
eavesdropper from learning Alice and Bob’s identities.

Note that knowledge of the other party’s public key is not required to construct and send
or to receive and process the first message. If the public key were required at this stage,
then introducing certificates would necessitate an additional preliminary message to make
the certificate available earlier.

As discussed in Section 5.1, it may be desirable in some cases to allow both parties to
send the initial message simultaneously. In this case, some method must be used to
establish one of the parties as the dominant party (i.e. the party whose α, p pair will be
used). The nondominant party would then continue the protocol with the second
message. An example of a simple method would be to choose the party with the larger
prime p to be dominant.

It is now shown that the protocol is weakened if Diffie-Hellman parameters are not
included in certificates.

Removing Diffie-Hellman parameters from certificates

Without Diffie-Hellman parameters in certificates, the enemy, Eve, has the freedom to
modify α and p in Alice’s first message. Let Alice’s exponential be t = (αx mod p).
Suppose that Eve changes α to be 1 and p to be t-1 (see diagram below). Then Bob’s
exponential is 1y mod (t-1) = 1, and Bob calculates the exchanged key to be
ty mod (t-1) = 1. Alice calculates the exchanged key to be 1x mod p = 1. Because Eve
does not modify the exchanged exponentials and Alice and Bob calculate the same
exchanged key, Alice and Bob will accept each other’s encrypted signatures.

Alice Eve Bob

α, p, t = αx 1, t-1, t

1, CertB, E1(sB{ 1, t})

CertA, E1(sA{ t, 1})

Eve knows the exchanged key and after authentication, she is free to both eavesdrop and
inject her own messages. Note that Alice and Bob accepted each other’s identities, but
their records of the run do not match, and the exchanged key is known to a third party;
the modified protocol is thus insecure by our definitions, as well as intuitively.

While it may appear that the above-described substitution is trivial and easily detected by
special checks, the potential for compromise remains. More sophisticated or disguised
related attacks appear possible, including the possible use of Pohlig-Hellman-weak
primes. The fundamental concern is that in order to rely on the believed intractability of

15

the Diffie-Hellman problem, it must be ensured that suitable Diffie-Hellman parameters
are in fact used.

5.3 Authentication-Only version of STS Protocol

It is possible to turn the STS protocol into an authentication-only protocol by replacing
the exponentials with random numbers and removing the encryption on signatures:

Authentication-only STS Protocol:

Alice Bob
RA

CertB, RB, sB{ RB, RA}

CertA, sA{ RA, RB}

This simplified protocol is essentially the same as the three-way authentication protocol
currently proposed by ISO [9798-3]. This is discussed further in the following section.

6. Discussion of Other Protocols

From the intruder-in-the-middle attack on unauthenticated Diffie-Hellman key exchange
to spoofs in the spirit of the well-known “grandmaster postal-chess” problem,1 attacks on
authentication protocols are numerous and well-documented in the literature. Burrows,
Abadi and Needham analyzed eight protocols and found six to contain redundancies, and
four to contain flaws [Burr90, Table I], including both redundancies and flaws in the
CCITT X.509 mutual authentication protocols [X509]. To get a flavour of the concerns
we have with many of the currently proposed protocols, we briefly discuss two of the four
protocols analyzed by Burrows et al.: Kerberos, and one of the X.509 protocols. We also
discuss a related ISO protocol.

Kerberos protocol. The popular Kerberos protocol [Kohl91], based on symmetric
cryptosystems, has several features which make it somewhat undesirable in various
applications. These include the use of timestamps (discussed earlier), the requirement of
an on-line authentication server, and redundancies in the protocol itself. These and
further issues are raised by Bellovin and Merritt [Bell90].

1 A novice who engages in two simultaneous chess games with two distinct grandmasters, playing white

pieces in one game and black in the other, can take his opponents’ moves in each game and use them in
the other to guarantee himself either two draws or a win and a loss, and thereby unfairly have his chess
rating improved.

