Roman Borschel 2ba78b4ce7
[mplex, yamux] Streamline configuration API. (#1822)
* Streamline mplex and yamux configurations.

  * For all configuration options that exist for both multiplexers
    and have the same semantics, use the same names for the
    configuration.
  * Rename `Config` to `YamuxConfig` for consistentcy with
    the majority of other protocols, e.g. `MplexConfig`, `PingConfig`,
    `KademliaConfig`, etc.
  * Completely hide `yamux` APIs within `libp2p-yamux`. This allows
    to fully control the libp2p API and streamline it with other
    muxer APIs, consciously choosing e.g. which configuration options
    to make configurable in libp2p and which to fix to certain values.
    It does also not necessarily prescribe new incompatible version bumps of
    yamux for `libp2p-yamux`, as no `yamux` types are exposed. The cost
    is some more duplication of configuration options in the API, as well
    as the need to update `libp2p-yamux` if `yamux` introduces new
    configuration options that `libp2p-yamux` wants to expose as well.

* Update CHANGELOGs.
2020-11-06 09:46:22 +01:00

296 lines
10 KiB
Rust

// Copyright 2020 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Integration tests for the `RequestResponse` network behaviour.
use async_trait::async_trait;
use libp2p_core::{
Multiaddr,
PeerId,
identity,
muxing::StreamMuxerBox,
transport::{self, Transport},
upgrade::{self, read_one, write_one}
};
use libp2p_noise::{NoiseConfig, X25519Spec, Keypair};
use libp2p_request_response::*;
use libp2p_swarm::Swarm;
use libp2p_tcp::TcpConfig;
use futures::{prelude::*, channel::mpsc};
use rand::{self, Rng};
use std::{io, iter};
use std::{collections::HashSet, num::NonZeroU16};
/// Exercises a simple ping protocol.
#[test]
fn ping_protocol() {
let ping = Ping("ping".to_string().into_bytes());
let pong = Pong("pong".to_string().into_bytes());
let protocols = iter::once((PingProtocol(), ProtocolSupport::Full));
let cfg = RequestResponseConfig::default();
let (peer1_id, trans) = mk_transport();
let ping_proto1 = RequestResponse::new(PingCodec(), protocols.clone(), cfg.clone());
let mut swarm1 = Swarm::new(trans, ping_proto1, peer1_id.clone());
let (peer2_id, trans) = mk_transport();
let ping_proto2 = RequestResponse::new(PingCodec(), protocols, cfg);
let mut swarm2 = Swarm::new(trans, ping_proto2, peer2_id.clone());
let (mut tx, mut rx) = mpsc::channel::<Multiaddr>(1);
let addr = "/ip4/127.0.0.1/tcp/0".parse().unwrap();
Swarm::listen_on(&mut swarm1, addr).unwrap();
let expected_ping = ping.clone();
let expected_pong = pong.clone();
let peer1 = async move {
while let Some(_) = swarm1.next().now_or_never() {}
let l = Swarm::listeners(&swarm1).next().unwrap();
tx.send(l.clone()).await.unwrap();
loop {
match swarm1.next().await {
RequestResponseEvent::Message {
peer,
message: RequestResponseMessage::Request { request, channel, .. }
} => {
assert_eq!(&request, &expected_ping);
assert_eq!(&peer, &peer2_id);
swarm1.send_response(channel, pong.clone());
},
e => panic!("Peer1: Unexpected event: {:?}", e)
}
}
};
let num_pings: u8 = rand::thread_rng().gen_range(1, 100);
let peer2 = async move {
let mut count = 0;
let addr = rx.next().await.unwrap();
swarm2.add_address(&peer1_id, addr.clone());
let mut req_id = swarm2.send_request(&peer1_id, ping.clone());
loop {
match swarm2.next().await {
RequestResponseEvent::Message {
peer,
message: RequestResponseMessage::Response { request_id, response }
} => {
count += 1;
assert_eq!(&response, &expected_pong);
assert_eq!(&peer, &peer1_id);
assert_eq!(req_id, request_id);
if count >= num_pings {
return
} else {
req_id = swarm2.send_request(&peer1_id, ping.clone());
}
},
e => panic!("Peer2: Unexpected event: {:?}", e)
}
}
};
async_std::task::spawn(Box::pin(peer1));
let () = async_std::task::block_on(peer2);
}
#[test]
fn ping_protocol_throttled() {
let ping = Ping("ping".to_string().into_bytes());
let pong = Pong("pong".to_string().into_bytes());
let protocols = iter::once((PingProtocol(), ProtocolSupport::Full));
let cfg = RequestResponseConfig::default();
let (peer1_id, trans) = mk_transport();
let ping_proto1 = RequestResponse::throttled(PingCodec(), protocols.clone(), cfg.clone());
