2019-06-09 07:35:27 +02:00

331 lines
8.2 KiB
Rust

//! Interface to [SQLite][1].
//!
//! ## Example
//!
//! Open a connection, create a table, and insert some rows:
//!
//! ```
//! let connection = sqlite::open(":memory:").unwrap();
//!
//! connection
//! .execute(
//! "
//! CREATE TABLE users (name TEXT, age INTEGER);
//! INSERT INTO users VALUES ('Alice', 42);
//! INSERT INTO users VALUES ('Bob', 69);
//! ",
//! )
//! .unwrap();
//! ```
//!
//! Select some rows and process them one by one as plain text:
//!
//! ```
//! # let connection = sqlite::open(":memory:").unwrap();
//! # connection
//! # .execute(
//! # "
//! # CREATE TABLE users (name TEXT, age INTEGER);
//! # INSERT INTO users VALUES ('Alice', 42);
//! # INSERT INTO users VALUES ('Bob', 69);
//! # ",
//! # )
//! # .unwrap();
//! connection
//! .iterate("SELECT * FROM users WHERE age > 50", |pairs| {
//! for &(column, value) in pairs.iter() {
//! println!("{} = {}", column, value.unwrap());
//! }
//! true
//! })
//! .unwrap();
//! ```
//!
//! The same query using a prepared statement, which is much more efficient than
//! the previous technique:
//!
//! ```
//! use sqlite::State;
//! # let connection = sqlite::open(":memory:").unwrap();
//! # connection
//! # .execute(
//! # "
//! # CREATE TABLE users (name TEXT, age INTEGER);
//! # INSERT INTO users VALUES ('Alice', 42);
//! # INSERT INTO users VALUES ('Bob', 69);
//! # ",
//! # )
//! # .unwrap();
//!
//! let mut statement = connection
//! .prepare("SELECT * FROM users WHERE age > ?")
//! .unwrap();
//!
//! statement.bind(1, 50).unwrap();
//!
//! while let State::Row = statement.next().unwrap() {
//! println!("name = {}", statement.read::<String>(0).unwrap());
//! println!("age = {}", statement.read::<i64>(1).unwrap());
//! }
//! ```
//!
//! The same query using a cursor, which is a wrapper around a prepared
//! statement providing the concept of row and featuring all-at-once binding:
//!
//! ```
//! use sqlite::Value;
//! # let connection = sqlite::open(":memory:").unwrap();
//! # connection
//! # .execute(
//! # "
//! # CREATE TABLE users (name TEXT, age INTEGER);
//! # INSERT INTO users VALUES ('Alice', 42);
//! # INSERT INTO users VALUES ('Bob', 69);
//! # ",
//! # )
//! # .unwrap();
//!
//! let mut cursor = connection
//! .prepare("SELECT * FROM users WHERE age > ?")
//! .unwrap()
//! .cursor();
//!
//! cursor.bind(&[Value::Integer(50)]).unwrap();
//!
//! while let Some(row) = cursor.next().unwrap() {
//! println!("name = {}", row[0].as_string().unwrap());
//! println!("age = {}", row[1].as_integer().unwrap());
//! }
//! ```
//!
//! [1]: https://www.sqlite.org
extern crate libc;
extern crate sqlite3_sys as ffi;
use std::{error, fmt};
macro_rules! raise(
($message:expr) => (
return Err(::Error {
code: None,
message: Some($message.to_string()),
})
);
);
macro_rules! error(
($connection:expr, $code:expr) => (
match ::last_error($connection) {
Some(error) => return Err(error),
_ => return Err(::Error {
code: Some($code as isize),
message: None,
}),
}
);
);
macro_rules! ok(
($connection:expr, $result:expr) => (
match $result {
::ffi::SQLITE_OK => {}
code => error!($connection, code),
}
);
($result:expr) => (
match $result {
::ffi::SQLITE_OK => {}
code => return Err(::Error {
code: Some(code as isize),
message: None,
}),
}
);
);
macro_rules! c_str_to_str(
($string:expr) => (::std::str::from_utf8(::std::ffi::CStr::from_ptr($string).to_bytes()));
);
macro_rules! c_str_to_string(
($string:expr) => (
String::from_utf8_lossy(::std::ffi::CStr::from_ptr($string as *const _).to_bytes())
.into_owned()
);
);
macro_rules! path_to_cstr(
($path:expr) => (
match $path.to_str() {
Some(path) => {
match ::std::ffi::CString::new(path) {
Ok(string) => string,
_ => raise!("failed to process a path"),
}
}
_ => raise!("failed to process a path"),
}
);
);
macro_rules! str_to_cstr(
($string:expr) => (
match ::std::ffi::CString::new($string) {
Ok(string) => string,
_ => raise!("failed to process a string"),
}
);
);
/// An error.
