mirror of
https://github.com/fluencelabs/tendermint
synced 2025-07-31 20:21:56 +00:00
docs/spec: some organizational cleanup
This commit is contained in:
@@ -1,114 +0,0 @@
|
||||
# Light client
|
||||
|
||||
A light client is a process that connects to the Tendermint Full Node(s) and then tries to verify the Merkle proofs
|
||||
about the blockchain application. In this document we describe mechanisms that ensures that the Tendermint light client
|
||||
has the same level of security as Full Node processes (without being itself a Full Node).
|
||||
|
||||
To be able to validate a Merkle proof, a light client needs to validate the blockchain header that contains the root app hash.
|
||||
Validating a blockchain header in Tendermint consists in verifying that the header is committed (signed) by >2/3 of the
|
||||
voting power of the corresponding validator set. As the validator set is a dynamic set (it is changing), one of the
|
||||
core functionality of the light client is updating the current validator set, that is then used to verify the
|
||||
blockchain header, and further the corresponding Merkle proofs.
|
||||
|
||||
For the purpose of this light client specification, we assume that the Tendermint Full Node exposes the following functions over
|
||||
Tendermint RPC:
|
||||
|
||||
```golang
|
||||
Header(height int64) (SignedHeader, error) // returns signed header for the given height
|
||||
Validators(height int64) (ResultValidators, error) // returns validator set for the given height
|
||||
LastHeader(valSetNumber int64) (SignedHeader, error) // returns last header signed by the validator set with the given validator set number
|
||||
|
||||
type SignedHeader struct {
|
||||
Header Header
|
||||
Commit Commit
|
||||
ValSetNumber int64
|
||||
}
|
||||
|
||||
type ResultValidators struct {
|
||||
BlockHeight int64
|
||||
Validators []Validator
|
||||
// time the current validator set is initialised, i.e, time of the last validator change before header BlockHeight
|
||||
ValSetTime int64
|
||||
}
|
||||
```
|
||||
|
||||
We assume that Tendermint keeps track of the validator set changes and that each time a validator set is changed it is
|
||||
being assigned the next sequence number. We can call this number the validator set sequence number. Tendermint also remembers
|
||||
the Time from the header when the next validator set is initialised (starts to be in power), and we refer to this time
|
||||
as validator set init time.
|
||||
Furthermore, we assume that each validator set change is signed (committed) by the current validator set. More precisely,
|
||||
given a block `H` that contains transactions that are modifying the current validator set, the Merkle root hash of the next
|
||||
validator set (modified based on transactions from block H) will be in block `H+1` (and signed by the current validator
|
||||
set), and then starting from the block `H+2`, it will be signed by the next validator set.
|
||||
|
||||
Note that the real Tendermint RPC API is slightly different (for example, response messages contain more data and function
|
||||
names are slightly different); we shortened (and modified) it for the purpose of this document to make the spec more
|
||||
clear and simple. Furthermore, note that in case of the third function, the returned header has `ValSetNumber` equals to
|
||||
`valSetNumber+1`.
|
||||
|
||||
|
||||
Locally, light client manages the following state:
|
||||
|
||||
```golang
|
||||
valSet []Validator // current validator set (last known and verified validator set)
|
||||
valSetNumber int64 // sequence number of the current validator set
|
||||
valSetHash []byte // hash of the current validator set
|
||||
valSetTime int64 // time when the current validator set is initialised
|
||||
```
|
||||
|
||||
The light client is initialised with the trusted validator set, for example based on the known validator set hash,
|
||||
validator set sequence number and the validator set init time.
|
||||
The core of the light client logic is captured by the VerifyAndUpdate function that is used to 1) verify if the given header is valid,
|
||||
and 2) update the validator set (when the given header is valid and it is more recent than the seen headers).
