rust-libp2p/example/examples/echo-dialer.rs
2018-01-03 10:30:50 +01:00

128 lines
5.9 KiB
Rust

// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
extern crate bytes;
extern crate futures;
extern crate libp2p_secio as secio;
extern crate libp2p_swarm as swarm;
extern crate libp2p_tcp_transport as tcp;
extern crate libp2p_websocket as websocket;
extern crate multiplex;
extern crate tokio_core;
extern crate tokio_io;
use bytes::BytesMut;
use futures::{Future, Sink, Stream};
use std::env;
use swarm::{UpgradeExt, SimpleProtocol, Transport, MuxedTransport};
use tcp::TcpConfig;
use tokio_core::reactor::Core;
use tokio_io::codec::length_delimited;
use websocket::WsConfig;
fn main() {
// Determine which address to dial.
let target_addr = env::args().nth(1).unwrap_or("/ip4/127.0.0.1/tcp/10333".to_owned());
// We start by building the tokio engine that will run all the sockets.
let mut core = Core::new().unwrap();
// Now let's build the transport stack.
// We start by creating a `TcpConfig` that indicates that we want TCP/IP.
let transport = TcpConfig::new(core.handle())
// In addition to TCP/IP, we also want to support the Websockets protocol on top of TCP/IP.
// The parameter passed to `WsConfig::new()` must be an implementation of `Transport` to be
// used for the underlying multiaddress.
.or_transport(WsConfig::new(TcpConfig::new(core.handle())))
// On top of TCP/IP, we will use either the plaintext protocol or the secio protocol,
// depending on which one the remote supports.
.with_upgrade({
let plain_text = swarm::PlainTextConfig;
let secio = {
let private_key = include_bytes!("test-private-key.pk8");
let public_key = include_bytes!("test-public-key.der").to_vec();
secio::SecioConfig {
key: secio::SecioKeyPair::rsa_from_pkcs8(private_key, public_key).unwrap(),
}
};
plain_text.or_upgrade(secio)
})
// On top of plaintext or secio, we will use the multiplex protocol.
.with_upgrade(multiplex::MultiplexConfig)
// The object returned by the call to `with_upgrade(MultiplexConfig)` can't be used as a
// `Transport` because the output of the upgrade is not a stream but a controller for
// muxing. We have to explicitly call `into_connection_reuse()` in order to turn this into
// a `Transport`.
.into_connection_reuse();
let transport_with_echo = transport
.clone()
// On top of plaintext or secio, we use the "echo" protocol, which is a custom protocol
// just for this example.
// For this purpose, we create a `SimpleProtocol` struct.
.with_upgrade(SimpleProtocol::new("/echo/1.0.0", |socket| {
// This closure is called whenever a stream using the "echo" protocol has been
// successfully negotiated. The parameter is the raw socket (implements the AsyncRead
// and AsyncWrite traits), and the closure must return an implementation of
// `IntoFuture` that can yield any type of object.
Ok(length_delimited::Framed::<_, BytesMut>::new(socket))
}));
// We now have a `transport` variable that can be used either to dial nodes or listen to
// incoming connections, and that will automatically apply all the selected protocols on top
// of any opened stream.
// We use it to dial the address.
let dialer = transport_with_echo
.dial(swarm::Multiaddr::new(&target_addr).expect("invalid multiaddr"))
// If the multiaddr protocol exists but is not supported, then we get an error containing
// the transport and the original multiaddress. Therefore we cannot directly use `unwrap()`
// or `expect()`, but have to add a `map_err()` beforehand.
.map_err(|(_, addr)| addr).expect("unsupported multiaddr")
.and_then(|echo| {
// `echo` is what the closure used when initializing "echo" returns.
// Consequently, please note that the `send` method is available only because the type
// `length_delimited::Framed` has a `send` method.
println!("Sending \"hello world\" to listener");
echo.send("hello world".into())
})
.and_then(|echo| {
// The message has been successfully sent. Now wait for an answer.
echo.into_future()
.map(|(msg, rest)| {
println!("Received message from listener: {:?}", msg);
rest
})
.map_err(|(err, _)| err)
});
// `dialer` is a future that contains all the behaviour that we want, but nothing has actually
// started yet. Because we created the `TcpConfig` with tokio, we need to run the future
// through the tokio core.
core.run(dialer.map(|_| ()).select(transport.incoming().for_each(|_| Ok(()))))
.unwrap_or_else(|_| panic!());
}