mirror of
https://github.com/fluencelabs/tendermint
synced 2025-07-30 19:51:58 +00:00
57
docs/specification/new-spec/README.md
Normal file
57
docs/specification/new-spec/README.md
Normal file
@@ -0,0 +1,57 @@
|
||||
# Tendermint Specification
|
||||
|
||||
This is a markdown specification of the Tendermint blockchain.
|
||||
|
||||
It defines the base data structures used in the blockchain and how they are validated.
|
||||
|
||||
It contains the following components:
|
||||
|
||||
- [Encoding and Digests](encoding.md)
|
||||
- [Blockchain](blockchain.md)
|
||||
- [State](state.md)
|
||||
|
||||
## Overview
|
||||
|
||||
Tendermint provides Byzantine Fault Tolerant State Machine Replication using
|
||||
hash-linked batches of transactions. Such transaction batches are called "blocks".
|
||||
Hence Tendermint defines a "blockchain".
|
||||
|
||||
Each block in Tendermint has a unique index - its Height.
|
||||
A block at `Height == H` can only be committed *after* the
|
||||
block at `Height == H-1`.
|
||||
Each block is committed by a known set of weighted Validators.
|
||||
Membership and weighting within this set may change over time.
|
||||
Tendermint guarantees the safety and liveness of the blockchain
|
||||
so long as less than 1/3 of the total weight of the Validator set
|
||||
is malicious.
|
||||
|
||||
A commit in Tendermint is a set of signed messages from more than 2/3 of
|
||||
the total weight of the current Validator set. Validators take turns proposing
|
||||
blocks and voting on them. Once enough votes are received, the block is considered
|
||||
committed. These votes are included in the *next* block as proof that the previous block
|
||||
was committed - they cannot be included in the current block, as that block has already been
|
||||
created.
|
||||
|
||||
Once a block is committed, it can be executed against an application.
|
||||
The application returns results for each of the transactions in the block.
|
||||
The application can also return changes to be made to the validator set,
|
||||
as well as a cryptographic digest of its latest state.
|
||||
|
||||
Tendermint is designed to enable efficient verification and authentication
|
||||
of the latest state of the blockchain. To achieve this, it embeds
|
||||
cryptographic commitments to certain information in the block "header".
|
||||
This information includes the contents of the block (eg. the transactions),
|
||||
the validator set committing the block, as well as the various results returned by the application.
|
||||
Note, however, that block execution only occurs *after* a block is committed.
|
||||
Thus, application results can only be included in the *next* block.
|
||||
|
||||
Also note that information like the transaction results and the validator set are never
|
||||
directly included in the block - only their cryptographic digests (Merkle roots) are.
|
||||
Hence, verification of a block requires a separate data structure to store this information.
|
||||
We call this the `State`. Block verification also requires access to the previous block.
|
||||
|
||||
## TODO
|
||||
|
||||
- Light Client
|
||||
- P2P
|
||||
- Reactor protocols (consensus, mempool, blockchain, pex)
|
391
docs/specification/new-spec/blockchain.md
Normal file
391
docs/specification/new-spec/blockchain.md
Normal file
@@ -0,0 +1,391 @@
|
||||
# Tendermint Blockchain
|
||||
|
||||
Here we describe the data structures in the Tendermint blockchain and the rules for validating them.
|
||||
|
||||
# Data Structures
|
||||
|
||||
The Tendermint blockchains consists of a short list of basic data types:
|
||||
`Block`, `Header`, `Vote`, `BlockID`, `Signature`, and `Evidence`.
|
||||
|
||||
## Block
|
||||
|
||||
A block consists of a header, a list of transactions, a list of votes (the commit),
|
||||
and a list of evidence if malfeasance (ie. signing conflicting votes).
