2019-02-11 14:58:15 +01:00

444 lines
16 KiB
Rust

use arrayref::array_ref;
use bs58;
use byteorder::{BigEndian, ByteOrder, ReadBytesExt, WriteBytesExt};
use crate::{Result, Error};
use data_encoding::BASE32;
use multihash::Multihash;
use std::{
borrow::Cow,
convert::From,
fmt,
io::{Cursor, Write},
net::{IpAddr, Ipv4Addr, Ipv6Addr},
str::{self, FromStr}
};
use unsigned_varint::{encode, decode};
const DCCP: u32 = 33;
const DNS4: u32 = 54;
const DNS6: u32 = 55;
const HTTP: u32 = 480;
const HTTPS: u32 = 443;
const IP4: u32 = 4;
const IP6: u32 = 41;
const P2P_WEBRTC_DIRECT: u32 = 276;
const P2P_WEBRTC_STAR: u32 = 275;
const P2P_WEBSOCKET_STAR: u32 = 479;
const MEMORY: u32 = 777;
const ONION: u32 = 444;
const P2P: u32 = 421;
const P2P_CIRCUIT: u32 = 290;
const QUIC: u32 = 460;
const SCTP: u32 = 132;
const TCP: u32 = 6;
const UDP: u32 = 273;
const UDT: u32 = 301;
const UNIX: u32 = 400;
const UTP: u32 = 302;
const WS: u32 = 477;
const WSS: u32 = 478;
/// `Protocol` describes all possible multiaddress protocols.
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum Protocol<'a> {
Dccp(u16),
Dns4(Cow<'a, str>),
Dns6(Cow<'a, str>),
Http,
Https,
Ip4(Ipv4Addr),
Ip6(Ipv6Addr),
P2pWebRtcDirect,
P2pWebRtcStar,
P2pWebSocketStar,
Memory,
Onion(Cow<'a, [u8; 10]>, u16),
P2p(Multihash),
P2pCircuit,
Quic,
Sctp(u16),
Tcp(u16),
Udp(u16),
Udt,
/// For `Unix` we use `&str` instead of `Path` to allow cross-platform usage of
/// `Protocol` since encoding `Paths` to bytes is platform-specific.
/// This means that the actual validation of paths needs to happen separately.
Unix(Cow<'a, str>),
Utp,
Ws,
Wss
}
impl<'a> Protocol<'a> {
/// Parse a protocol value from the given iterator of string slices.
///
/// The parsing only consumes the minimum amount of string slices necessary to
/// produce a well-formed protocol. The same iterator can thus be used to parse
/// a sequence of protocols in succession. It is up to client code to check
/// that iteration has finished whenever appropriate.
pub fn from_str_parts<I>(mut iter: I) -> Result<Self>
where
I: Iterator<Item=&'a str>
{
match iter.next().ok_or(Error::InvalidProtocolString)? {
"ip4" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
Ok(Protocol::Ip4(Ipv4Addr::from_str(s)?))
}
"tcp" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
Ok(Protocol::Tcp(s.parse()?))
}
"udp" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
Ok(Protocol::Udp(s.parse()?))
}
"dccp" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
Ok(Protocol::Dccp(s.parse()?))
}
"ip6" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
Ok(Protocol::Ip6(Ipv6Addr::from_str(s)?))
}
"dns4" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
Ok(Protocol::Dns4(Cow::Borrowed(s)))
}
"dns6" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
Ok(Protocol::Dns6(Cow::Borrowed(s)))
}
"sctp" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
Ok(Protocol::Sctp(s.parse()?))
}
"udt" => Ok(Protocol::Udt),
"utp" => Ok(Protocol::Utp),
"unix" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
Ok(Protocol::Unix(Cow::Borrowed(s)))
}
"p2p" => {
let s = iter.next().ok_or(Error::InvalidProtocolString)?;
let decoded = bs58::decode(s).into_vec()?;
Ok(Protocol::P2p(Multihash::from_bytes(decoded)?))
