docs/spec: some organizational cleanup

This commit is contained in:
Ethan Buchman
2018-06-15 22:56:26 -07:00
parent c84be3b8dd
commit b8f340afd0
8 changed files with 247 additions and 478 deletions

View File

@@ -1,114 +0,0 @@
# Light client
A light client is a process that connects to the Tendermint Full Node(s) and then tries to verify the Merkle proofs
about the blockchain application. In this document we describe mechanisms that ensures that the Tendermint light client
has the same level of security as Full Node processes (without being itself a Full Node).
To be able to validate a Merkle proof, a light client needs to validate the blockchain header that contains the root app hash.
Validating a blockchain header in Tendermint consists in verifying that the header is committed (signed) by >2/3 of the
voting power of the corresponding validator set. As the validator set is a dynamic set (it is changing), one of the
core functionality of the light client is updating the current validator set, that is then used to verify the
blockchain header, and further the corresponding Merkle proofs.
For the purpose of this light client specification, we assume that the Tendermint Full Node exposes the following functions over
Tendermint RPC:
```golang
Header(height int64) (SignedHeader, error) // returns signed header for the given height
Validators(height int64) (ResultValidators, error) // returns validator set for the given height
LastHeader(valSetNumber int64) (SignedHeader, error) // returns last header signed by the validator set with the given validator set number
type SignedHeader struct {
Header Header
Commit Commit
ValSetNumber int64
}
type ResultValidators struct {
BlockHeight int64
Validators []Validator
// time the current validator set is initialised, i.e, time of the last validator change before header BlockHeight
ValSetTime int64
}
```
We assume that Tendermint keeps track of the validator set changes and that each time a validator set is changed it is
being assigned the next sequence number. We can call this number the validator set sequence number. Tendermint also remembers
the Time from the header when the next validator set is initialised (starts to be in power), and we refer to this time
as validator set init time.
Furthermore, we assume that each validator set change is signed (committed) by the current validator set. More precisely,
given a block `H` that contains transactions that are modifying the current validator set, the Merkle root hash of the next
validator set (modified based on transactions from block H) will be in block `H+1` (and signed by the current validator
set), and then starting from the block `H+2`, it will be signed by the next validator set.
Note that the real Tendermint RPC API is slightly different (for example, response messages contain more data and function
names are slightly different); we shortened (and modified) it for the purpose of this document to make the spec more
clear and simple. Furthermore, note that in case of the third function, the returned header has `ValSetNumber` equals to
`valSetNumber+1`.
Locally, light client manages the following state:
```golang
valSet []Validator // current validator set (last known and verified validator set)
valSetNumber int64 // sequence number of the current validator set
valSetHash []byte // hash of the current validator set
valSetTime int64 // time when the current validator set is initialised
```
The light client is initialised with the trusted validator set, for example based on the known validator set hash,
validator set sequence number and the validator set init time.
The core of the light client logic is captured by the VerifyAndUpdate function that is used to 1) verify if the given header is valid,
and 2) update the validator set (when the given header is valid and it is more recent than the seen headers).
```golang
VerifyAndUpdate(signedHeader SignedHeader):
assertThat signedHeader.valSetNumber >= valSetNumber
if isValid(signedHeader) and signedHeader.Header.Time <= valSetTime + UNBONDING_PERIOD then
setValidatorSet(signedHeader)
return true
else
updateValidatorSet(signedHeader.ValSetNumber)
return VerifyAndUpdate(signedHeader)
isValid(signedHeader SignedHeader):
valSetOfTheHeader = Validators(signedHeader.Header.Height)
assertThat Hash(valSetOfTheHeader) == signedHeader.Header.ValSetHash
assertThat signedHeader is passing basic validation
if votingPower(signedHeader.Commit) > 2/3 * votingPower(valSetOfTheHeader) then return true
else
return false
setValidatorSet(signedHeader SignedHeader):
nextValSet = Validators(signedHeader.Header.Height)
assertThat Hash(nextValSet) == signedHeader.Header.ValidatorsHash
valSet = nextValSet.Validators
valSetHash = signedHeader.Header.ValidatorsHash
valSetNumber = signedHeader.ValSetNumber
valSetTime = nextValSet.ValSetTime
votingPower(commit Commit):
votingPower = 0
for each precommit in commit.Precommits do:
if precommit.ValidatorAddress is in valSet and signature of the precommit verifies then
votingPower += valSet[precommit.ValidatorAddress].VotingPower
return votingPower
votingPower(validatorSet []Validator):
for each validator in validatorSet do:
votingPower += validator.VotingPower
return votingPower
updateValidatorSet(valSetNumberOfTheHeader):
while valSetNumber != valSetNumberOfTheHeader do
signedHeader = LastHeader(valSetNumber)
if isValid(signedHeader) then
setValidatorSet(signedHeader)
else return error
return
```
Note that in the logic above we assume that the light client will always go upward with respect to header verifications,
i.e., that it will always be used to verify more recent headers. In case a light client needs to be used to verify older
headers (go backward) the same mechanisms and similar logic can be used. In case a call to the FullNode or subsequent
checks fail, a light client need to implement some recovery strategy, for example connecting to other FullNode.