|
||||
|
||||
```
|
||||
type Block struct {
|
||||
Header Header
|
||||
Txs [][]byte
|
||||
LastCommit []Vote
|
||||
Evidence []Evidence
|
||||
}
|
||||
```
|
||||
|
||||
## Header
|
||||
|
||||
A block header contains metadata about the block and about the consensus, as well as commitments to
|
||||
the data in the current block, the previous block, and the results returned by the application:
|
||||
|
||||
```
|
||||
type Header struct {
|
||||
// block metadata
|
||||
Version string // Version string
|
||||
ChainID string // ID of the chain
|
||||
Height int64 // current block height
|
||||
Time int64 // UNIX time, in millisconds
|
||||
|
||||
// current block
|
||||
NumTxs int64 // Number of txs in this block
|
||||
TxHash []byte // SimpleMerkle of the block.Txs
|
||||
LastCommitHash []byte // SimpleMerkle of the block.LastCommit
|
||||
|
||||
// previous block
|
||||
TotalTxs int64 // prevBlock.TotalTxs + block.NumTxs
|
||||
LastBlockID BlockID // BlockID of prevBlock
|
||||
|
||||
// application
|
||||
ResultsHash []byte // SimpleMerkle of []abci.Result from prevBlock
|
||||
AppHash []byte // Arbitrary state digest
|
||||
ValidatorsHash []byte // SimpleMerkle of the ValidatorSet
|
||||
ConsensusParamsHash []byte // SimpleMerkle of the ConsensusParams
|
||||
|
||||
// consensus
|
||||
Proposer []byte // Address of the block proposer
|
||||
EvidenceHash []byte // SimpleMerkle of []Evidence
|
||||
}
|
||||
```
|
||||
|
||||
Further details on each of this fields is taken up below.
|
||||
|
||||
## BlockID
|
||||
|
||||
The `BlockID` contains two distinct Merkle roots of the block.
|
||||
The first, used as the block's main hash, is the Merkle root
|
||||
of all the fields in the header. The second, used for secure gossipping of
|
||||
the block during consensus, is the Merkle root of the complete serialized block
|
||||
cut into parts. The `BlockID` includes these two hashes, as well as the number of
|
||||
parts.
|
||||
|
||||
```
|
||||
type BlockID struct {
|
||||
Hash []byte
|
||||
Parts PartsHeader
|
||||
}
|
||||
|
||||
type PartsHeader struct {
|
||||
Hash []byte
|
||||
Total int32
|
||||
}
|
||||
```
|
||||
|
||||
## Vote
|
||||
|
||||
A vote is a signed message from a validator for a particular block.
|
||||
The vote includes information about the validator signing it.
|
||||
|
||||
```
|
||||
type Vote struct {
|
||||
Timestamp int64
|
||||
Address []byte
|
||||
Index int
|
||||
Height int64
|
||||
Round int
|
||||
Type int8
|
||||
BlockID BlockID
|
||||
Signature Signature
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
There are two types of votes:
|
||||
a prevote has `vote.Type == 1` and
|
||||
a precommit has `vote.Type == 2`.
|
||||
|
||||
## Signature
|
||||
|
||||
Tendermint allows for multiple signature schemes to be used by prepending a single type-byte
|
||||
to the signature bytes. Different signatures may also come with fixed or variable lengths.
|
||||
Currently, Tendermint supports Ed25519 and Secp256k1.
|
||||
|
||||
### ED25519
|
||||
|
||||
An ED25519 signature has `Type == 0x1`. It looks like:
|
||||
|
||||
```
|
||||
// Implements Signature
|
||||
type Ed25519Signature struct {
|
||||
Type int8 = 0x1
|
||||
Signature [64]byte
|
||||
}
|
||||
```
|
||||
|
||||
where `Signature` is the 64 byte signature.
|
||||
|
||||
### Secp256k1
|
||||
|
||||
A `Secp256k1` signature has `Type == 0x2`. It looks like:
|
||||
|
||||
```
|
||||
// Implements Signature
|
||||
type Secp256k1Signature struct {
|
||||
Type int8 = 0x2
|
||||
Signature []byte
|
||||
}
|
||||
```
|
||||
|
||||
where `Signature` is the DER encoded signature, ie:
|
||||
|
||||
```
|
||||
0x30 <length of whole message> <0x02> <length of R> <R> 0x2 <length of S> <S>.
|
||||
```
|
||||
|
||||
## Evidence
|
||||
|
||||
TODO
|
||||
|
||||
# Validation
|
||||
|
||||
Here we describe the validation rules for every element in a block.
