2018-05-16 12:59:36 +02:00

159 lines
6.1 KiB
Rust

// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
extern crate bigint;
extern crate bytes;
extern crate env_logger;
extern crate example;
extern crate futures;
extern crate libp2p_identify as identify;
extern crate libp2p_kad as kad;
extern crate libp2p_mplex as multiplex;
extern crate libp2p_peerstore as peerstore;
extern crate libp2p_secio as secio;
extern crate libp2p_core as swarm;
extern crate libp2p_tcp_transport as tcp;
extern crate tokio_core;
extern crate tokio_io;
use bigint::U512;
use futures::future::Future;
use peerstore::PeerId;
use std::env;
use std::sync::Arc;
use std::time::Duration;
use swarm::Transport;
use swarm::upgrade;
use tcp::TcpConfig;
use tokio_core::reactor::Core;
fn main() {
env_logger::init();
// Determine which addresses to listen to.
let listen_addrs = {
let mut args = env::args().skip(1).collect::<Vec<_>>();
if args.is_empty() {
args.push("/ip4/0.0.0.0/tcp/0".to_owned());
}
args
};
// We start by building the tokio engine that will run all the sockets.
let mut core = Core::new().unwrap();
let peer_store = Arc::new(peerstore::memory_peerstore::MemoryPeerstore::empty());
example::ipfs_bootstrap(&*peer_store);
// Now let's build the transport stack.
// We create a `TcpConfig` that indicates that we want TCP/IP.
let transport = TcpConfig::new(core.handle())
// On top of TCP/IP, we will use either the plaintext protocol or the secio protocol,
// depending on which one the remote supports.
.with_upgrade({
let plain_text = upgrade::PlainTextConfig;
let secio = {
let private_key = include_bytes!("test-private-key.pk8");
let public_key = include_bytes!("test-public-key.der").to_vec();
secio::SecioConfig {
key: secio::SecioKeyPair::rsa_from_pkcs8(private_key, public_key).unwrap(),
}
};
upgrade::or(plain_text, upgrade::map(secio, |(socket, _)| socket))
})
// On top of plaintext or secio, we will use the multiplex protocol.
.with_upgrade(multiplex::MultiplexConfig::new())
// The object returned by the call to `with_upgrade(MultiplexConfig::new())` can't be used as a
// `Transport` because the output of the upgrade is not a stream but a controller for
// muxing. We have to explicitly call `into_connection_reuse()` in order to turn this into
// a `Transport`.
.into_connection_reuse();
let transport = identify::IdentifyTransport::new(transport, peer_store.clone())
.map(|id_out, _, _| {
id_out.socket
});
// We now have a `transport` variable that can be used either to dial nodes or listen to
// incoming connections, and that will automatically apply secio and multiplex on top
// of any opened stream.
let my_peer_id = PeerId::from_public_key(include_bytes!("test-public-key.der"));
println!("Local peer id is: {:?}", my_peer_id);
// Let's put this `transport` into a Kademlia *swarm*. The swarm will handle all the incoming
// and outgoing connections for us.
let kad_config = kad::KademliaConfig {
parallelism: 3,
record_store: (),
peer_store: peer_store,
local_peer_id: my_peer_id.clone(),
timeout: Duration::from_secs(2),
};
let kad_ctl_proto = kad::KademliaControllerPrototype::new(kad_config);
let proto = kad::KademliaUpgrade::from_prototype(&kad_ctl_proto);
// Let's put this `transport` into a *swarm*. The swarm will handle all the incoming and
// outgoing connections for us.
let (swarm_controller, swarm_future) = swarm::swarm(
transport.clone().with_upgrade(proto.clone()),
|upgrade, _| upgrade,
);
let (kad_controller, _kad_init) =
kad_ctl_proto.start(swarm_controller.clone(), transport.with_upgrade(proto));
for listen_addr in listen_addrs {
let addr = swarm_controller
.listen_on(listen_addr.parse().expect("invalid multiaddr"))
.expect("unsupported multiaddr");
println!("Now listening on {:?}", addr);
}
let finish_enum = kad_controller
.find_node(my_peer_id.clone())
.and_then(|out| {
let local_hash = U512::from(my_peer_id.hash());
println!("Results of peer discovery for {:?}:", my_peer_id);
for n in out {
let other_hash = U512::from(n.hash());
let dist = 512 - (local_hash ^ other_hash).leading_zeros();
println!("* {:?} (distance bits = {:?} (lower is better))", n, dist);
}
Ok(())
});
// `swarm_future` is a future that contains all the behaviour that we want, but nothing has
// actually started yet. Because we created the `TcpConfig` with tokio, we need to run the
// future through the tokio core.
core.run(
finish_enum
.select(swarm_future)
.map(|(n, _)| n)
.map_err(|(err, _)| err),
).unwrap();
}