|
||||
|
||||
```golang
|
||||
VerifyAndUpdate(signedHeader SignedHeader):
|
||||
assertThat signedHeader.valSetNumber >= valSetNumber
|
||||
if isValid(signedHeader) and signedHeader.Header.Time <= valSetTime + UNBONDING_PERIOD then
|
||||
setValidatorSet(signedHeader)
|
||||
return true
|
||||
else
|
||||
updateValidatorSet(signedHeader.ValSetNumber)
|
||||
return VerifyAndUpdate(signedHeader)
|
||||
|
||||
isValid(signedHeader SignedHeader):
|
||||
valSetOfTheHeader = Validators(signedHeader.Header.Height)
|
||||
assertThat Hash(valSetOfTheHeader) == signedHeader.Header.ValSetHash
|
||||
assertThat signedHeader is passing basic validation
|
||||
if votingPower(signedHeader.Commit) > 2/3 * votingPower(valSetOfTheHeader) then return true
|
||||
else
|
||||
return false
|
||||
|
||||
setValidatorSet(signedHeader SignedHeader):
|
||||
nextValSet = Validators(signedHeader.Header.Height)
|
||||
assertThat Hash(nextValSet) == signedHeader.Header.ValidatorsHash
|
||||
valSet = nextValSet.Validators
|
||||
valSetHash = signedHeader.Header.ValidatorsHash
|
||||
valSetNumber = signedHeader.ValSetNumber
|
||||
valSetTime = nextValSet.ValSetTime
|
||||
|
||||
votingPower(commit Commit):
|
||||
votingPower = 0
|
||||
for each precommit in commit.Precommits do:
|
||||
if precommit.ValidatorAddress is in valSet and signature of the precommit verifies then
|
||||
votingPower += valSet[precommit.ValidatorAddress].VotingPower
|
||||
return votingPower
|
||||
|
||||
votingPower(validatorSet []Validator):
|
||||
for each validator in validatorSet do:
|
||||
votingPower += validator.VotingPower
|
||||
return votingPower
|
||||
|
||||
updateValidatorSet(valSetNumberOfTheHeader):
|
||||
while valSetNumber != valSetNumberOfTheHeader do
|
||||
signedHeader = LastHeader(valSetNumber)
|
||||
if isValid(signedHeader) then
|
||||
setValidatorSet(signedHeader)
|
||||
else return error
|
||||
return
|
||||
```
|
||||
|
||||
Note that in the logic above we assume that the light client will always go upward with respect to header verifications,
|
||||
i.e., that it will always be used to verify more recent headers. In case a light client needs to be used to verify older
|
||||
headers (go backward) the same mechanisms and similar logic can be used. In case a call to the FullNode or subsequent
|
||||
checks fail, a light client need to implement some recovery strategy, for example connecting to other FullNode.
|
@@ -1,246 +0,0 @@
|
||||
# Tendermint Encoding (Pre-Amino)
|
||||
|
||||
## PubKeys and Addresses
|
||||
|
||||
PubKeys are prefixed with a type-byte, followed by the raw bytes of the public
|
||||
key.
|
||||
|
||||
Two keys are supported with the following type bytes:
|
||||
|
||||
```
|
||||
TypeByteEd25519 = 0x1
|
||||
TypeByteSecp256k1 = 0x2
|
||||
```
|
||||
|
||||
```
|
||||
// TypeByte: 0x1
|
||||
type PubKeyEd25519 [32]byte
|
||||
|
||||
func (pub PubKeyEd25519) Encode() []byte {
|
||||
return 0x1 | pub
|
||||
}
|
||||
|
||||
func (pub PubKeyEd25519) Address() []byte {
|
||||
// NOTE: the length (0x0120) is also included
|
||||
return RIPEMD160(0x1 | 0x0120 | pub)
|
||||
}
|
||||
|
||||
// TypeByte: 0x2
|
||||
// NOTE: OpenSSL compressed pubkey (x-cord with 0x2 or 0x3)
|
||||
type PubKeySecp256k1 [33]byte
|
||||
|
||||
func (pub PubKeySecp256k1) Encode() []byte {
|
||||
return 0x2 | pub
|
||||
}
|
||||
|
||||
func (pub PubKeySecp256k1) Address() []byte {
|
||||
return RIPEMD160(SHA256(pub))
|
||||
}
|
||||
```
|
||||
|
||||
See https://github.com/tendermint/go-crypto/blob/v0.5.0/pub_key.go for more.
|
||||
|
||||
## Binary Serialization (go-wire)
|
||||
|
||||
Tendermint aims to encode data structures in a manner similar to how the corresponding Go structs
|
||||
are laid out in memory.
|
||||
Variable length items are length-prefixed.
|
||||
While the encoding was inspired by Go, it is easily implemented in other languages as well, given its intuitive design.
|
||||
|
||||
XXX: This is changing to use real varints and 4-byte-prefixes.
|
||||
See https://github.com/tendermint/go-wire/tree/sdk2.
|
||||
|
||||
### Fixed Length Integers
|
||||
|
||||
Fixed length integers are encoded in Big-Endian using the specified number of bytes.