|
||||
Blocks which do not satisfy these rules are considered invalid.
|
||||
|
||||
We abuse notation by using something that looks like Go, supplemented with English.
|
||||
A statement such as `x == y` is an assertion - if it fails, the item is invalid.
|
||||
|
||||
We refer to certain globally available objects:
|
||||
`block` is the block under consideration,
|
||||
`prevBlock` is the `block` at the previous height,
|
||||
and `state` keeps track of the validator set, the consensus parameters
|
||||
and other results from the application.
|
||||
Elements of an object are accessed as expected,
|
||||
ie. `block.Header`. See [here](state.md) for the definition of `state`.
|
||||
|
||||
## Header
|
||||
|
||||
A Header is valid if its corresponding fields are valid.
|
||||
|
||||
### Version
|
||||
|
||||
Arbitrary string.
|
||||
|
||||
### ChainID
|
||||
|
||||
Arbitrary constant string.
|
||||
|
||||
### Height
|
||||
|
||||
```
|
||||
block.Header.Height > 0
|
||||
block.Header.Height == prevBlock.Header.Height + 1
|
||||
```
|
||||
|
||||
The height is an incrementing integer. The first block has `block.Header.Height == 1`.
|
||||
|
||||
### Time
|
||||
|
||||
The median of the timestamps of the valid votes in the block.LastCommit.
|
||||
Corresponds to the number of nanoseconds, with millisecond resolution, since January 1, 1970.
|
||||
|
||||
Note the timestamp in a vote must be greater by at least one millisecond than that of the
|
||||
block being voted on.
|
||||
|
||||
### NumTxs
|
||||
|
||||
```
|
||||
block.Header.NumTxs == len(block.Txs)
|
||||
```
|
||||
|
||||
Number of transactions included in the block.
|
||||
|
||||
### TxHash
|
||||
|
||||
```
|
||||
block.Header.TxHash == SimpleMerkleRoot(block.Txs)
|
||||
```
|
||||
|
||||
Simple Merkle root of the transactions in the block.
|
||||
|
||||
### LastCommitHash
|
||||
|
||||
```
|
||||
block.Header.LastCommitHash == SimpleMerkleRoot(block.LastCommit)
|
||||
```
|
||||
|
||||
Simple Merkle root of the votes included in the block.
|
||||
These are the votes that committed the previous block.
|
||||
|
||||
The first block has `block.Header.LastCommitHash == []byte{}`
|
||||
|
||||
### TotalTxs
|
||||
|
||||
```
|
||||
block.Header.TotalTxs == prevBlock.Header.TotalTxs + block.Header.NumTxs
|
||||
```
|
||||
|
||||
The cumulative sum of all transactions included in this blockchain.
|
||||
|
||||
The first block has `block.Header.TotalTxs = block.Header.NumberTxs`.
|
||||
|
||||
### LastBlockID
|
||||
|
||||
```
|
||||
prevBlockParts := MakeParts(prevBlock, state.LastConsensusParams.BlockGossip.BlockPartSize)
|
||||
block.Header.LastBlockID == BlockID {
|
||||
Hash: SimpleMerkleRoot(prevBlock.Header),
|
||||
PartsHeader{
|
||||
Hash: SimpleMerkleRoot(prevBlockParts),
|
||||
Total: len(prevBlockParts),
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
Previous block's BlockID. Note it depends on the ConsensusParams,
|
||||
which are held in the `state` and may be updated by the application.
|
||||
|
||||
The first block has `block.Header.LastBlockID == BlockID{}`.
|
||||
|
||||
### ResultsHash
|
||||
|
||||
```
|
||||
block.ResultsHash == SimpleMerkleRoot(state.LastResults)
|
||||
```
|
||||
|
||||
Simple Merkle root of the results of the transactions in the previous block.
|
||||
|
||||
The first block has `block.Header.ResultsHash == []byte{}`.
|
||||
|
||||
### AppHash
|
||||
|
||||
```
|
||||
block.AppHash == state.AppHash
|
||||
```
|
||||
|
||||
Arbitrary byte array returned by the application after executing and commiting the previous block.