#[derive(Debug)]
pub struct Error {
/// The error code.
pub code: Option<isize>,
/// The error message.
pub message: Option<String>,
}
/// A result.
pub type Result<T> = std::result::Result<T, Error>;
/// A data type.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Type {
/// The binary type.
Binary,
/// The floating-point type.
Float,
/// The integer type.
Integer,
/// The string type.
String,
/// The null type.
Null,
}
/// A typed value.
#[derive(Clone, Debug, PartialEq)]
pub enum Value {
/// Binary data.
Binary(Vec<u8>),
/// A floating-point number.
Float(f64),
/// An integer number.
Integer(i64),
/// A string.
String(String),
/// A null value.
Null,
}
impl fmt::Display for Error {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
match (self.code, &self.message) {
(Some(code), &Some(ref message)) => write!(formatter, "{} (code {})", message, code),
(Some(code), _) => write!(formatter, "an SQLite error (code {})", code),
(_, &Some(ref message)) => message.fmt(formatter),
_ => write!(formatter, "an SQLite error"),
}
}
}
impl error::Error for Error {
fn description(&self) -> &str {
match self.message {
Some(ref message) => message,
_ => "an SQLite error",
}
}
}
impl Value {
/// Return the binary data if the value is `Binary`.
#[inline]
pub fn as_binary(&self) -> Option<&[u8]> {
if let &Value::Binary(ref value) = self {
return Some(value);
}
None
}
/// Return the floating-point number if the value is `Float`.
#[inline]
pub fn as_float(&self) -> Option<f64> {
if let &Value::Float(value) = self {
return Some(value);
}
None
}
/// Return the integer number if the value is `Integer`.
#[inline]
pub fn as_integer(&self) -> Option<i64> {
if let &Value::Integer(value) = self {
return Some(value);
}
None
}
/// Return the string if the value is `String`.
#[inline]
pub fn as_string(&self) -> Option<&str> {
if let &Value::String(ref value) = self {
return Some(value);
}
None
}
/// Return the type.
pub fn kind(&self) -> Type {
match self {
&Value::Binary(_) => Type::Binary,
&Value::Float(_) => Type::Float,
&Value::Integer(_) => Type::Integer,
&Value::String(_) => Type::String,
&Value::Null => Type::Null,
}
}
}
mod connection;
mod cursor;
mod statement;
pub use connection::Connection;
pub use connection::OpenFlags;
pub use cursor::Cursor;
pub use statement::{Bindable, Readable, State, Statement};
/// Open a read-write connection to a new or existing database.
#[inline]
pub fn open<T: AsRef<std::path::Path>>(path: T) -> Result<Connection> {
Connection::open(path)
}
/// Return the version number of SQLite.
///
/// For instance, the version `3.8.11.1` corresponds to the integer `3008011`.
#[inline]
pub fn version() -> usize {
unsafe { ffi::sqlite3_libversion_number() as usize }
}
fn last_error(raw: *mut ffi::sqlite3) -> Option<Error> {
unsafe {
let code = ffi::sqlite3_errcode(raw);
if code == ffi::SQLITE_OK {
return None;
}
let message = ffi::sqlite3_errmsg(raw);
if message.is_null() {
return None;
}
Some(Error {
code: Some(code as isize),
message: Some(c_str_to_string!(message)),
})
}
}