2018-12-11 15:13:10 +01:00

475 lines
16 KiB
Rust

// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! The `secio` protocol is a middleware that will encrypt and decrypt communications going
//! through a socket (or anything that implements `AsyncRead + AsyncWrite`).
//!
//! # Connection upgrade
//!
//! The `SecioConfig` struct implements the `ConnectionUpgrade` trait. You can apply it over a
//! `Transport` by using the `with_upgrade` method. The returned object will also implement
//! `Transport` and will automatically apply the secio protocol over any connection that is opened
//! through it.
//!
//! ```no_run
//! extern crate futures;
//! extern crate tokio;
//! extern crate tokio_io;
//! extern crate libp2p_core;
//! extern crate libp2p_secio;
//! extern crate libp2p_tcp;
//!
//! # fn main() {
//! use futures::Future;
//! use libp2p_secio::{SecioConfig, SecioKeyPair, SecioOutput};
//! use libp2p_core::{Multiaddr, upgrade::apply_inbound};
//! use libp2p_core::transport::Transport;
//! use libp2p_tcp::TcpConfig;
//! use tokio_io::io::write_all;
//! use tokio::runtime::current_thread::Runtime;
//!
//! let dialer = TcpConfig::new()
//! .with_upgrade({
//! # let private_key = b"";
//! //let private_key = include_bytes!("test-rsa-private-key.pk8");
//! # let public_key = vec![];
//! //let public_key = include_bytes!("test-rsa-public-key.der").to_vec();
//! // See the documentation of `SecioKeyPair`.
//! let keypair = SecioKeyPair::rsa_from_pkcs8(private_key, public_key).unwrap();
//! SecioConfig::new(keypair)
//! })
//! .map(|out: SecioOutput<_>, _| out.stream);
//!
//! let future = dialer.dial("/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap())
//! .unwrap_or_else(|_| panic!("Unable to dial node"))
//! .and_then(|connection| {
//! // Sends "hello world" on the connection, will be encrypted.
//! write_all(connection, "hello world")
//! })
//! .map_err(|e| panic!("error: {:?}", e));
//!
//! let mut rt = Runtime::new().unwrap();
//! let _ = rt.block_on(future).unwrap();
//! # }
//! ```
//!
//! # Manual usage
//!
//! > **Note**: You are encouraged to use `SecioConfig` as described above.
//!
//! You can add the `secio` layer over a socket by calling `SecioMiddleware::handshake()`. This
//! method will perform a handshake with the host, and return a future that corresponds to the
//! moment when the handshake succeeds or errored. On success, the future produces a
//! `SecioMiddleware` that implements `Sink` and `Stream` and can be used to send packets of data.
//!
#![recursion_limit = "128"]
extern crate aes_ctr;
#[cfg(feature = "secp256k1")]
extern crate asn1_der;
extern crate bytes;
extern crate ctr;
extern crate ed25519_dalek;
extern crate futures;
extern crate hmac;
extern crate libp2p_core;
#[macro_use]
extern crate log;
extern crate protobuf;
extern crate rand;
#[cfg(not(target_os = "emscripten"))]
extern crate ring;
extern crate rw_stream_sink;
#[cfg(feature = "secp256k1")]
extern crate secp256k1;
extern crate sha2;
#[cfg(target_os = "emscripten")]
#[macro_use]
extern crate stdweb;
extern crate tokio_io;
extern crate twofish;
#[cfg(not(target_os = "emscripten"))]
extern crate untrusted;
#[cfg(feature = "aes-all")]
#[macro_use]
extern crate lazy_static;
pub use self::error::SecioError;
#[cfg(feature = "secp256k1")]
use asn1_der::{traits::FromDerEncoded, traits::FromDerObject, DerObject};
use bytes::BytesMut;
use ed25519_dalek::Keypair as Ed25519KeyPair;
use futures::stream::MapErr as StreamMapErr;
use futures::{Future, Poll, Sink, StartSend, Stream};
use libp2p_core::{PeerId, PublicKey, upgrade::{UpgradeInfo, InboundUpgrade, OutboundUpgrade}};
#[cfg(all(feature = "rsa", not(target_os = "emscripten")))]
use ring::signature::RSAKeyPair;
use rw_stream_sink::RwStreamSink;
use std::error::Error;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use std::sync::Arc;
use tokio_io::{AsyncRead, AsyncWrite};
#[cfg(all(feature = "rsa", not(target_os = "emscripten")))]
use untrusted::Input;
mod algo_support;
mod codec;
mod error;
mod exchange;
mod handshake;
mod structs_proto;
mod stream_cipher;
pub use algo_support::Digest;
pub use exchange::KeyAgreement;
pub use stream_cipher::Cipher;
/// Implementation of the `ConnectionUpgrade` trait of `libp2p_core`. Automatically applies
/// secio on any connection.