|
||||
|
||||
The first block has `block.Header.AppHash == []byte{}`.
|
||||
|
||||
### ValidatorsHash
|
||||
|
||||
```
|
||||
block.ValidatorsHash == SimpleMerkleRoot(state.Validators)
|
||||
```
|
||||
|
||||
Simple Merkle root of the current validator set that is committing the block.
|
||||
This can be used to validate the `LastCommit` included in the next block.
|
||||
May be updated by the application.
|
||||
|
||||
### ConsensusParamsHash
|
||||
|
||||
```
|
||||
block.ConsensusParamsHash == SimpleMerkleRoot(state.ConsensusParams)
|
||||
```
|
||||
|
||||
Simple Merkle root of the consensus parameters.
|
||||
May be updated by the application.
|
||||
|
||||
### Proposer
|
||||
|
||||
```
|
||||
block.Header.Proposer in state.Validators
|
||||
```
|
||||
|
||||
Original proposer of the block. Must be a current validator.
|
||||
|
||||
NOTE: this field can only be further verified by real-time participants in the consensus.
|
||||
This is because the same block can be proposed in multiple rounds for the same height
|
||||
and we do not track the initial round the block was proposed.
|
||||
|
||||
### EvidenceHash
|
||||
|
||||
```
|
||||
block.EvidenceHash == SimpleMerkleRoot(block.Evidence)
|
||||
```
|
||||
|
||||
Simple Merkle root of the evidence of Byzantine behaviour included in this block.
|
||||
|
||||
## Txs
|
||||
|
||||
Arbitrary length array of arbitrary length byte-arrays.
|
||||
|
||||
## LastCommit
|
||||
|
||||
The first height is an exception - it requires the LastCommit to be empty:
|
||||
|
||||
```
|
||||
if block.Header.Height == 1 {
|
||||
len(b.LastCommit) == 0
|
||||
}
|
||||
```
|
||||
|
||||
Otherwise, we require:
|
||||
|
||||
```
|
||||
len(block.LastCommit) == len(state.LastValidators)
|
||||
talliedVotingPower := 0
|
||||
for i, vote := range block.LastCommit{
|
||||
if vote == nil{
|
||||
continue
|
||||
}
|
||||
vote.Type == 2
|
||||
vote.Height == block.LastCommit.Height()
|
||||
vote.Round == block.LastCommit.Round()
|
||||
vote.BlockID == block.LastBlockID
|
||||
|
||||
val := state.LastValidators[i]
|
||||
vote.Verify(block.ChainID, val.PubKey) == true
|
||||
|
||||
talliedVotingPower += val.VotingPower
|
||||
}
|
||||
|
||||
talliedVotingPower > (2/3) * TotalVotingPower(state.LastValidators)
|
||||
```
|
||||
|
||||
Includes one (possibly nil) vote for every current validator.
|
||||
Non-nil votes must be Precommits.
|
||||
All votes must be for the same height and round.
|
||||
All votes must be for the previous block.
|
||||
All votes must have a valid signature from the corresponding validator.
|
||||
The sum total of the voting power of the validators that voted
|
||||
must be greater than 2/3 of the total voting power of the complete validator set.
|
||||
|
||||
### Vote
|
||||
|
||||
A vote is a signed message broadcast in the consensus for a particular block at a particular height and round.
|
||||
When stored in the blockchain or propagated over the network, votes are encoded in TMBIN.
|
||||
For signing, votes are encoded in JSON, and the ChainID is included, in the form of the `CanonicalSignBytes`.
|
||||
|
||||
We define a method `Verify` that returns `true` if the signature verifies against the pubkey for the CanonicalSignBytes
|
||||
using the given ChainID:
|
||||
|
||||
```
|
||||
func (v Vote) Verify(chainID string, pubKey PubKey) bool {
|
||||
return pubKey.Verify(v.Signature, CanonicalSignBytes(chainID, v))
|
||||
}
|
||||
```
|
||||
|
||||
where `pubKey.Verify` performs the approprioate digital signature verification of the `pubKey`
|
||||
against the given signature and message bytes.