|
||||
So `uint8` and `int8` use one byte, `uint16` and `int16` use two bytes,
|
||||
`uint32` and `int32` use 3 bytes, and `uint64` and `int64` use 4 bytes.
|
||||
|
||||
Negative integers are encoded via twos-complement.
|
||||
|
||||
Examples:
|
||||
|
||||
```go
|
||||
encode(uint8(6)) == [0x06]
|
||||
encode(uint32(6)) == [0x00, 0x00, 0x00, 0x06]
|
||||
|
||||
encode(int8(-6)) == [0xFA]
|
||||
encode(int32(-6)) == [0xFF, 0xFF, 0xFF, 0xFA]
|
||||
```
|
||||
|
||||
### Variable Length Integers
|
||||
|
||||
Variable length integers are encoded as length-prefixed Big-Endian integers.
|
||||
The length-prefix consists of a single byte and corresponds to the length of the encoded integer.
|
||||
|
||||
Negative integers are encoded by flipping the leading bit of the length-prefix to a `1`.
|
||||
|
||||
Zero is encoded as `0x00`. It is not length-prefixed.
|
||||
|
||||
Examples:
|
||||
|
||||
```go
|
||||
encode(uint(6)) == [0x01, 0x06]
|
||||
encode(uint(70000)) == [0x03, 0x01, 0x11, 0x70]
|
||||
|
||||
encode(int(-6)) == [0xF1, 0x06]
|
||||
encode(int(-70000)) == [0xF3, 0x01, 0x11, 0x70]
|
||||
|
||||
encode(int(0)) == [0x00]
|
||||
```
|
||||
|
||||
### Strings
|
||||
|
||||
An encoded string is length-prefixed followed by the underlying bytes of the string.
|
||||
The length-prefix is itself encoded as an `int`.
|
||||
|
||||
The empty string is encoded as `0x00`. It is not length-prefixed.
|
||||
|
||||
Examples:
|
||||
|
||||
```go
|
||||
encode("") == [0x00]
|
||||
encode("a") == [0x01, 0x01, 0x61]
|
||||
encode("hello") == [0x01, 0x05, 0x68, 0x65, 0x6C, 0x6C, 0x6F]
|
||||
encode("¥") == [0x01, 0x02, 0xC2, 0xA5]
|
||||
```
|
||||
|
||||
### Arrays (fixed length)
|
||||
|
||||
An encoded fix-lengthed array is the concatenation of the encoding of its elements.
|
||||
There is no length-prefix.
|
||||
|
||||
Examples:
|
||||
|
||||
```go
|
||||
encode([4]int8{1, 2, 3, 4}) == [0x01, 0x02, 0x03, 0x04]
|
||||
encode([4]int16{1, 2, 3, 4}) == [0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x04]
|
||||
encode([4]int{1, 2, 3, 4}) == [0x01, 0x01, 0x01, 0x02, 0x01, 0x03, 0x01, 0x04]
|
||||
encode([2]string{"abc", "efg"}) == [0x01, 0x03, 0x61, 0x62, 0x63, 0x01, 0x03, 0x65, 0x66, 0x67]
|
||||
```
|
||||
|
||||
### Slices (variable length)
|
||||
|
||||
An encoded variable-length array is length-prefixed followed by the concatenation of the encoding of
|
||||
its elements.
|
||||
The length-prefix is itself encoded as an `int`.
|
||||
|
||||
An empty slice is encoded as `0x00`. It is not length-prefixed.
|
||||
|
||||
Examples:
|
||||
|
||||
```go
|
||||
encode([]int8{}) == [0x00]
|
||||
encode([]int8{1, 2, 3, 4}) == [0x01, 0x04, 0x01, 0x02, 0x03, 0x04]
|
||||
encode([]int16{1, 2, 3, 4}) == [0x01, 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x04]
|
||||
encode([]int{1, 2, 3, 4}) == [0x01, 0x04, 0x01, 0x01, 0x01, 0x02, 0x01, 0x03, 0x01, 0x4]
|
||||
encode([]string{"abc", "efg"}) == [0x01, 0x02, 0x01, 0x03, 0x61, 0x62, 0x63, 0x01, 0x03, 0x65, 0x66, 0x67]
|
||||
```
|
||||
|
||||
### BitArray
|
||||
|
||||
BitArray is encoded as an `int` of the number of bits, and with an array of `uint64` to encode
|
||||
value of each array element.