#[derive(Clone)]
pub struct SecioConfig {
/// Private and public keys of the local node.
pub(crate) key: SecioKeyPair,
pub(crate) agreements_prop: Option<String>,
pub(crate) ciphers_prop: Option<String>,
pub(crate) digests_prop: Option<String>
}
impl SecioConfig {
/// Create a new `SecioConfig` with the given keypair.
pub fn new(kp: SecioKeyPair) -> Self {
SecioConfig {
key: kp,
agreements_prop: None,
ciphers_prop: None,
digests_prop: None
}
}
/// Override the default set of supported key agreement algorithms.
pub fn key_agreements<'a, I>(mut self, xs: I) -> Self
where
I: IntoIterator<Item=&'a KeyAgreement>
{
self.agreements_prop = Some(algo_support::key_agreements_proposition(xs));
self
}
/// Override the default set of supported ciphers.
pub fn ciphers<'a, I>(mut self, xs: I) -> Self
where
I: IntoIterator<Item=&'a Cipher>
{
self.ciphers_prop = Some(algo_support::ciphers_proposition(xs));
self
}
/// Override the default set of supported digest algorithms.
pub fn digests<'a, I>(mut self, xs: I) -> Self
where
I: IntoIterator<Item=&'a Digest>
{
self.digests_prop = Some(algo_support::digests_proposition(xs));
self
}
fn handshake<T>(self, socket: T) -> impl Future<Item=SecioOutput<T>, Error=SecioError>
where
T: AsyncRead + AsyncWrite + Send + 'static
{
debug!("Starting secio upgrade");
SecioMiddleware::handshake(socket, self)
.map(|(stream_sink, pubkey, ephemeral)| {
let mapped = stream_sink.map_err(map_err as fn(_) -> _);
SecioOutput {
stream: RwStreamSink::new(mapped),
remote_key: pubkey,
ephemeral_public_key: ephemeral
}
})
}
}
/// Private and public keys of the local node.
///
/// # Generating offline keys with OpenSSL
///
/// ## RSA
///
/// Generating the keys:
///
/// ```text
/// openssl genrsa -out private.pem 2048
/// openssl rsa -in private.pem -outform DER -pubout -out public.der
/// openssl pkcs8 -in private.pem -topk8 -nocrypt -out private.pk8
/// rm private.pem # optional
/// ```
///
/// Loading the keys:
///
/// ```ignore
/// let key_pair = SecioKeyPair::rsa_from_pkcs8(include_bytes!("private.pk8"),
/// include_bytes!("public.der"));
/// ```
///
#[derive(Clone)]
pub struct SecioKeyPair {
inner: SecioKeyPairInner,
}
impl SecioKeyPair {
/// Builds a `SecioKeyPair` from a PKCS8 private key and public key.