|
||||
|
||||
## Evidence
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
||||
```
|
||||
|
||||
Every piece of evidence contains two conflicting votes from a single validator that
|
||||
was active at the height indicated in the votes.
|
||||
The votes must not be too old.
|
||||
|
||||
|
||||
# Execution
|
||||
|
||||
Once a block is validated, it can be executed against the state.
|
||||
|
||||
The state follows the recursive equation:
|
||||
|
||||
```
|
||||
app = NewABCIApp
|
||||
state(1) = InitialState
|
||||
state(h+1) <- Execute(state(h), app, block(h))
|
||||
```
|
178
docs/specification/new-spec/encoding.md
Normal file
178
docs/specification/new-spec/encoding.md
Normal file
@@ -0,0 +1,178 @@
|
||||
# Tendermint Encoding
|
||||
|
||||
## Binary Serialization (TMBIN)
|
||||
|
||||
Tendermint aims to encode data structures in a manner similar to how the corresponding Go structs are laid out in memory.
|
||||
Variable length items are length-prefixed.
|
||||
While the encoding was inspired by Go, it is easily implemented in other languages as well given its intuitive design.
|
||||
|
||||
### Fixed Length Integers
|
||||
|
||||
Fixed length integers are encoded in Big-Endian using the specified number of bytes.
|
||||
So `uint8` and `int8` use one byte, `uint16` and `int16` use two bytes,
|
||||
`uint32` and `int32` use 3 bytes, and `uint64` and `int64` use 4 bytes.
|
||||
|
||||
Negative integers are encoded via twos-complement.
|
||||
|
||||
Examples:
|
||||
|
||||
```
|
||||
encode(uint8(6)) == [0x06]
|
||||
encode(uint32(6)) == [0x00, 0x00, 0x00, 0x06]
|
||||
|
||||
encode(int8(-6)) == [0xFA]
|
||||
encode(int32(-6)) == [0xFF, 0xFF, 0xFF, 0xFA]
|
||||
```
|
||||
|
||||
### Variable Length Integers
|
||||
|
||||
Variable length integers are encoded as length-prefixed Big-Endian integers.
|
||||
The length-prefix consists of a single byte and corresponds to the length of the encoded integer.
|
||||
|
||||
Negative integers are encoded by flipping the leading bit of the length-prefix to a `1`.
|
||||
|
||||
Zero is encoded as `0x00`. It is not length-prefixed.
|
||||
|
||||
|
||||
Examples:
|
||||
|
||||
```
|
||||
encode(uint(6)) == [0x01, 0x06]
|
||||
encode(uint(70000)) == [0x03, 0x01, 0x11, 0x70]
|
||||
|
||||
encode(int(-6)) == [0xF1, 0x06]
|
||||
encode(int(-70000)) == [0xF3, 0x01, 0x11, 0x70]
|
||||
|
||||
encode(int(0)) == [0x00]
|
||||
```
|
||||
|
||||
### Strings
|
||||
|
||||
An encoded string is a length prefix followed by the underlying bytes of the string.
|
||||
The length-prefix is itself encoded as an `int`.
|
||||
|
||||
The empty string is encoded as `0x00`. It is not length-prefixed.
|
||||
|
||||
Examples:
|
||||
|
||||
```
|
||||
encode("") == [0x00]
|
||||
encode("a") == [0x01, 0x01, 0x61]
|
||||
encode("hello") == [0x01, 0x05, 0x68, 0x65, 0x6C, 0x6C, 0x6F]
|
||||
encode("¥") == [0x01, 0x02, 0xC2, 0xA5]
|
||||
```
|
||||
|
||||
### Arrays (fixed length)
|
||||
|
||||
An encoded fix-lengthed array is the concatenation of the encoding of its elements.
|
||||
There is no length-prefix.