|
||||
|
||||
```go
|
||||
type BitArray struct {
|
||||
Bits int
|
||||
Elems []uint64
|
||||
}
|
||||
```
|
||||
|
||||
### Time
|
||||
|
||||
Time is encoded as an `int64` of the number of nanoseconds since January 1, 1970,
|
||||
rounded to the nearest millisecond.
|
||||
|
||||
Times before then are invalid.
|
||||
|
||||
Examples:
|
||||
|
||||
```go
|
||||
encode(time.Time("Jan 1 00:00:00 UTC 1970")) == [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
|
||||
encode(time.Time("Jan 1 00:00:01 UTC 1970")) == [0x00, 0x00, 0x00, 0x00, 0x3B, 0x9A, 0xCA, 0x00] // 1,000,000,000 ns
|
||||
encode(time.Time("Mon Jan 2 15:04:05 -0700 MST 2006")) == [0x0F, 0xC4, 0xBB, 0xC1, 0x53, 0x03, 0x12, 0x00]
|
||||
```
|
||||
|
||||
### Structs
|
||||
|
||||
An encoded struct is the concatenation of the encoding of its elements.
|
||||
There is no length-prefix.
|
||||
|
||||
Examples:
|
||||
|
||||
```go
|
||||
type MyStruct struct{
|
||||
A int
|
||||
B string
|
||||
C time.Time
|
||||
}
|
||||
encode(MyStruct{4, "hello", time.Time("Mon Jan 2 15:04:05 -0700 MST 2006")}) ==
|
||||
[0x01, 0x04, 0x01, 0x05, 0x68, 0x65, 0x6C, 0x6C, 0x6F, 0x0F, 0xC4, 0xBB, 0xC1, 0x53, 0x03, 0x12, 0x00]
|
||||
```
|
||||
|
||||
## Merkle Trees
|
||||
|
||||
Simple Merkle trees are used in numerous places in Tendermint to compute a cryptographic digest of a data structure.
|
||||
|
||||
RIPEMD160 is always used as the hashing function.
|
||||
|
||||
The function `SimpleMerkleRoot` is a simple recursive function defined as follows:
|
||||
|
||||
```go
|
||||
func SimpleMerkleRoot(hashes [][]byte) []byte{
|
||||
switch len(hashes) {
|
||||
case 0:
|
||||
return nil
|
||||
case 1:
|
||||
return hashes[0]
|
||||
default:
|
||||
left := SimpleMerkleRoot(hashes[:(len(hashes)+1)/2])
|
||||
right := SimpleMerkleRoot(hashes[(len(hashes)+1)/2:])
|
||||
return RIPEMD160(append(left, right))
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Note: we abuse notion and call `SimpleMerkleRoot` with arguments of type `struct` or type `[]struct`.
|
||||
For `struct` arguments, we compute a `[][]byte` by sorting elements of the `struct` according to
|
||||
field name and then hashing them.
|
||||
For `[]struct` arguments, we compute a `[][]byte` by hashing the individual `struct` elements.
|
||||
|
||||
## JSON (TMJSON)
|
||||
|
||||
Signed messages (eg. votes, proposals) in the consensus are encoded in TMJSON, rather than TMBIN.
|
||||
TMJSON is JSON where `[]byte` are encoded as uppercase hex, rather than base64.
|
||||
|
||||
When signing, the elements of a message are sorted by key and the sorted message is embedded in an
|
||||
outer JSON that includes a `chain_id` field.
|
||||
We call this encoding the CanonicalSignBytes. For instance, CanonicalSignBytes for a vote would look
|
||||
like:
|
||||
|
||||
```json
|
||||
{"chain_id":"my-chain-id","vote":{"block_id":{"hash":DEADBEEF,"parts":{"hash":BEEFDEAD,"total":3}},"height":3,"round":2,"timestamp":1234567890, "type":2}
|
||||
```
|
||||
|
||||
Note how the fields within each level are sorted.
|
||||
|
||||
## Other
|
||||
|
||||
### MakeParts
|
||||
|
||||
Encode an object using TMBIN and slice it into parts.
|
||||
|
||||
```go
|
||||
MakeParts(object, partSize)
|
||||
```
|
||||
|
||||
### Part
|
||||
|
||||
```go
|
||||
type Part struct {
|
||||
Index int
|
||||
Bytes byte[]
|
||||
Proof byte[]
|
||||
}
|
||||
```
|
Reference in New Issue
Block a user