View File

@@ -1,246 +0,0 @@
# Tendermint Encoding (Pre-Amino)
## PubKeys and Addresses
PubKeys are prefixed with a type-byte, followed by the raw bytes of the public
key.
Two keys are supported with the following type bytes:
```
TypeByteEd25519 = 0x1
TypeByteSecp256k1 = 0x2
```
```
// TypeByte: 0x1
type PubKeyEd25519 [32]byte
func (pub PubKeyEd25519) Encode() []byte {
return 0x1 | pub
}
func (pub PubKeyEd25519) Address() []byte {
// NOTE: the length (0x0120) is also included
return RIPEMD160(0x1 | 0x0120 | pub)
}
// TypeByte: 0x2
// NOTE: OpenSSL compressed pubkey (x-cord with 0x2 or 0x3)
type PubKeySecp256k1 [33]byte
func (pub PubKeySecp256k1) Encode() []byte {
return 0x2 | pub
}
func (pub PubKeySecp256k1) Address() []byte {
return RIPEMD160(SHA256(pub))
}
```
See https://github.com/tendermint/go-crypto/blob/v0.5.0/pub_key.go for more.
## Binary Serialization (go-wire)
Tendermint aims to encode data structures in a manner similar to how the corresponding Go structs
are laid out in memory.
Variable length items are length-prefixed.
While the encoding was inspired by Go, it is easily implemented in other languages as well, given its intuitive design.
XXX: This is changing to use real varints and 4-byte-prefixes.
See https://github.com/tendermint/go-wire/tree/sdk2.
### Fixed Length Integers
Fixed length integers are encoded in Big-Endian using the specified number of bytes.
So `uint8` and `int8` use one byte, `uint16` and `int16` use two bytes,
`uint32` and `int32` use 3 bytes, and `uint64` and `int64` use 4 bytes.
Negative integers are encoded via twos-complement.
Examples:
```go
encode(uint8(6)) == [0x06]
encode(uint32(6)) == [0x00, 0x00, 0x00, 0x06]
encode(int8(-6)) == [0xFA]
encode(int32(-6)) == [0xFF, 0xFF, 0xFF, 0xFA]
```
### Variable Length Integers
Variable length integers are encoded as length-prefixed Big-Endian integers.
The length-prefix consists of a single byte and corresponds to the length of the encoded integer.
Negative integers are encoded by flipping the leading bit of the length-prefix to a `1`.
Zero is encoded as `0x00`. It is not length-prefixed.
Examples:
```go
encode(uint(6)) == [0x01, 0x06]
encode(uint(70000)) == [0x03, 0x01, 0x11, 0x70]
encode(int(-6)) == [0xF1, 0x06]
encode(int(-70000)) == [0xF3, 0x01, 0x11, 0x70]
encode(int(0)) == [0x00]
```
### Strings
An encoded string is length-prefixed followed by the underlying bytes of the string.
The length-prefix is itself encoded as an `int`.
The empty string is encoded as `0x00`. It is not length-prefixed.
Examples:
```go
encode("") == [0x00]
encode("a") == [0x01, 0x01, 0x61]
encode("hello") == [0x01, 0x05, 0x68, 0x65, 0x6C, 0x6C, 0x6F]
encode("¥") == [0x01, 0x02, 0xC2, 0xA5]
```
### Arrays (fixed length)
An encoded fix-lengthed array is the concatenation of the encoding of its elements.
There is no length-prefix.
Examples:
```go
encode([4]int8{1, 2, 3, 4}) == [0x01, 0x02, 0x03, 0x04]
encode([4]int16{1, 2, 3, 4}) == [0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x04]
encode([4]int{1, 2, 3, 4}) == [0x01, 0x01, 0x01, 0x02, 0x01, 0x03, 0x01, 0x04]
encode([2]string{"abc", "efg"}) == [0x01, 0x03, 0x61, 0x62, 0x63, 0x01, 0x03, 0x65, 0x66, 0x67]
```
### Slices (variable length)
An encoded variable-length array is length-prefixed followed by the concatenation of the encoding of
its elements.