|
||||
|
||||
Examples:
|
||||
|
||||
```
|
||||
encode([4]int8{1, 2, 3, 4}) == [0x01, 0x02, 0x03, 0x04]
|
||||
encode([4]int16{1, 2, 3, 4}) == [0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x04]
|
||||
encode([4]int{1, 2, 3, 4}) == [0x01, 0x01, 0x01, 0x02, 0x01, 0x03, 0x01, 0x04]
|
||||
encode([2]string{"abc", "efg"}) == [0x01, 0x03, 0x61, 0x62, 0x63, 0x01, 0x03, 0x65, 0x66, 0x67]
|
||||
```
|
||||
|
||||
### Slices (variable length)
|
||||
|
||||
An encoded variable-length array is a length prefix followed by the concatenation of the encoding of its elements.
|
||||
The length-prefix is itself encoded as an `int`.
|
||||
|
||||
An empty slice is encoded as `0x00`. It is not length-prefixed.
|
||||
|
||||
Examples:
|
||||
|
||||
```
|
||||
encode([]int8{}) == [0x00]
|
||||
encode([]int8{1, 2, 3, 4}) == [0x01, 0x04, 0x01, 0x02, 0x03, 0x04]
|
||||
encode([]int16{1, 2, 3, 4}) == [0x01, 0x04, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x04]
|
||||
encode([]int{1, 2, 3, 4}) == [0x01, 0x04, 0x01, 0x01, 0x01, 0x02, 0x01, 0x03, 0x01, 0x4]
|
||||
encode([]string{"abc", "efg"}) == [0x01, 0x02, 0x01, 0x03, 0x61, 0x62, 0x63, 0x01, 0x03, 0x65, 0x66, 0x67]
|
||||
```
|
||||
|
||||
### Time
|
||||
|
||||
Time is encoded as an `int64` of the number of nanoseconds since January 1, 1970,
|
||||
rounded to the nearest millisecond.
|
||||
|
||||
Times before then are invalid.
|
||||
|
||||
Examples:
|
||||
|
||||
```
|
||||
encode(time.Time("Jan 1 00:00:00 UTC 1970")) == [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
|
||||
encode(time.Time("Jan 1 00:00:01 UTC 1970")) == [0x00, 0x00, 0x00, 0x00, 0x3B, 0x9A, 0xCA, 0x00] // 1,000,000,000 ns
|
||||
encode(time.Time("Mon Jan 2 15:04:05 -0700 MST 2006")) == [0x0F, 0xC4, 0xBB, 0xC1, 0x53, 0x03, 0x12, 0x00]
|
||||
```
|
||||
|
||||
### Structs
|
||||
|
||||
An encoded struct is the concatenation of the encoding of its elements.
|
||||
There is no length-prefix.
|
||||
|
||||
Examples:
|
||||
|
||||
```
|
||||
type MyStruct struct{
|
||||
A int
|
||||
B string
|
||||
C time.Time
|
||||
}
|
||||
encode(MyStruct{4, "hello", time.Time("Mon Jan 2 15:04:05 -0700 MST 2006")}) ==
|
||||
[0x01, 0x04, 0x01, 0x05, 0x68, 0x65, 0x6C, 0x6C, 0x6F, 0x0F, 0xC4, 0xBB, 0xC1, 0x53, 0x03, 0x12, 0x00]
|
||||
```
|
||||
|
||||
|
||||
## Merkle Trees
|
||||
|
||||
Simple Merkle trees are used in numerous places in Tendermint to compute a cryptographic digest of a data structure.
|
||||
|
||||
RIPEMD160 is always used as the hashing function.
|
||||
|
||||
The function `SimpleMerkleRoot` is a simple recursive function defined as follows:
|
||||
|
||||
```
|
||||
func SimpleMerkleRoot(hashes [][]byte) []byte{
|
||||
switch len(hashes) {
|
||||
case 0:
|
||||
return nil
|
||||
case 1:
|
||||
return hashes[0]
|
||||
default:
|
||||
left := SimpleMerkleRoot(hashes[:(len(hashes)+1)/2])
|
||||
right := SimpleMerkleRoot(hashes[(len(hashes)+1)/2:])
|
||||
return RIPEMD160(append(left, right))
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Note we abuse notion and call `SimpleMerkleRoot` with arguments of type `struct` or type `[]struct`.
|
||||
For `struct` arguments, we compute a `[][]byte` by sorting elements of the `struct` according to field name and then hashing them.