16

Three-pass CCITT X.509 authentication protocol. The CCITT X.509 recommendation
[X509] is a very widely known internationally standardized authentication protocol based
on public-key cryptography. The one and two-pass X.509 protocols require timestamps,
while timestamps are redundant in the three-pass protocol; the specification allows that
the timestamp field may be zero in this latter case (making the three-pass protocol
practical, although it would be preferable if no field at all had to be allocated for
timestamps). Some concerns regarding the protocol are now summarized. The final
message of the protocol is Alice’s signature on both Bob’s challenge and Bob’s identity:
sA{ RB, Bob}.1 This allows Bob to obtain the signature of Alice on a quantity over which
Bob has control. This is undesirable, although it is not clear how to use this to mount a
direct attack. A second concern involves the suggested use of the optional encrypted data
field in the protocol to accomplish key exchange; this use does not guarantee perfect
forward secrecy.2 A further issue with the use of this field is that there is no guarantee
that the sender of the encrypted data actually knows the encrypted data itself, and in fact
an adversary can pass off another party’s encrypted data as his own [Burr90], [Gaar91]. A
third concern [IAns90] is the restriction that the signature system used must be capable of
both signing and encrypting data, which rules out many candidate signature schemes
including the proposed NIST Digital Signature Algorithm [DSA91].

ISO three-way protocol. As noted in Section 5.3, the authentication-only version of the
STS protocol is essentially the same as the three-way protocol currently proposed by ISO
[9798-3]. The differences are that the ISO protocol allows redundant copies of the
random numbers, optional fields for the identity of the intended recipient of a message,
and optional fields for arbitrary text. Due to limitations of authentication-only protocols
as discussed earlier, in most applications it is expected that the key establishment
functionality of the ISO protocol (provided by the optional text fields both within and
outside the signed portion of each message) will be employed. Recalling the concern
noted above in X.509, care must be taken in the use of these fields; furthermore, note that
their use to transfer encrypted session keys does not guarantee perfect forward secrecy.

Attack on a specific authentication protocol.

To augment the literature documenting attacks on specific protocols, and to further
emphasize how easily flaws can be introduced and overlooked, we now consider the
following (flawed) variation of the ISO authentication exchange. In fact, this variation
was a preliminary version of the protocol. Here, Alice is allowed to use a new random
number RA' in place of RA in the third message; RA' is then also sent along as an additional
cleartext field in the third message. In this modified protocol, an enemy Eve can
authenticate herself as Alice to an unsuspecting party Bob as follows (see diagram
below). Eve calls Bob, pretending to be Alice, sending a challenge to Bob; Eve responds

1 In an early version of X.509, the final message was simply sA{ RB}; the recommendation has since been

formally updated.
2 Note that the use of RSA [Riv78] in the obvious manner to achieve key exchange similarly does not

guarantee perfect forward secrecy.

17

to Bob’s counter-challenge by calling Alice and getting her to respond correctly to the
challenge; Eve then drops the call with Alice and passes the correct response along to
Bob, thus completing the authentication from Bob’s point of view. Note that this attack
is successful even if the identity of the intended recipient of each message is incorporated
within the signed portion of each authentication token, as is optionally permissible in the
formal definition of the related ISO protocol. To emphasize this, these principals’
identities are included, and annotated with asterisks, in the attack detailed below. For
simplicity, certificates are not shown.

Alice Eve Bob

Choose RA.
Send message to Bob

pretending to be Alice.
RA

RB, Alice*, sB{ RB, RA, Alice*}

Use RB.
Send message to Alice
pretending to be Bob.

RB

RA', Bob*, sA{ RA', RB, Bob*}

RA', Bob*, sA{ RA', RB, Bob*}

Eve drops the call with Alice.
Now Bob believes that Eve is Alice.

The attack has succeeded.

Regarding other attacks documented in the literature, we note that Bird et al. ([Bird91],
section 4) detail an attack on a specific protocol. This is a specific case of the general
class of reflection attacks in which a challenger is tricked into providing answers to his
own questions [Mit89].

7. Concluding Remarks

Below are some general principles that appear prudent to follow in the design of
authentication protocols. While many of these have been previously observed, we find it
convenient to collect them here.

1. Authentication and key exchange should be linked.

18

If authentication and key exchange are independent, then an attacker could allow two
parties to carry out authentication unhindered, and could take over one party’s role in key
exchange. This would allow the attacker to impersonate a valid party after authentication
and key exchange are completed.

2. Asymmetry in a protocol is desirable.

Symmetries in a protocol should be used with caution, due to both the possibility of
reflection attacks, and attacks in which responses from one party can be re-used within a
protocol. As an obvious illustrative example, the authentication responses of each of two
parties should not be identical.

3. Messages within a particular protocol run should be logically linked or “chained” in
some manner, to prevent the re-use of previous messages or the introduction of messages
from a parallel run.

