Max Inden bc455038fc
core/src: Remove poll_broadcast connection notification mechanism (#1527)
* core/src: Remove poll_broadcast connection notification mechanism

The `Network::poll_broadcast` function has not proven to be useful. This
commit removes the mechanism all the way down to the connection manager.

With `poll_broadcast` gone there is no mechanism left to send commands
to pending connections. Thereby command buffering for pending
connections is not needed anymore and is thus removed in this commit as
well.

* core/src/connection/manager.rs: Remove warning comment

Co-Authored-By: Pierre Krieger <pierre.krieger1708@gmail.com>

Co-authored-by: Pierre Krieger <pierre.krieger1708@gmail.com>
2020-03-31 14:56:04 +02:00

457 lines
16 KiB
Rust

// Copyright 2020 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use crate::{
Executor,
muxing::StreamMuxer,
};
use fnv::FnvHashMap;
use futures::{
prelude::*,
channel::mpsc,
stream::FuturesUnordered
};
use std::{
collections::hash_map,
error,
fmt,
pin::Pin,
task::{Context, Poll},
};
use super::{
Connected,
Connection,
ConnectionError,
ConnectionHandler,
IntoConnectionHandler,
PendingConnectionError,
Substream
};
use task::{Task, TaskId};
mod task;
// Implementation Notes
// ====================
//
// A `Manager` is decoupled from the background tasks through channels.
// The state of a `Manager` therefore "lags behind" the progress of
// the tasks -- it is only made aware of progress in the background tasks
// when it is `poll()`ed.
//
// A `Manager` is ignorant of substreams and does not emit any events
// related to specific substreams.
//
// A `Manager` is unaware of any association between connections and peers
// / peer identities (i.e. the type parameter `C` is completely opaque).
//
// There is a 1-1 correspondence between (internal) task IDs and (public)
// connection IDs, i.e. the task IDs are "re-exported" as connection IDs
// by the manager. The notion of a (background) task is internal to the
// manager.
/// The result of a pending connection attempt.
type ConnectResult<C, M, TE> = Result<(Connected<C>, M), PendingConnectionError<TE>>;
/// Connection identifier.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ConnectionId(TaskId);
impl ConnectionId {
/// Creates a `ConnectionId` from a non-negative integer.
///
/// This is primarily useful for creating connection IDs
/// in test environments. There is in general no guarantee
/// that all connection IDs are based on non-negative integers.
pub fn new(id: usize) -> Self {
ConnectionId(TaskId(id))
}
}
/// A connection `Manager` orchestrates the I/O of a set of connections.
pub struct Manager<I, O, H, E, HE, C> {
/// The tasks of the managed connections.
///
/// Each managed connection is associated with a (background) task
/// spawned onto an executor. Each `TaskInfo` in `tasks` is linked to such a
/// background task via a channel. Closing that channel (i.e. dropping
/// the sender in the associated `TaskInfo`) stops the background task,
/// which will attempt to gracefully close the connection.
tasks: FnvHashMap<TaskId, TaskInfo<I, C>>,
/// Next available identifier for a new connection / task.
next_task_id: TaskId,
/// The executor to use for running the background tasks. If `None`,
/// the tasks are kept in `local_spawns` instead and polled on the
/// current thread when the manager is polled for new events.
executor: Option<Box<dyn Executor + Send>>,
/// If no `executor` is configured, tasks are kept in this set and
/// polled on the current thread when the manager is polled for new events.
local_spawns: FuturesUnordered<Pin<Box<dyn Future<Output = ()> + Send>>>,
/// Sender distributed to managed tasks for reporting events back
/// to the manager.
events_tx: mpsc::Sender<task::Event<O, H, E, HE, C>>,
/// Receiver for events reported from managed tasks.
events_rx: mpsc::Receiver<task::Event<O, H, E, HE, C>>
}
impl<I, O, H, E, HE, C> fmt::Debug for Manager<I, O, H, E, HE, C>
where
C: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_map()
.entries(self.tasks.iter().map(|(id, task)| (id, &task.state)))
.finish()
}
}
/// Internal information about a running task.
///
/// Contains the sender to deliver event messages to the task, and
/// the associated user data.
#[derive(Debug)]
struct TaskInfo<I, C> {
/// Channel endpoint to send messages to the task.
sender: mpsc::Sender<task::Command<I>>,
/// The state of the task as seen by the `Manager`.
state: TaskState<C>,
}
/// Internal state of a running task as seen by the `Manager`.