#[cfg(all(feature = "ring", not(target_os = "emscripten")))]
pub fn rsa_from_pkcs8<P>(
private: &[u8],
public: P,
) -> Result<SecioKeyPair, Box<Error + Send + Sync>>
where
P: Into<Vec<u8>>,
{
let private = RSAKeyPair::from_pkcs8(Input::from(&private[..])).map_err(Box::new)?;
Ok(SecioKeyPair {
inner: SecioKeyPairInner::Rsa {
public: public.into(),
private: Arc::new(private),
},
})
}
/// Generates a new Ed25519 key pair and uses it.
pub fn ed25519_generated() -> Result<SecioKeyPair, Box<Error + Send + Sync>> {
let mut csprng = rand::rngs::OsRng::new()?;
let keypair: Ed25519KeyPair = Ed25519KeyPair::generate::<sha2::Sha512, _>(&mut csprng);
Ok(SecioKeyPair {
inner: SecioKeyPairInner::Ed25519 {
key_pair: Arc::new(keypair),
}
})
}
/// Generates a new random sec256k1 key pair.
#[cfg(feature = "secp256k1")]
pub fn secp256k1_generated() -> Result<SecioKeyPair, Box<Error + Send + Sync>> {
let secp = secp256k1::Secp256k1::new();
// TODO: This will work once 0.11.5 is released. See https://github.com/rust-bitcoin/rust-secp256k1/pull/80#pullrequestreview-172681778
// let private = secp256k1::key::SecretKey::new(&secp, &mut secp256k1::rand::thread_rng());
use rand::Rng;
let mut random_slice= [0u8; secp256k1::constants::SECRET_KEY_SIZE];
rand::thread_rng().fill(&mut random_slice[..]);
let private = secp256k1::key::SecretKey::from_slice(&secp, &random_slice).expect("slice has the right size");
Ok(SecioKeyPair {
inner: SecioKeyPairInner::Secp256k1 { private },
})
}
/// Builds a `SecioKeyPair` from a raw secp256k1 32 bytes private key.
#[cfg(feature = "secp256k1")]
pub fn secp256k1_raw_key<K>(key: K) -> Result<SecioKeyPair, Box<Error + Send + Sync>>
where
K: AsRef<[u8]>,
{
let secp = secp256k1::Secp256k1::without_caps();
let private = secp256k1::key::SecretKey::from_slice(&secp, key.as_ref())?;
Ok(SecioKeyPair {
inner: SecioKeyPairInner::Secp256k1 { private },
})
}
/// Builds a `SecioKeyPair` from a secp256k1 private key in DER format.
#[cfg(feature = "secp256k1")]
pub fn secp256k1_from_der<K>(key: K) -> Result<SecioKeyPair, Box<Error + Send + Sync>>
where
K: AsRef<[u8]>,
{
// See ECPrivateKey in https://tools.ietf.org/html/rfc5915
let obj: Vec<DerObject> =
FromDerEncoded::with_der_encoded(key.as_ref()).map_err(|err| err.to_string())?;
let priv_key_obj = obj.into_iter()
.nth(1)
.ok_or_else(|| "Not enough elements in DER".to_string())?;
let private_key: Vec<u8> =
FromDerObject::from_der_object(priv_key_obj).map_err(|err| err.to_string())?;
SecioKeyPair::secp256k1_raw_key(&private_key)
}
/// Returns the public key corresponding to this key pair.
pub fn to_public_key(&self) -> PublicKey {
match self.inner {
#[cfg(all(feature = "ring", not(target_os = "emscripten")))]
SecioKeyPairInner::Rsa { ref public, .. } => PublicKey::Rsa(public.clone()),
SecioKeyPairInner::Ed25519 { ref key_pair } => {
PublicKey::Ed25519(key_pair.public.as_bytes().to_vec())
}
#[cfg(feature = "secp256k1")]
SecioKeyPairInner::Secp256k1 { ref private } => {
let secp = secp256k1::Secp256k1::signing_only();
let pubkey = secp256k1::key::PublicKey::from_secret_key(&secp, private);
PublicKey::Secp256k1(pubkey.serialize().to_vec())
}
}
}
/// Builds a `PeerId` corresponding to the public key of this key pair.
#[inline]
pub fn to_peer_id(&self) -> PeerId {
self.to_public_key().into_peer_id()
}
// TODO: method to save generated key on disk?
