Checking Validator Set
(CheckVS)

As part of the light client, the CheckVS procedure has to check, whether given
two headers (whose heigts differ by more than 1), the LightClient can trust the
newer header under the assumption it trusted the old one.

This document contains some math formulas. To ease reading, the file
/tendermint/docs/spec/pdfs/checkvalidators.pdf displays them correctly.

Definitions

header fields
o height
o bfttime: the chain time when the header (block) was generated
o V: validator set containing validators.
o nextV: next validators

e {p: trusting period

o for a time ¢, the predicate correct(v, ) is true if the validator v follows the
protocol until time ¢ (we will see about recovery later). Similarly we define
faulty(v, t).

e For each header £ it has locally stored, the LightClient stores whether it
trusts h. We write trust(h) = true, if this is the case.

e Validator fields. We will write a validator as a tuple (v, p) such that

o v 1is the identifier (we assume identifiers are unique in each validator
set)

o p is its voting power

LightClient Trusting Spec

LightClient Invariant

For each LightClient / and each header h: if | has set trust(h) = true, then
validators that are correct until time h. b fttime -+ tp have more than two thirds
of the voting power in h. V. (Or/and h. nextV)



Formally,

>, p>23 > p
(v,p)ER.VA (v,p)eh.V
correct(v,h.bfttime-+tp)

Equivalently,

>, p<13 ) p
(v,p)ER.VA (v,p)eh.V
faulty(v,h.bfttime-+tp)

Question: What should be the precise assumption here. Is the invariant on /4. V'
or on h. NextV or both?

Assumption: If a header is properly generated, then the above equations hold.

Liveness

Draft: If a header h as been properly generated by the blockchain (and its age is
less than the trusting period), then a correct LightClient will eventually set
trust(h) = true.

High Level Solution

Upon initialization, the LightClient is given a header inithead it trusts by social
consensus. It is assumed that inithead satisfies the LightClient Invariant.

When a LightClients sees a new header it has to decide whether to trust the new
header. Trust can be obtained by (possibly) the combination of two methods.

1. an uninterrupted sequence of proof. If a block 1s appended to the chain,
where the last block is trusted (and properly committed by the old validator
set in the next block), and the new block contains a new validator set, the
new block is trusted if the LightClient knows all headers in the prefix.
Intuitively, a trusted validator set is assumed to not chose a new validator
set that violates the fault assumption.

2. trusting period. Based on a trusted block 4, and the LightClient Invariant,
which ensures the fault assumption during the trusting period, we can try to
infer wether it is guaranteed that the validator set of the new block contains



> 2/3 correct voting power. If such a validator set commits a block, we can
trust it, as these processes have been continuously correct by the invariant.

Examples: for the “trusting period” method

e oh: the old trusted header
e nh: the new header that has to be checked

Let’s assume oh. bfttime + tp > nh. bfttime and oh. bfttime + tp > now.
In the following examples, the pairs (v, p) denote validators and their voting
power.

Example: Identical VSets

oh.V = {(1,1),...(4,1)}
nh.V = {(1,1),...(4,1)}

As we trust oh.V (at oh.bfttime) and the trusting period is not over yet, we trust
nh.V.

Example: Changed Voting powers

oh.V ={(1,1),...(4,1)}
nh.V ={(1,1),...(4,2)}

Validator 4 has more than a third voting power in nh.V. As trusting oh does not
rule out that 4 is faulty, the fault assumption might be violated in /. V. Thus,
nh.V cannot be trusted.

Example: Lucky case with

oh.V ={(1,1),...(6,1)}

nh.V ={(1,1),...(7,1)}
By the fault assumption (n > 3%), at most one validator in oh. V' is faulty. In
addition, validator 7 may be faulty. As a result there are at most 2 faulty

validators in nh. V. Because 7 > 3 - 2 we say that oh.V provides sufficient trust
in order to trust nh. V.

Example: Swapping validators



oh.V ={(1,1),...(4,1)}

nh.V ={(2,1),...(5,1)}
Observe that validator 1 is not present in n/.. V. Conservatively, we have to
assume 1 is correct, and there may be a fault among 2,3,4. In addition, we don’t
know 35, so that conservatively, we have to assume 5 may be faulty. Thus among

2,3,4,5, there may be two faults which violates the faults assumption. Thus oh
does not provide sufficient trust in order to trust n/.

Basics for the “trusting period” method

The function CheckVS(oh, nh) returns true, when oh provides sufficient
trust to trust nh.

Assumptions
1. tp < unbondingperiod.
2. nh.bfttime < now

3. nh.bfttime < oh. bfttime + tp
4. trust(oh) = true

Some Maths

Observation 1. If oh. bfttime + tp > now, we trust the old validator set oh. V'

In the following let’s assume oh is trusted and sufficiently new.

Definition 1. Let PA C oh. V be a potential adversary in oh, if the sum of the
voting powers in PA is less than 1/3 of the voting powers in oh. V/, that is,

Y p<1/3 > p

(v,p)ePA (v,p)€Oh.V

Proposition 1. The set of faulty processes

oh.V \ {(v,p) : (v,p) € oh.V A correct(v, oh.bfttime + tp)}

is a potential adversary.



Proof. By the LightClient invariant.

Definition 2. Let the unknown validators UV be the validators that appear in
nh.V and not in oh. V, that is,

UV = {(v,p) : (v,p) € nh.V A A(v,z) € oh.V}.

Theorem 1. If for all potential adversaries PA, in n/. the combined voting
powers of PA and UV is less than a third of the total voting power, then in nA,
more than 2/3 of the voting power is held by correct processes. Formally, if for
all PA

>, p+ D, p<l3 3, p
(v,0ld)e PAN (vp)eUV (vip)enh.V
(vip)enh.V

then

DRPEPTE
(v,p)ENA.VA (v,p)ER.V
correct(v,oh.bfttime+tp)

Proof. By the definition of PA, Proposition 1, and the LightClient invariant.

By Assumption 3, there is sufficient voting power to trust the new validator set.
(And thus the validator set it signs in that block, for which the ¢p starts at the
b fttime of the header).

Below, we thus sketch a function that checks whether the premise of Theorem 1
holds. If the results is positive, we can trust n/., otherwise not.

An Algorithm

In pseudo go...

func CheckVS(oh, nh) bool {
if oh.bfttime + unbonding_period < now { //
Observation 1
return false // old header was once trusted but it
is expired

¥

PAs := compute_all_PAs(oh) // Definition 1



PAs := reduce (PAs) // remove every PA that
is a subset of another PA
UV := compute_UV(oh,nh) // Definition 2

vpUV :
1

VpNH := votingpower(nh.V,nh) // right hand side of
premise of Theorem 1

vpMaxPA := maximumvotingpower(PAs,nh) // voting
powers of all PA and big max

votingpower(UV,nh) // second sum in Theorem

return vpMaxPA + vpUV < 1/3 % vpNH // Theorem 1. It
must be smaller for all
// so it must
be smaller for the max

by

Remarks

Remark. Computing all PAs might be too expensive (all subsets of oh. V' that
have a certain combined voting power in oh). Similarly, we then have to compute
all voting powers of PAs in nh to get the maximum. This is disturbing, as right
now, based on the examples, I expect that CheckVS will mostly return false,
assuming that there are frequent changes in the validator sets. However,

oh.V = nh.V might be the common case.

To Do. The current invariant assumes that the 1/3 fault assumption is always
satisfied. If this is not the case, and there is slashing, etc., we should write the
spec of the fault assumptions with temporary violations. Cf. fork accountability,
slashing, “counter factual signing” etc.