#[derive(Debug, Clone, PartialEq, Eq)]
enum TaskState<C> {
/// The connection is being established.
Pending,
/// The connection is established.
Established(Connected<C>),
}
/// Events produced by the [`Manager`].
#[derive(Debug)]
pub enum Event<'a, I, O, H, TE, HE, C> {
/// A connection attempt has failed.
PendingConnectionError {
/// The connection ID.
///
/// As a result of the error, the pending connection has been removed
/// from the `Manager` and is being closed. Hence this ID will
/// no longer resolve to a valid entry in the manager.
id: ConnectionId,
/// What happened.
error: PendingConnectionError<TE>,
/// The handler that was supposed to handle the failed connection.
handler: H
},
/// An established connection has encountered an error.
ConnectionError {
/// The connection ID.
///
/// As a result of the error, the connection has been removed
/// from the `Manager` and is being closed. Hence this ID will
/// no longer resolve to a valid entry in the manager.
id: ConnectionId,
/// Information about the connection that encountered the error.
connected: Connected<C>,
/// The error that occurred.
error: ConnectionError<HE>,
},
/// A connection has been established.
ConnectionEstablished {
/// The entry associated with the new connection.
entry: EstablishedEntry<'a, I, C>,
},
/// A connection handler has produced an event.
ConnectionEvent {
/// The entry associated with the connection that produced the event.
entry: EstablishedEntry<'a, I, C>,
/// The produced event.
event: O
}
}
impl<I, O, H, TE, HE, C> Manager<I, O, H, TE, HE, C> {
/// Creates a new connection manager.
pub fn new(executor: Option<Box<dyn Executor + Send>>) -> Self {
let (tx, rx) = mpsc::channel(1);
Self {
tasks: FnvHashMap::default(),
next_task_id: TaskId(0),
executor,
local_spawns: FuturesUnordered::new(),
events_tx: tx,
events_rx: rx
}
}
/// Adds to the manager a future that tries to reach a node.
///
/// This method spawns a task dedicated to resolving this future and
/// processing the node's events.
pub fn add_pending<F, M>(&mut self, future: F, handler: H) -> ConnectionId
where
I: Send + 'static,
O: Send + 'static,
TE: error::Error + Send + 'static,
HE: error::Error + Send + 'static,
C: Send + 'static,
M: StreamMuxer + Send + Sync + 'static,
M::OutboundSubstream: Send + 'static,
F: Future<Output = ConnectResult<C, M, TE>> + Send + 'static,
H: IntoConnectionHandler<C> + Send + 'static,
H::Handler: ConnectionHandler<
Substream = Substream<M>,
InEvent = I,
OutEvent = O,
Error = HE
> + Send + 'static,
<H::Handler as ConnectionHandler>::OutboundOpenInfo: Send + 'static,
{
let task_id = self.next_task_id;
self.next_task_id.0 += 1;
let (tx, rx) = mpsc::channel(4);
self.tasks.insert(task_id, TaskInfo { sender: tx, state: TaskState::Pending });
let task = Box::pin(Task::pending(task_id, self.events_tx.clone(), rx, future, handler));
if let Some(executor) = &mut self.executor {
executor.exec(task);
} else {
self.local_spawns.push(task);
}
ConnectionId(task_id)
}
/// Adds an existing connection to the manager.
pub fn add<M>(&mut self, conn: Connection<M, H::Handler>, info: Connected<C>) -> ConnectionId
where
H: IntoConnectionHandler<C> + Send + 'static,
H::Handler: ConnectionHandler<
Substream = Substream<M>,
InEvent = I,
OutEvent = O,
Error = HE
> + Send + 'static,
<H::Handler as ConnectionHandler>::OutboundOpenInfo: Send + 'static,
TE: error::Error + Send + 'static,
HE: error::Error + Send + 'static,
I: Send + 'static,
O: Send + 'static,
M: StreamMuxer + Send + Sync + 'static,
M::OutboundSubstream: Send + 'static,
C: Send + 'static
{
let task_id = self.next_task_id;
self.next_task_id.0 += 1;
let (tx, rx) = mpsc::channel(4);
self.tasks.insert(task_id, TaskInfo {
sender: tx, state: TaskState::Established(info)
});
let task: Pin<Box<Task<Pin<Box<future::Pending<_>>>, _, _, _, _, _, _>>> =
Box::pin(Task::established(task_id, self.events_tx.clone(), rx, conn));
if let Some(executor) = &mut self.executor {
executor.exec(task);
} else {
self.local_spawns.push(task);
}
ConnectionId(task_id)
}
/// Gets an entry for a managed connection, if it exists.
pub fn entry(&mut self, id: ConnectionId) -> Option<Entry<'_, I, C>> {
if let hash_map::Entry::Occupied(task) = self.tasks.entry(id.0) {
Some(Entry::new(task))
} else {
None
}
}
/// Checks whether an established connection with the given ID is currently managed.
pub fn is_established(&self, id: &ConnectionId) -> bool {
match self.tasks.get(&id.0) {
Some(TaskInfo { state: TaskState::Established(..), .. }) => true,
_ => false
}
}
/// Polls the manager for events relating to the managed connections.
