futpib bcff814b92
core/identity: Implement Hash and Ord for PublicKey (#2915)
Co-authored-by: Thomas Eizinger <thomas@eizinger.io>
2022-09-22 19:35:42 +02:00

272 lines
8.5 KiB
Rust

// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Ed25519 keys.
use super::error::DecodingError;
use core::cmp;
use core::fmt;
use core::hash;
use ed25519_dalek::{self as ed25519, Signer as _, Verifier as _};
use rand::RngCore;
use std::convert::TryFrom;
use zeroize::Zeroize;
/// An Ed25519 keypair.
pub struct Keypair(ed25519::Keypair);
impl Keypair {
/// Generate a new random Ed25519 keypair.
pub fn generate() -> Keypair {
Keypair::from(SecretKey::generate())
}
/// Encode the keypair into a byte array by concatenating the bytes
/// of the secret scalar and the compressed public point,
/// an informal standard for encoding Ed25519 keypairs.
pub fn encode(&self) -> [u8; 64] {
self.0.to_bytes()
}
/// Decode a keypair from the [binary format](https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5)
/// produced by [`Keypair::encode`], zeroing the input on success.
///
/// Note that this binary format is the same as `ed25519_dalek`'s and `ed25519_zebra`'s.
pub fn decode(kp: &mut [u8]) -> Result<Keypair, DecodingError> {
ed25519::Keypair::from_bytes(kp)
.map(|k| {
kp.zeroize();
Keypair(k)
})
.map_err(|e| DecodingError::new("Ed25519 keypair").source(e))
}
/// Sign a message using the private key of this keypair.
pub fn sign(&self, msg: &[u8]) -> Vec<u8> {
self.0.sign(msg).to_bytes().to_vec()
}
/// Get the public key of this keypair.
pub fn public(&self) -> PublicKey {
PublicKey(self.0.public)
}
/// Get the secret key of this keypair.
pub fn secret(&self) -> SecretKey {
SecretKey::from_bytes(&mut self.0.secret.to_bytes())
.expect("ed25519::SecretKey::from_bytes(to_bytes(k)) != k")
}
}
impl fmt::Debug for Keypair {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Keypair")
.field("public", &self.0.public)
.finish()
}
}
impl Clone for Keypair {
fn clone(&self) -> Keypair {
let mut sk_bytes = self.0.secret.to_bytes();
let secret = SecretKey::from_bytes(&mut sk_bytes)
.expect("ed25519::SecretKey::from_bytes(to_bytes(k)) != k")
.0;
let public = ed25519::PublicKey::from_bytes(&self.0.public.to_bytes())
.expect("ed25519::PublicKey::from_bytes(to_bytes(k)) != k");
Keypair(ed25519::Keypair { secret, public })
}
}
/// Demote an Ed25519 keypair to a secret key.
impl From<Keypair> for SecretKey {
fn from(kp: Keypair) -> SecretKey {
SecretKey(kp.0.secret)
}
}
/// Promote an Ed25519 secret key into a keypair.
impl From<SecretKey> for Keypair {
fn from(sk: SecretKey) -> Keypair {
let secret: ed25519::ExpandedSecretKey = (&sk.0).into();
let public = ed25519::PublicKey::from(&secret);
Keypair(ed25519::Keypair {
secret: sk.0,
public,
})
}
}
/// An Ed25519 public key.
#[derive(Eq, Clone)]
pub struct PublicKey(ed25519::PublicKey);
impl fmt::Debug for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("PublicKey(compressed): ")?;
for byte in self.0.as_bytes() {
write!(f, "{:x}", byte)?;
}
Ok(())
}
}
impl cmp::PartialEq for PublicKey {
fn eq(&self, other: &Self) -> bool {
self.0.as_bytes().eq(other.0.as_bytes())
}
}
impl hash::Hash for PublicKey {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.0.as_bytes().hash(state);
}
}
impl cmp::PartialOrd for PublicKey {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
self.0.as_bytes().partial_cmp(other.0.as_bytes())
}
}
impl cmp::Ord for PublicKey {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.0.as_bytes().cmp(other.0.as_bytes())
}
}
impl PublicKey {
/// Verify the Ed25519 signature on a message using the public key.
pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
ed25519::Signature::try_from(sig)
.and_then(|s| self.0.verify(msg, &s))
.is_ok()
}
/// Encode the public key into a byte array in compressed form, i.e.