The length-prefix is itself encoded as an `int`.
An empty slice is encoded as `0x00`. It is not length-prefixed.
Examples:
```go
encode([]int8{}) == [0x00]
encode([]int8{1, 2, 3, 4}) == [0x01, 0x04, 0x01, 0x02, 0x03, 0x04]
encode([]int16{1, 2, 3, 4}) == [0x01, 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x04]
encode([]int{1, 2, 3, 4}) == [0x01, 0x04, 0x01, 0x01, 0x01, 0x02, 0x01, 0x03, 0x01, 0x4]
encode([]string{"abc", "efg"}) == [0x01, 0x02, 0x01, 0x03, 0x61, 0x62, 0x63, 0x01, 0x03, 0x65, 0x66, 0x67]
```
### BitArray
BitArray is encoded as an `int` of the number of bits, and with an array of `uint64` to encode
value of each array element.
```go
type BitArray struct {
Bits int
Elems []uint64
}
```
### Time
Time is encoded as an `int64` of the number of nanoseconds since January 1, 1970,
rounded to the nearest millisecond.
Times before then are invalid.
Examples:
```go
encode(time.Time("Jan 1 00:00:00 UTC 1970")) == [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
encode(time.Time("Jan 1 00:00:01 UTC 1970")) == [0x00, 0x00, 0x00, 0x00, 0x3B, 0x9A, 0xCA, 0x00] // 1,000,000,000 ns
encode(time.Time("Mon Jan 2 15:04:05 -0700 MST 2006")) == [0x0F, 0xC4, 0xBB, 0xC1, 0x53, 0x03, 0x12, 0x00]
```
### Structs
An encoded struct is the concatenation of the encoding of its elements.
There is no length-prefix.
Examples:
```go
type MyStruct struct{
A int
B string
C time.Time
}
encode(MyStruct{4, "hello", time.Time("Mon Jan 2 15:04:05 -0700 MST 2006")}) ==
[0x01, 0x04, 0x01, 0x05, 0x68, 0x65, 0x6C, 0x6C, 0x6F, 0x0F, 0xC4, 0xBB, 0xC1, 0x53, 0x03, 0x12, 0x00]
```
## Merkle Trees
Simple Merkle trees are used in numerous places in Tendermint to compute a cryptographic digest of a data structure.
RIPEMD160 is always used as the hashing function.
The function `SimpleMerkleRoot` is a simple recursive function defined as follows:
```go
func SimpleMerkleRoot(hashes [][]byte) []byte{
switch len(hashes) {
case 0:
return nil
case 1:
return hashes[0]
default:
left := SimpleMerkleRoot(hashes[:(len(hashes)+1)/2])
right := SimpleMerkleRoot(hashes[(len(hashes)+1)/2:])
return RIPEMD160(append(left, right))
}
}
```
Note: we abuse notion and call `SimpleMerkleRoot` with arguments of type `struct` or type `[]struct`.
For `struct` arguments, we compute a `[][]byte` by sorting elements of the `struct` according to
field name and then hashing them.
For `[]struct` arguments, we compute a `[][]byte` by hashing the individual `struct` elements.
## JSON (TMJSON)
Signed messages (eg. votes, proposals) in the consensus are encoded in TMJSON, rather than TMBIN.
TMJSON is JSON where `[]byte` are encoded as uppercase hex, rather than base64.
When signing, the elements of a message are sorted by key and the sorted message is embedded in an
outer JSON that includes a `chain_id` field.
We call this encoding the CanonicalSignBytes. For instance, CanonicalSignBytes for a vote would look
like:
```json
{"chain_id":"my-chain-id","vote":{"block_id":{"hash":DEADBEEF,"parts":{"hash":BEEFDEAD,"total":3}},"height":3,"round":2,"timestamp":1234567890, "type":2}
```
Note how the fields within each level are sorted.
## Other
### MakeParts
Encode an object using TMBIN and slice it into parts.
```go
MakeParts(object, partSize)
```
### Part
```go
type Part struct {
Index int
Bytes byte[]
Proof byte[]
}
```