|
||||
For `[]struct` arguments, we compute a `[][]byte` by hashing the individual `struct` elements.
|
||||
|
||||
## JSON (TMJSON)
|
||||
|
||||
Signed messages (eg. votes, proposals) in the consensus are encoded in TMJSON, rather than TMBIN.
|
||||
TMJSON is JSON where `[]byte` are encoded as uppercase hex, rather than base64.
|
||||
|
||||
When signing, the elements of a message are sorted by key and the sorted message is embedded in an outer JSON that includes a `chain_id` field.
|
||||
We call this encoding the CanonicalSignBytes. For instance, CanonicalSignBytes for a vote would look like:
|
||||
|
||||
```
|
||||
{"chain_id":"my-chain-id","vote":{"block_id":{"hash":DEADBEEF,"parts":{"hash":BEEFDEAD,"total":3}},"height":3,"round":2,"timestamp":1234567890, "type":2}
|
||||
```
|
||||
|
||||
Note how the fields within each level are sorted.
|
||||
|
||||
## Other
|
||||
|
||||
### MakeParts
|
||||
|
||||
TMBIN encode an object and slice it into parts.
|
||||
|
||||
```
|
||||
MakeParts(object, partSize)
|
||||
```
|
3
docs/specification/new-spec/spec-notes.md
Normal file
3
docs/specification/new-spec/spec-notes.md
Normal file
@@ -0,0 +1,3 @@
|
||||
- Remove BlockID from Commit
|
||||
- Actually validate the ValidatorsHash
|
||||
- Move blockHeight=1 exception for LastCommit to ValidateBasic
|
104
docs/specification/new-spec/state.md
Normal file
104
docs/specification/new-spec/state.md
Normal file
@@ -0,0 +1,104 @@
|
||||
# Tendermint State
|
||||
|
||||
## State
|
||||
|
||||
The state contains information whose cryptographic digest is included in block headers,
|
||||
and thus is necessary for validating new blocks.
|
||||
For instance, the Merkle root of the results from executing the previous block, or the Merkle root of the current validators.
|
||||
While neither the results of transactions now the validators are ever included in the blockchain itself,
|
||||
the Merkle roots are, and hence we need a separate data structure to track them.
|
||||
|
||||
```
|
||||
type State struct {
|
||||
LastResults []Result
|
||||
AppHash []byte
|
||||
|
||||
Validators []Validator
|
||||
LastValidators []Validator
|
||||
|
||||
ConsensusParams ConsensusParams
|
||||
}
|
||||
```
|
||||
|
||||
### Result
|
||||
|
||||
```
|
||||
type Result struct {
|
||||
Code uint32
|
||||
Data []byte
|
||||
Tags []KVPair
|
||||
}
|
||||
|
||||
type KVPair struct {
|
||||
Key []byte
|
||||
Value []byte
|
||||
}
|
||||
```
|
||||
|
||||
`Result` is the result of executing a transaction against the application.
|
||||
It returns a result code, an arbitrary byte array (ie. a return value),
|
||||
and a list of key-value pairs ordered by key. The key-value pairs, or tags,
|
||||
can be used to index transactions according to their "effects", which are
|
||||
represented in the tags.
|
||||
|
||||
### Validator
|
||||
|
||||
A validator is an active participant in the consensus with a public key and a voting power.
|
||||
Validator's also contain an address which is derived from the PubKey:
|
||||
|
||||
```
|
||||
type Validator struct {
|
||||
Address []byte
|
||||
PubKey PubKey
|
||||
VotingPower int64
|
||||
}
|
||||
```
|
||||
|
||||
The `state.Validators` and `state.LastValidators` must always by sorted by validator address,
|
||||
so that there is a canonical order for computing the SimpleMerkleRoot.
|
||||
|
||||
We also define a `TotalVotingPower` function, to return the total voting power:
|
||||
|
||||
```
|
||||
func TotalVotingPower(vals []Validators) int64{
|
||||
sum := 0
|
||||
for v := range vals{
|
||||
sum += v.VotingPower
|
||||
}
|
||||
return sum
|
||||
}
|
||||
```
|
||||
|
||||
### PubKey
|
||||
|
||||
TODO:
|
||||
|
||||
### ConsensusParams
|
||||
|
||||
TODO:
|
||||
|
||||
## Execution
|
||||
|
||||
We define an `Execute` function that takes a state and a block,
|
||||
executes the block against the application, and returns an updated state.