The objective here is to preclude replay attacks and interleaving attacks. Messages
should also be linked to the current time frame (e.g., through incorporation of recently
generated random numbers). The specific attack detailed in Section 6 is possible due to a
lack of such chaining of messages; similarly, the middleperson attack discussed by
Bengio et al. [Beng91] is possible in protocols which fail to address this principle.

4. A party carrying out a cryptographic operation (serving as a signature) should be
able to incorporate into the data being operated on a reasonable amount of data which
he himself randomly selects.

In other words, a protocol should not require a party to carry out a cryptographic
operation on inputs which may be entirely under the control of an adversary. This “add
your own salt” principle is aimed at preventing an adversary from obtaining responses to
specific questions he himself may not be able to answer. This should also prevent so-
called chosen-ciphertext attacks [Bras88, p. 27]. Related to this principle, we note the
following principle paraphrased from Moore [Moor88, section II]:

5. Valid signatures should result from the transformation of a message from a message
space which is a sparse subset of the domain of the signature function.

For example, requiring redundancy, or some other expectation, in the data to be signed,
may thwart attacks whereby an adversary attempts to forge new signatures by combining
previously obtained valid signatures. For the STS protocol, the hash function selected to
hash the exponentials should produce a result smaller than the maximum size of input
allowed to the signature process, to allow redundancy to be added to the hash result
before signing.

The proposed station-to-station protocol satisfies the above principles, as well as the
desirable properties noted in Section 4 (perfect forward secrecy, direct authentication, no
requirement of timestamps). Its compatibility with the emerging ISO authentication

19

protocol, and its ability to provide key establishment within this framework, add to its
appeal. Furthermore, the station-to-station protocol uses the minimum number of
messages required for random-number-based challenge-response mutual authentication
(three), and requires only one signature generation, one signature verification, and two
encryption operations by each party (with an additional signature verification if
certificates are used on a per-run basis to bind a user’s identity and public key).

Any appropriate signature scheme may be used in the STS protocol, including the Digital
Signature Algorithm (DSA) recently proposed by NIST [DSA91]. For reasons of
practical efficiency, an obvious candidate signature scheme is RSA [Riv78]. Similarly,
any appropriate symmetric encryption algorithm may be used. In some applications it
may be desirable to avoid the use of an encryption algorithm. One method to consider for
avoiding the need for an encryption algorithm EK is as follows: replace the encrypted
signature by a signature plus a message authentication code (MAC) over the signature;
i.e., replace EK(s), where s = sB{ αy, αx} (as in Section 5.1), by (s, MK(s)), where MK is a
MAC with key K. The receiving party would then verify both the signature and the MAC
over the signature. While allowing one to avoid the requirement of an encrypt/decrypt
capability (which e.g., both Kerberos and the X.509 protocols require), a disadvantage of
this approach is the additional data transfer it entails.

References

[9798-3] Information Technology - Security Techniques. Entity Authentication Mechanisms - Part 3:
Entity Authentication Using a Public-Key Algorithm (CD 9798-3), Nov. 1991 (ISO/IEC
JTC1/SC27 Committee Draft #4).

[Baus89] F. Bauspieß and H.-J. Knobloch “How to keep authenticity alive in a computer network”,
Advances in Cryptology - Eurocrypt 89, J.-J. Quisquater and J. Vandewalle (eds.), Lecture
Notes in Computer Science 434, 38-46, Springer-Verlag (1990).

[Bell90] S.M. Bellovin and M. Merritt, “Limitations of the Kerberos authentication system”, ACM
Computer Communication Review 20 No.5 (1990), 119-132.

[Beng91] S. Bengio, G. Brassard, Y.G. Desmedt, C. Cloutier, and J.-J. Quisquater, “Secure
implementation of identification system”, J. Cryptology 4 (3), 1991, pp. 175-183.

[Bird91] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, M. Yung, “Systematic design
of two-party authentication protocols”, Advances in Cryptology - Crypto ’91, Springer-
Verlag (to appear).

[Bras88] G. Brassard, Modern Cryptology, Lecture Notes in Computer Science 325. Berlin/New
York: Springer-Verlag, 1988.

[Burr90] M. Burrows, M. Abadi, R. Needham, “A logic of authentication”, ACM Transactions on
Computer Systems 8 No.1 (Feb. 1990), 18-36.

[Den81] D.E. Denning and G.M. Sacco, “Timestamps in key distribution protocols”, Comm. ACM 24
No. 8 (Aug. 1981), 533-536.