}
"http" => Ok(Protocol::Http),
"https" => Ok(Protocol::Https),
"onion" =>
iter.next()
.ok_or(Error::InvalidProtocolString)
.and_then(|s| read_onion(&s.to_uppercase()))
.map(|(a, p)| Protocol::Onion(Cow::Owned(a), p)),
"quic" => Ok(Protocol::Quic),
"ws" => Ok(Protocol::Ws),
"wss" => Ok(Protocol::Wss),
"p2p-websocket-star" => Ok(Protocol::P2pWebSocketStar),
"p2p-webrtc-star" => Ok(Protocol::P2pWebRtcStar),
"p2p-webrtc-direct" => Ok(Protocol::P2pWebRtcDirect),
"p2p-circuit" => Ok(Protocol::P2pCircuit),
"memory" => Ok(Protocol::Memory),
_ => Err(Error::UnknownProtocolString)
}
}
/// Parse a single `Protocol` value from its byte slice representation,
/// returning the protocol as well as the remaining byte slice.
pub fn from_bytes(input: &'a [u8]) -> Result<(Self, &'a [u8])> {
fn split_at(n: usize, input: &[u8]) -> Result<(&[u8], &[u8])> {
if input.len() < n {
return Err(Error::DataLessThanLen)
}
Ok(input.split_at(n))
}
let (id, input) = decode::u32(input)?;
match id {
DCCP => {
let (data, rest) = split_at(2, input)?;
let mut rdr = Cursor::new(data);
let num = rdr.read_u16::<BigEndian>()?;
Ok((Protocol::Dccp(num), rest))
}
DNS4 => {
let (n, input) = decode::usize(input)?;
let (data, rest) = split_at(n, input)?;
Ok((Protocol::Dns4(Cow::Borrowed(str::from_utf8(data)?)), rest))
}
DNS6 => {
let (n, input) = decode::usize(input)?;
let (data, rest) = split_at(n, input)?;
Ok((Protocol::Dns6(Cow::Borrowed(str::from_utf8(data)?)), rest))
}
HTTP => Ok((Protocol::Http, input)),
HTTPS => Ok((Protocol::Https, input)),
IP4 => {
let (data, rest) = split_at(4, input)?;
Ok((Protocol::Ip4(Ipv4Addr::new(data[0], data[1], data[2], data[3])), rest))
}
IP6 => {
let (data, rest) = split_at(16, input)?;
let mut rdr = Cursor::new(data);
let mut seg = [0_u16; 8];
for x in seg.iter_mut() {
*x = rdr.read_u16::<BigEndian>()?;
}
let addr = Ipv6Addr::new(seg[0],
seg[1],
seg[2],
seg[3],
seg[4],
seg[5],
seg[6],
seg[7]);
Ok((Protocol::Ip6(addr), rest))
}
P2P_WEBRTC_DIRECT => Ok((Protocol::P2pWebRtcDirect, input)),
P2P_WEBRTC_STAR => Ok((Protocol::P2pWebRtcStar, input)),
P2P_WEBSOCKET_STAR => Ok((Protocol::P2pWebSocketStar, input)),
MEMORY => Ok((Protocol::Memory, input)),
ONION => {
let (data, rest) = split_at(12, input)?;
let port = BigEndian::read_u16(&data[10 ..]);
Ok((Protocol::Onion(Cow::Borrowed(array_ref!(data, 0, 10)), port), rest))
}
P2P => {
let (n, input) = decode::usize(input)?;
let (data, rest) = split_at(n, input)?;
Ok((Protocol::P2p(Multihash::from_bytes(data.to_owned())?), rest))
}
P2P_CIRCUIT => Ok((Protocol::P2pCircuit, input)),
QUIC => Ok((Protocol::Quic, input)),
SCTP => {
let (data, rest) = split_at(2, input)?;
let mut rdr = Cursor::new(data);
let num = rdr.read_u16::<BigEndian>()?;
Ok((Protocol::Sctp(num), rest))
}
TCP => {
let (data, rest) = split_at(2, input)?;
let mut rdr = Cursor::new(data);
let num = rdr.read_u16::<BigEndian>()?;
Ok((Protocol::Tcp(num), rest))
}
UDP => {
let (data, rest) = split_at(2, input)?;
let mut rdr = Cursor::new(data);
let num = rdr.read_u16::<BigEndian>()?;
Ok((Protocol::Udp(num), rest))
}
UDT => Ok((Protocol::Udt, input)),
UNIX => {
let (n, input) = decode::usize(input)?;
let (data, rest) = split_at(n, input)?;
Ok((Protocol::Unix(Cow::Borrowed(str::from_utf8(data)?)), rest))
}
UTP => Ok((Protocol::Utp, input)),
WS => Ok((Protocol::Ws, input)),
WSS => Ok((Protocol::Wss, input)),
_ => Err(Error::UnknownProtocolId(id))
}
}
/// Encode this protocol by writing its binary representation into
/// the given `Write` impl.