/// where one coordinate is represented by a single bit.
pub fn encode(&self) -> [u8; 32] {
self.0.to_bytes()
}
/// Decode a public key from a byte array as produced by `encode`.
pub fn decode(k: &[u8]) -> Result<PublicKey, DecodingError> {
ed25519::PublicKey::from_bytes(k)
.map_err(|e| DecodingError::new("Ed25519 public key").source(e))
.map(PublicKey)
}
}
/// An Ed25519 secret key.
pub struct SecretKey(ed25519::SecretKey);
/// View the bytes of the secret key.
impl AsRef<[u8]> for SecretKey {
fn as_ref(&self) -> &[u8] {
self.0.as_bytes()
}
}
impl Clone for SecretKey {
fn clone(&self) -> SecretKey {
let mut sk_bytes = self.0.to_bytes();
Self::from_bytes(&mut sk_bytes).expect("ed25519::SecretKey::from_bytes(to_bytes(k)) != k")
}
}
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "SecretKey")
}
}
impl SecretKey {
/// Generate a new Ed25519 secret key.
pub fn generate() -> SecretKey {
let mut bytes = [0u8; 32];
rand::thread_rng().fill_bytes(&mut bytes);
SecretKey(
ed25519::SecretKey::from_bytes(&bytes).expect(
"this returns `Err` only if the length is wrong; the length is correct; qed",
),
)
}
/// Create an Ed25519 secret key from a byte slice, zeroing the input on success.
/// If the bytes do not constitute a valid Ed25519 secret key, an error is
/// returned.
pub fn from_bytes(mut sk_bytes: impl AsMut<[u8]>) -> Result<SecretKey, DecodingError> {
let sk_bytes = sk_bytes.as_mut();
let secret = ed25519::SecretKey::from_bytes(&*sk_bytes)
.map_err(|e| DecodingError::new("Ed25519 secret key").source(e))?;
sk_bytes.zeroize();
Ok(SecretKey(secret))
}
}
#[cfg(test)]
mod tests {
use super::*;
use quickcheck::*;
fn eq_keypairs(kp1: &Keypair, kp2: &Keypair) -> bool {
kp1.public() == kp2.public() && kp1.0.secret.as_bytes() == kp2.0.secret.as_bytes()
}
#[test]
fn ed25519_keypair_encode_decode() {
fn prop() -> bool {
let kp1 = Keypair::generate();
let mut kp1_enc = kp1.encode();
let kp2 = Keypair::decode(&mut kp1_enc).unwrap();
eq_keypairs(&kp1, &kp2) && kp1_enc.iter().all(|b| *b == 0)
}
QuickCheck::new().tests(10).quickcheck(prop as fn() -> _);
}
#[test]
fn ed25519_keypair_from_secret() {
fn prop() -> bool {
let kp1 = Keypair::generate();
let mut sk = kp1.0.secret.to_bytes();
let kp2 = Keypair::from(SecretKey::from_bytes(&mut sk).unwrap());
eq_keypairs(&kp1, &kp2) && sk == [0u8; 32]
}
QuickCheck::new().tests(10).quickcheck(prop as fn() -> _);
}
#[test]
fn ed25519_signature() {
let kp = Keypair::generate();
let pk = kp.public();
let msg = "hello world".as_bytes();
let sig = kp.sign(msg);
assert!(pk.verify(msg, &sig));
let mut invalid_sig = sig.clone();
invalid_sig[3..6].copy_from_slice(&[10, 23, 42]);
assert!(!pk.verify(msg, &invalid_sig));
let invalid_msg = "h3ll0 w0rld".as_bytes();
assert!(!pk.verify(invalid_msg, &sig));
}
}