pub fn poll<'a>(&'a mut self, cx: &mut Context) -> Poll<Event<'a, I, O, H, TE, HE, C>> {
// Advance the content of `local_spawns`.
while let Poll::Ready(Some(_)) = Stream::poll_next(Pin::new(&mut self.local_spawns), cx) {}
// Poll for the first event for which the manager still has a registered task, if any.
let event = loop {
match Stream::poll_next(Pin::new(&mut self.events_rx), cx) {
Poll::Ready(Some(event)) => {
if self.tasks.contains_key(event.id()) { // (1)
break event
}
}
Poll::Pending => return Poll::Pending,
Poll::Ready(None) => unreachable!("Manager holds both sender and receiver."),
}
};
if let hash_map::Entry::Occupied(mut task) = self.tasks.entry(*event.id()) {
Poll::Ready(match event {
task::Event::Notify { id: _, event } =>
Event::ConnectionEvent {
entry: EstablishedEntry { task },
event
},
task::Event::Established { id: _, info } => { // (2)
task.get_mut().state = TaskState::Established(info); // (3)
Event::ConnectionEstablished {
entry: EstablishedEntry { task },
}
}
task::Event::Failed { id, error, handler } => {
let id = ConnectionId(id);
let _ = task.remove();
Event::PendingConnectionError { id, error, handler }
}
task::Event::Error { id, error } => {
let id = ConnectionId(id);
let task = task.remove();
match task.state {
TaskState::Established(connected) =>
Event::ConnectionError { id, connected, error },
TaskState::Pending => unreachable!(
"`Event::Error` implies (2) occurred on that task and thus (3)."
),
}
}
})
} else {
unreachable!("By (1)")
}
}
}
/// An entry for a connection in the manager.
#[derive(Debug)]
pub enum Entry<'a, I, C> {
Pending(PendingEntry<'a, I, C>),
Established(EstablishedEntry<'a, I, C>)
}
impl<'a, I, C> Entry<'a, I, C> {
fn new(task: hash_map::OccupiedEntry<'a, TaskId, TaskInfo<I, C>>) -> Self {
match &task.get().state {
TaskState::Pending => Entry::Pending(PendingEntry { task }),
TaskState::Established(_) => Entry::Established(EstablishedEntry { task })
}
}
}
/// An entry for a managed connection that is considered established.
#[derive(Debug)]
pub struct EstablishedEntry<'a, I, C> {
task: hash_map::OccupiedEntry<'a, TaskId, TaskInfo<I, C>>,
}
impl<'a, I, C> EstablishedEntry<'a, I, C> {
/// (Asynchronously) sends an event to the connection handler.
///
/// If the handler is not ready to receive the event, either because
/// it is busy or the connection is about to close, the given event
/// is returned with an `Err`.
///
/// If execution of this method is preceded by successful execution of
/// `poll_ready_notify_handler` without another intervening execution
/// of `notify_handler`, it only fails if the connection is now about
/// to close.
///
/// > **Note**: As this method does not take a `Context`, the current
/// > task _may not be notified_ if sending the event fails due to
/// > the connection handler not being ready at this time.
pub fn notify_handler(&mut self, event: I) -> Result<(), I> {
let cmd = task::Command::NotifyHandler(event);
self.task.get_mut().sender.try_send(cmd)
.map_err(|e| match e.into_inner() {
task::Command::NotifyHandler(event) => event
})
}
/// Checks if `notify_handler` is ready to accept an event.
///
/// Returns `Ok(())` if the handler is ready to receive an event via `notify_handler`.
///
/// Returns `Err(())` if the background task associated with the connection
/// is terminating and the connection is about to close.
pub fn poll_ready_notify_handler(&mut self, cx: &mut Context) -> Poll<Result<(),()>> {
self.task.get_mut().sender.poll_ready(cx).map_err(|_| ())
}
/// Obtains information about the established connection.
pub fn connected(&self) -> &Connected<C> {
match &self.task.get().state {
TaskState::Established(c) => c,
TaskState::Pending => unreachable!("By Entry::new()")
}
}
/// Closes the connection represented by this entry,
/// returning the connection information.
pub fn close(self) -> Connected<C> {
match self.task.remove().state {
TaskState::Established(c) => c,
TaskState::Pending => unreachable!("By Entry::new()")
}
}
/// Returns the connection id.
pub fn id(&self) -> ConnectionId {
ConnectionId(*self.task.key())
}
}
/// An entry for a managed connection that is currently being established
/// (i.e. pending).
#[derive(Debug)]
pub struct PendingEntry<'a, I, C> {
task: hash_map::OccupiedEntry<'a, TaskId, TaskInfo<I, C>>
}
impl<'a, I, C> PendingEntry<'a, I, C> {
/// Returns the connection id.
pub fn id(&self) -> ConnectionId {
ConnectionId(*self.task.key())
}
/// Aborts the pending connection attempt.
pub fn abort(self) {
self.task.remove();
}
}