let mut swarm1 = Swarm::new(trans, ping_proto1, peer1_id.clone());
let (peer2_id, trans) = mk_transport();
let ping_proto2 = RequestResponse::throttled(PingCodec(), protocols, cfg);
let mut swarm2 = Swarm::new(trans, ping_proto2, peer2_id.clone());
let (mut tx, mut rx) = mpsc::channel::<Multiaddr>(1);
let addr = "/ip4/127.0.0.1/tcp/0".parse().unwrap();
Swarm::listen_on(&mut swarm1, addr).unwrap();
let expected_ping = ping.clone();
let expected_pong = pong.clone();
let limit1: u16 = rand::thread_rng().gen_range(1, 10);
let limit2: u16 = rand::thread_rng().gen_range(1, 10);
swarm1.set_receive_limit(NonZeroU16::new(limit1).unwrap());
swarm2.set_receive_limit(NonZeroU16::new(limit2).unwrap());
let peer1 = async move {
while let Some(_) = swarm1.next().now_or_never() {}
let l = Swarm::listeners(&swarm1).next().unwrap();
tx.send(l.clone()).await.unwrap();
for i in 1 .. {
match swarm1.next().await {
throttled::Event::Event(RequestResponseEvent::Message {
peer,
message: RequestResponseMessage::Request { request, channel, .. },
}) => {
assert_eq!(&request, &expected_ping);
assert_eq!(&peer, &peer2_id);
swarm1.send_response(channel, pong.clone());
},
e => panic!("Peer1: Unexpected event: {:?}", e)
}
if i % 31 == 0 {
let lim = rand::thread_rng().gen_range(1, 17);
swarm1.override_receive_limit(&peer2_id, NonZeroU16::new(lim).unwrap());
}
}
};
let num_pings: u16 = rand::thread_rng().gen_range(100, 1000);
let peer2 = async move {
let mut count = 0;
let addr = rx.next().await.unwrap();
swarm2.add_address(&peer1_id, addr.clone());
let mut blocked = false;
let mut req_ids = HashSet::new();
loop {
if !blocked {
while let Some(id) = swarm2.send_request(&peer1_id, ping.clone()).ok() {
req_ids.insert(id);
}
blocked = true;
}
match swarm2.next().await {
throttled::Event::ResumeSending(peer) => {
assert_eq!(peer, peer1_id);
blocked = false
}
throttled::Event::Event(RequestResponseEvent::Message {
peer,
message: RequestResponseMessage::Response { request_id, response }
}) => {
count += 1;
assert_eq!(&response, &expected_pong);
assert_eq!(&peer, &peer1_id);
assert!(req_ids.remove(&request_id));
if count >= num_pings {
break
}
}
e => panic!("Peer2: Unexpected event: {:?}", e)
}
}
};
async_std::task::spawn(Box::pin(peer1));
let () = async_std::task::block_on(peer2);
}
fn mk_transport() -> (PeerId, transport::Boxed<(PeerId, StreamMuxerBox)>) {
let id_keys = identity::Keypair::generate_ed25519();
let peer_id = id_keys.public().into_peer_id();
let noise_keys = Keypair::<X25519Spec>::new().into_authentic(&id_keys).unwrap();
(peer_id, TcpConfig::new()
.nodelay(true)
.upgrade(upgrade::Version::V1)
.authenticate(NoiseConfig::xx(noise_keys).into_authenticated())
.multiplex(libp2p_yamux::YamuxConfig::default())
.boxed())
}
// Simple Ping-Pong Protocol
#[derive(Debug, Clone)]
struct PingProtocol();
#[derive(Clone)]
struct PingCodec();
#[derive(Debug, Clone, PartialEq, Eq)]
struct Ping(Vec<u8>);
#[derive(Debug, Clone, PartialEq, Eq)]
struct Pong(Vec<u8>);
impl ProtocolName for PingProtocol {
fn protocol_name(&self) -> &[u8] {
"/ping/1".as_bytes()
}
}
#[async_trait]
impl RequestResponseCodec for PingCodec {
type Protocol = PingProtocol;
type Request = Ping;
type Response = Pong;
async fn read_request<T>(&mut self, _: &PingProtocol, io: &mut T)
-> io::Result<Self::Request>
where
T: AsyncRead + Unpin + Send
{
read_one(io, 1024)
.map(|res| match res {
Err(e) => Err(io::Error::new(io::ErrorKind::InvalidData, e)),
Ok(vec) if vec.is_empty() => Err(io::ErrorKind::UnexpectedEof.into()),
Ok(vec) => Ok(Ping(vec))
})
.await
}
async fn read_response<T>(&mut self, _: &PingProtocol, io: &mut T)
-> io::Result<Self::Response>
where
T: AsyncRead + Unpin + Send
{
read_one(io, 1024)
.map(|res| match res {
Err(e) => Err(io::Error::new(io::ErrorKind::InvalidData, e)),
Ok(vec) if vec.is_empty() => Err(io::ErrorKind::UnexpectedEof.into()),
Ok(vec) => Ok(Pong(vec))
})
.await
}
async fn write_request<T>(&mut self, _: &PingProtocol, io: &mut T, Ping(data): Ping)
-> io::Result<()>
where
T: AsyncWrite + Unpin + Send
{
write_one(io, data).await
}
async fn write_response<T>(&mut self, _: &PingProtocol, io: &mut T, Pong(data): Pong)
-> io::Result<()>
where
T: AsyncWrite + Unpin + Send
{
write_one(io, data).await
}
}