pub fn write_bytes<W: Write>(&self, w: &mut W) -> Result<()> {
let mut buf = encode::u32_buffer();
match self {
Protocol::Ip4(addr) => {
w.write_all(encode::u32(IP4, &mut buf))?;
w.write_all(&addr.octets())?
}
Protocol::Ip6(addr) => {
w.write_all(encode::u32(IP6, &mut buf))?;
for &segment in &addr.segments() {
w.write_u16::<BigEndian>(segment)?
}
}
Protocol::Tcp(port) => {
w.write_all(encode::u32(TCP, &mut buf))?;
w.write_u16::<BigEndian>(*port)?
}
Protocol::Udp(port) => {
w.write_all(encode::u32(UDP, &mut buf))?;
w.write_u16::<BigEndian>(*port)?
}
Protocol::Dccp(port) => {
w.write_all(encode::u32(DCCP, &mut buf))?;
w.write_u16::<BigEndian>(*port)?
}
Protocol::Sctp(port) => {
w.write_all(encode::u32(SCTP, &mut buf))?;
w.write_u16::<BigEndian>(*port)?
}
Protocol::Dns4(s) => {
w.write_all(encode::u32(DNS4, &mut buf))?;
let bytes = s.as_bytes();
w.write_all(encode::usize(bytes.len(), &mut encode::usize_buffer()))?;
w.write_all(&bytes)?
}
Protocol::Dns6(s) => {
w.write_all(encode::u32(DNS6, &mut buf))?;
let bytes = s.as_bytes();
w.write_all(encode::usize(bytes.len(), &mut encode::usize_buffer()))?;
w.write_all(&bytes)?
}
Protocol::Unix(s) => {
w.write_all(encode::u32(UNIX, &mut buf))?;
let bytes = s.as_bytes();
w.write_all(encode::usize(bytes.len(), &mut encode::usize_buffer()))?;
w.write_all(&bytes)?
}
Protocol::P2p(multihash) => {
w.write_all(encode::u32(P2P, &mut buf))?;
let bytes = multihash.as_bytes();
w.write_all(encode::usize(bytes.len(), &mut encode::usize_buffer()))?;
w.write_all(&bytes)?
}
Protocol::Onion(addr, port) => {
w.write_all(encode::u32(ONION, &mut buf))?;
w.write_all(addr.as_ref())?;
w.write_u16::<BigEndian>(*port)?
}
Protocol::Quic => w.write_all(encode::u32(QUIC, &mut buf))?,
Protocol::Utp => w.write_all(encode::u32(UTP, &mut buf))?,
Protocol::Udt => w.write_all(encode::u32(UDT, &mut buf))?,
Protocol::Http => w.write_all(encode::u32(HTTP, &mut buf))?,
Protocol::Https => w.write_all(encode::u32(HTTPS, &mut buf))?,
Protocol::Ws => w.write_all(encode::u32(WS, &mut buf))?,
Protocol::Wss => w.write_all(encode::u32(WSS, &mut buf))?,
Protocol::P2pWebSocketStar => w.write_all(encode::u32(P2P_WEBSOCKET_STAR, &mut buf))?,
Protocol::P2pWebRtcStar => w.write_all(encode::u32(P2P_WEBRTC_STAR, &mut buf))?,
Protocol::P2pWebRtcDirect => w.write_all(encode::u32(P2P_WEBRTC_DIRECT, &mut buf))?,
Protocol::P2pCircuit => w.write_all(encode::u32(P2P_CIRCUIT, &mut buf))?,
Protocol::Memory => w.write_all(encode::u32(MEMORY, &mut buf))?