[Diff76] W. Diffie and M.E. Hellman, “New directions in cryptography”, IEEE Trans. Info. Theory
IT-22 No.6 (Nov. 1976), 644-654.

20

[DSA91] (proposed U.S. FIPS) Digital Signature Standard (DSS), Federal Register, vol.56, no.169
(Aug. 30 1991), 42980-42982.

[ElGa85] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms”, IEEE Trans. Info. Theory IT-31 No.4 (July 1985), 469-472.

[Fiat87] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification and
signature problems”, Advances in Cryptology - Crypto 86, A. Odlyzko (ed.), Lecture Notes
in Computer Science 263, 186-194, Springer-Verlag (1987).

[Gaar91] K. Gaarder and E. Snekkenes, “Applying a formal analysis technique to the CCITT X.509
strong two-way authentication protocol”, J. Cryptology 3 No.2 (1991), 81-98.

[Guil88] L.C. Guillou and J.-J. Quisquater, “A practical zero-knowledge protocol fitted to security
microprocessing minimizing both transmission and memory”, Advances in Cryptology -
Eurocrypt ’88, C.G. Günther (ed.), Lecture Notes in Computer Science 330, 123-128,
Springer-Verlag (1988).

[Gun89] C.G. Günther, “An identity-based key-exchange protocol”, Advances in Cryptology -
Eurocrypt 89, J.-J. Quisquater and J. Vandewalle (eds.), Lecture Notes in Computer Science
434, 29-37, Springer-Verlag (1990).

[Habe91] S. Haber and W.S. Stornetta, “How to time-stamp a digital document”, J. Cryptology 3 No.2
(1991), 99-111.

[IAns90] C. I’Anson and C. Mitchell, “Security defects in CCITT Recommendation X.509 - The
Directory Authentication Framework”, Computer Communication Review 20 No.2 (Apr.
1990), 30-34.

[Kohl91] J. Kohl and B.C. Neuman, “The Kerberos network authentication service”, MIT Project
Athena Version 5, 1991.

[Mit89] C. Mitchell, “Limitations of challenge-response entity authentication”, Electronics Letters 25
No.17 (Aug. 1989), 1195-1196.

[Moor88] J.H. Moore, “Protocol failures in cryptosystems”, Proc. of the IEEE 76 No.5 (May 1988),
594-602.

[OHig87] B. O’Higgins, W. Diffie, L. Strawczynski, R. de Hoog, “Encryption and ISDN - A Natural
Fit”, 1987 International Switching Symposium (ISS 87).

[Okam89] E. Okamoto and K. Tanaka, “Key distribution system based on identification information”,
IEEE J. Selected Areas in Comm. 7 No.4 (May 1989), 481-485.

[Odly84] A.M. Odlyzko, “Discrete logarithms in finite fields and their cryptographic significance”,
Advances in Cryptology - Eurocrypt 84, T. Beth, N. Cot and I. Ingemarsson (eds.), Lecture
Notes in Computer Science 209, 224-314, Springer-Verlag (1985).

[Odly91] B.A. LaMacchia and A.M. Odlyzko, “Computation of Discrete Logarithms in Prime Fields”,
Designs, Codes and Cryptography 1 No.1 (May 1991), 47-62.

[Poh78] S.C. Pohlig and M. Hellman, “An Improved Algorithm for Computing Logarithms over
GF(p) and its Cryptographic Significance”, IEEE Transactions on Information Theory IT-24
(1978), 106-110.

[Riv78] R.L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems”, Comm. ACM 21 (1978), 120-126.

21

[Riv84] R.L. Rivest and A. Shamir, “How to expose an eavesdropper”, Comm. ACM 27 No.4
(Apr.1984), 393-395.

[Schn89] C.P. Schnorr, “Efficient identification and signatures for smart cards”, Advances in
Cryptology - Crypto 89, G. Brassard (ed.), Lecture Notes in Computer Science 435, 239-251,
Springer-Verlag (1990).

[Sham84] A. Shamir, “Identity-based cryptosystems and signature schemes”, Advances in Cryptology -
Crypto 84, G.R. Blakley and D. Chaum (ed.), Lecture Notes in Computer Science 196, 47-
53, Springer-Verlag (1985).

[X509] CCITT Blue Book Recommendation X.509, The Directory-Authentication Framework,
Geneva, March 1988; also ISO 9594-8.