|
||||
|
||||
```
|
||||
Execute(s State, app ABCIApp, block Block) State {
|
||||
abciResponses := app.ApplyBlock(block)
|
||||
|
||||
return State{
|
||||
LastResults: abciResponses.DeliverTxResults,
|
||||
AppHash: abciResponses.AppHash,
|
||||
Validators: UpdateValidators(state.Validators, abciResponses.ValidatorChanges),
|
||||
LastValidators: state.Validators,
|
||||
ConsensusParams: UpdateConsensusParams(state.ConsensusParams, abci.Responses.ConsensusParamChanges),
|
||||
}
|
||||
}
|
||||
|
||||
type ABCIResponses struct {
|
||||
DeliverTxResults []Result
|
||||
ValidatorChanges []Validator
|
||||
ConsensusParamChanges ConsensusParams
|
||||
AppHash []byte
|
||||
}
|
||||
```
|
80
docs/specification/new-spec/wire.go
Normal file
80
docs/specification/new-spec/wire.go
Normal file
@@ -0,0 +1,80 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
wire "github.com/tendermint/go-wire"
|
||||
)
|
||||
|
||||
func main() {
|
||||
|
||||
encode(uint8(6))
|
||||
encode(uint32(6))
|
||||
encode(int8(-6))
|
||||
encode(int32(-6))
|
||||
Break()
|
||||
encode(uint(6))
|
||||
encode(uint(70000))
|
||||
encode(int(0))
|
||||
encode(int(-6))
|
||||
encode(int(-70000))
|
||||
Break()
|
||||
encode("")
|
||||
encode("a")
|
||||
encode("hello")
|
||||
encode("¥")
|
||||
Break()
|
||||
encode([4]int8{1, 2, 3, 4})
|
||||
encode([4]int16{1, 2, 3, 4})
|
||||
encode([4]int{1, 2, 3, 4})
|
||||
encode([2]string{"abc", "efg"})
|
||||
Break()
|
||||
encode([]int8{})
|
||||
encode([]int8{1, 2, 3, 4})
|
||||
encode([]int16{1, 2, 3, 4})
|
||||
encode([]int{1, 2, 3, 4})
|
||||
encode([]string{"abc", "efg"})
|
||||
Break()
|
||||
|
||||
timeFmt := "Mon Jan 2 15:04:05 -0700 MST 2006"
|
||||
t1, _ := time.Parse(timeFmt, timeFmt)
|
||||
n := (t1.UnixNano() / 1000000.) * 1000000
|
||||
encode(n)
|
||||
encode(t1)
|
||||
|
||||
t2, _ := time.Parse(timeFmt, "Thu Jan 1 00:00:00 -0000 UTC 1970")
|
||||
encode(t2)
|
||||
|
||||
t2, _ = time.Parse(timeFmt, "Thu Jan 1 00:00:01 -0000 UTC 1970")
|
||||
fmt.Println("N", t2.UnixNano())
|
||||
encode(t2)
|
||||
Break()
|
||||
encode(struct {
|
||||
A int
|
||||
B string
|
||||
C time.Time
|
||||
}{
|
||||
4,
|
||||
"hello",
|
||||
t1,
|
||||
})
|
||||
}
|
||||
|
||||
func encode(i interface{}) {
|
||||
Println(wire.BinaryBytes(i))
|
||||
|
||||
}
|
||||
|
||||
func Println(b []byte) {
|
||||
s := "["
|
||||
for _, x := range b {
|
||||
s += fmt.Sprintf("0x%.2X, ", x)
|
||||
}
|
||||
s = s[:len(s)-2] + "]"
|
||||
fmt.Println(s)
|
||||
}
|
||||
|
||||
func Break() {
|
||||
fmt.Println("------")
|
||||
}
|
Reference in New Issue
Block a user