}
// Inner content of `SecioKeyPair`.
#[derive(Clone)]
enum SecioKeyPairInner {
#[cfg(all(feature = "ring", not(target_os = "emscripten")))]
Rsa {
public: Vec<u8>,
// We use an `Arc` so that we can clone the enum.
private: Arc<RSAKeyPair>,
},
Ed25519 {
// We use an `Arc` so that we can clone the enum.
key_pair: Arc<Ed25519KeyPair>,
},
#[cfg(feature = "secp256k1")]
Secp256k1 { private: secp256k1::key::SecretKey },
}
/// Output of the secio protocol.
pub struct SecioOutput<S>
where
S: AsyncRead + AsyncWrite,
{
/// The encrypted stream.
pub stream: RwStreamSink<StreamMapErr<SecioMiddleware<S>, fn(SecioError) -> IoError>>,
/// The public key of the remote.
pub remote_key: PublicKey,
/// Ephemeral public key used during the negotiation.
pub ephemeral_public_key: Vec<u8>,
}
impl UpgradeInfo for SecioConfig {
type Info = &'static [u8];
type InfoIter = iter::Once<Self::Info>;
fn protocol_info(&self) -> Self::InfoIter {
iter::once(b"/secio/1.0.0")
}
}
impl<T> InboundUpgrade<T> for SecioConfig
where
T: AsyncRead + AsyncWrite + Send + 'static
{
type Output = SecioOutput<T>;
type Error = SecioError;
type Future = Box<dyn Future<Item = Self::Output, Error = Self::Error> + Send>;
fn upgrade_inbound(self, socket: T, _: Self::Info) -> Self::Future {
Box::new(self.handshake(socket))
}
}
impl<T> OutboundUpgrade<T> for SecioConfig
where
T: AsyncRead + AsyncWrite + Send + 'static
{
type Output = SecioOutput<T>;
type Error = SecioError;
type Future = Box<dyn Future<Item = Self::Output, Error = Self::Error> + Send>;
fn upgrade_outbound(self, socket: T, _: Self::Info) -> Self::Future {
Box::new(self.handshake(socket))
}
}
#[inline]
fn map_err(err: SecioError) -> IoError {
debug!("error during secio handshake {:?}", err);
IoError::new(IoErrorKind::InvalidData, err)
}
/// Wraps around an object that implements `AsyncRead` and `AsyncWrite`.
///
/// Implements `Sink` and `Stream` whose items are frames of data. Each frame is encoded
/// individually, so you are encouraged to group data in few frames if possible.
pub struct SecioMiddleware<S> {
inner: codec::FullCodec<S>,
}
impl<S> SecioMiddleware<S>
where
S: AsyncRead + AsyncWrite + Send,
{
/// Attempts to perform a handshake on the given socket.
///
/// On success, produces a `SecioMiddleware` that can then be used to encode/decode
/// communications, plus the public key of the remote, plus the ephemeral public key.
pub fn handshake(socket: S, config: SecioConfig)
-> impl Future<Item = (SecioMiddleware<S>, PublicKey, Vec<u8>), Error = SecioError>
{
handshake::handshake(socket, config).map(|(inner, pubkey, ephemeral)| {
let inner = SecioMiddleware { inner };
(inner, pubkey, ephemeral)
})
}
}
impl<S> Sink for SecioMiddleware<S>
where
S: AsyncRead + AsyncWrite,
{
type SinkItem = BytesMut;
type SinkError = IoError;
#[inline]
fn start_send(&mut self, item: Self::SinkItem) -> StartSend<Self::SinkItem, Self::SinkError> {
self.inner.start_send(item)
}
#[inline]
fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
self.inner.poll_complete()
}
#[inline]
fn close(&mut self) -> Poll<(), Self::SinkError> {
self.inner.close()
}
}
impl<S> Stream for SecioMiddleware<S>
where
S: AsyncRead + AsyncWrite,
{
type Item = Vec<u8>;
type Error = SecioError;
#[inline]
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
self.inner.poll()
}
}