}
Ok(())
}
/// Turn this `Protocol` into one that owns its data, thus being valid for any lifetime.
pub fn acquire<'b>(self) -> Protocol<'b> {
use self::Protocol::*;
match self {
Dccp(a) => Dccp(a),
Dns4(cow) => Dns4(Cow::Owned(cow.into_owned())),
Dns6(cow) => Dns6(Cow::Owned(cow.into_owned())),
Http => Http,
Https => Https,
Ip4(a) => Ip4(a),
Ip6(a) => Ip6(a),
P2pWebRtcDirect => P2pWebRtcDirect,
P2pWebRtcStar => P2pWebRtcStar,
P2pWebSocketStar => P2pWebSocketStar,
Memory => Memory,
Onion(addr, port) => Onion(Cow::Owned(addr.into_owned()), port),
P2p(a) => P2p(a),
P2pCircuit => P2pCircuit,
Quic => Quic,
Sctp(a) => Sctp(a),
Tcp(a) => Tcp(a),
Udp(a) => Udp(a),
Udt => Udt,
Unix(cow) => Unix(Cow::Owned(cow.into_owned())),
Utp => Utp,
Ws => Ws,
Wss => Wss
}
}
}
impl<'a> fmt::Display for Protocol<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::Protocol::*;
match self {
Dccp(port) => write!(f, "/dccp/{}", port),
Dns4(s) => write!(f, "/dns4/{}", s),
Dns6(s) => write!(f, "/dns6/{}", s),
Http => f.write_str("/http"),
Https => f.write_str("/https"),
Ip4(addr) => write!(f, "/ip4/{}", addr),
Ip6(addr) => write!(f, "/ip6/{}", addr),
P2pWebRtcDirect => f.write_str("/p2p-webrtc-direct"),
P2pWebRtcStar => f.write_str("/p2p-webrtc-star"),
P2pWebSocketStar => f.write_str("/p2p-websocket-star"),
Memory => f.write_str("/memory"),
Onion(addr, port) => {
let s = BASE32.encode(addr.as_ref());
write!(f, "/onion/{}:{}", s.to_lowercase(), port)
}
P2p(c) => write!(f, "/p2p/{}", bs58::encode(c.as_bytes()).into_string()),
P2pCircuit => f.write_str("/p2p-circuit"),
Quic => f.write_str("/quic"),
Sctp(port) => write!(f, "/sctp/{}", port),
Tcp(port) => write!(f, "/tcp/{}", port),
Udp(port) => write!(f, "/udp/{}", port),
Udt => f.write_str("/udt"),
Unix(s) => write!(f, "/unix/{}", s),
Utp => f.write_str("/utp"),
Ws => f.write_str("/ws"),
Wss => f.write_str("/wss"),
}
}
}
impl<'a> From<IpAddr> for Protocol<'a> {
#[inline]
fn from(addr: IpAddr) -> Self {
match addr {
IpAddr::V4(addr) => Protocol::Ip4(addr),
IpAddr::V6(addr) => Protocol::Ip6(addr),
}
}
}
impl<'a> From<Ipv4Addr> for Protocol<'a> {
#[inline]
fn from(addr: Ipv4Addr) -> Self {
Protocol::Ip4(addr)
}
}
impl<'a> From<Ipv6Addr> for Protocol<'a> {
#[inline]
fn from(addr: Ipv6Addr) -> Self {
Protocol::Ip6(addr)
}
}
// Parse a version 2 onion address and return its binary representation.
//
// Format: <base-32 address> ":" <port number>
fn read_onion(s: &str) -> Result<([u8; 10], u16)> {
let mut parts = s.split(':');
// address part (without ".onion")
let b32 = parts.next().ok_or(Error::InvalidMultiaddr)?;
if b32.len() != 16 {
return Err(Error::InvalidMultiaddr)
}
// port number
let port = parts.next()
.ok_or(Error::InvalidMultiaddr)
.and_then(|p| str::parse(p).map_err(From::from))?;
// nothing else expected
if parts.next().is_some() {
return Err(Error::InvalidMultiaddr)
}
if 10 != BASE32.decode_len(b32.len()).map_err(|_| Error::InvalidMultiaddr)? {
return Err(Error::InvalidMultiaddr)
}
let mut buf = [0u8; 10];
BASE32.decode_mut(b32.as_bytes(), &mut buf).map_err(|_| Error::InvalidMultiaddr)?;
Ok((buf, port))
}