Max Inden efb117e236
fix(ping): remove debug_assert on protocol negotiation timeout
The negotiation of the ping protocol can timeout, thus a debug_assert is not correct. Return an `std::io::Error` instead.

Pull-Request: #3995.
2023-05-30 03:21:52 +00:00

396 lines
13 KiB
Rust

// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use crate::{protocol, PROTOCOL_NAME};
use futures::future::{BoxFuture, Either};
use futures::prelude::*;
use futures_timer::Delay;
use libp2p_core::upgrade::ReadyUpgrade;
use libp2p_identity::PeerId;
use libp2p_swarm::handler::{
ConnectionEvent, DialUpgradeError, FullyNegotiatedInbound, FullyNegotiatedOutbound,
};
use libp2p_swarm::{
ConnectionHandler, ConnectionHandlerEvent, KeepAlive, Stream, StreamProtocol,
StreamUpgradeError, SubstreamProtocol,
};
use std::collections::VecDeque;
use std::{
error::Error,
fmt, io,
task::{Context, Poll},
time::Duration,
};
use void::Void;
/// The configuration for outbound pings.
#[derive(Debug, Clone)]
pub struct Config {
/// The timeout of an outbound ping.
timeout: Duration,
/// The duration between outbound pings.
interval: Duration,
}
impl Config {
/// Creates a new [`Config`] with the following default settings:
///
/// * [`Config::with_interval`] 15s
/// * [`Config::with_timeout`] 20s
///
/// These settings have the following effect:
///
/// * A ping is sent every 15 seconds on a healthy connection.
/// * Every ping sent must yield a response within 20 seconds in order to
/// be successful.
pub fn new() -> Self {
Self {
timeout: Duration::from_secs(20),
interval: Duration::from_secs(15),
}
}
/// Sets the ping timeout.
pub fn with_timeout(mut self, d: Duration) -> Self {
self.timeout = d;
self
}
/// Sets the ping interval.
pub fn with_interval(mut self, d: Duration) -> Self {
self.interval = d;
self
}
}
impl Default for Config {
fn default() -> Self {
Self::new()
}
}
/// An outbound ping failure.
#[derive(Debug)]
pub enum Failure {
/// The ping timed out, i.e. no response was received within the
/// configured ping timeout.
Timeout,
/// The peer does not support the ping protocol.
Unsupported,
/// The ping failed for reasons other than a timeout.
Other {
error: Box<dyn std::error::Error + Send + 'static>,
},
}
impl Failure {
fn other(e: impl std::error::Error + Send + 'static) -> Self {
Self::Other { error: Box::new(e) }
}
}
impl fmt::Display for Failure {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Failure::Timeout => f.write_str("Ping timeout"),
Failure::Other { error } => write!(f, "Ping error: {error}"),
Failure::Unsupported => write!(f, "Ping protocol not supported"),
}
}
}
impl Error for Failure {
fn source(&self) -> Option<&(dyn Error + 'static)> {
match self {
Failure::Timeout => None,
Failure::Other { error } => Some(&**error),
Failure::Unsupported => None,
}
}
}
/// Protocol handler that handles pinging the remote at a regular period
/// and answering ping queries.
pub struct Handler {
/// Configuration options.
config: Config,
/// The timer used for the delay to the next ping.
interval: Delay,
/// Outbound ping failures that are pending to be processed by `poll()`.
pending_errors: VecDeque<Failure>,
/// The number of consecutive ping failures that occurred.
///
/// Each successful ping resets this counter to 0.
failures: u32,
/// The outbound ping state.
outbound: Option<OutboundState>,
/// The inbound pong handler, i.e. if there is an inbound
/// substream, this is always a future that waits for the
/// next inbound ping to be answered.
inbound: Option<PongFuture>,
/// Tracks the state of our handler.
state: State,
/// The peer we are connected to.
peer: PeerId,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum State {
/// We are inactive because the other peer doesn't support ping.
Inactive {
/// Whether or not we've reported the missing support yet.
///
/// This is used to avoid repeated events being emitted for a specific connection.
reported: bool,
},
/// We are actively pinging the other peer.
Active,
}
impl Handler {
/// Builds a new [`Handler`] with the given configuration.
pub fn new(config: Config, peer: PeerId) -> Self {
Handler {
peer,
config,
interval: Delay::new(Duration::new(0, 0)),
pending_errors: VecDeque::with_capacity(2),
failures: 0,
outbound: None,
inbound: None,
state: State::Active,
}
}
fn on_dial_upgrade_error(
&mut self,
DialUpgradeError { error, .. }: DialUpgradeError<
<Self as ConnectionHandler>::OutboundOpenInfo,
<Self as ConnectionHandler>::OutboundProtocol,
>,
) {
self.outbound = None; // Request a new substream on the next `poll`.
let error = match error {
StreamUpgradeError::NegotiationFailed => {
debug_assert_eq!(self.state, State::Active);
self.state = State::Inactive { reported: false };
return;
}
// Note: This timeout only covers protocol negotiation.
StreamUpgradeError::Timeout => Failure::Other {
error: Box::new(std::io::Error::new(
std::io::ErrorKind::TimedOut,
"ping protocol negotiation timed out",
)),
},
StreamUpgradeError::Apply(e) => void::unreachable(e),
StreamUpgradeError::Io(e) => Failure::Other { error: Box::new(e) },
};
self.pending_errors.push_front(error);
}
}
impl ConnectionHandler for Handler {
type FromBehaviour = Void;
type ToBehaviour = Result<Duration, Failure>;
type Error = Void;
type InboundProtocol = ReadyUpgrade<StreamProtocol>;
type OutboundProtocol = ReadyUpgrade<StreamProtocol>;
type OutboundOpenInfo = ();
type InboundOpenInfo = ();
fn listen_protocol(&self) -> SubstreamProtocol<ReadyUpgrade<StreamProtocol>, ()> {
SubstreamProtocol::new(ReadyUpgrade::new(PROTOCOL_NAME), ())
}
fn on_behaviour_event(&mut self, _: Void) {}
fn connection_keep_alive(&self) -> KeepAlive {
KeepAlive::No
}
fn poll(
&mut self,
cx: &mut Context<'_>,
) -> Poll<
ConnectionHandlerEvent<
ReadyUpgrade<StreamProtocol>,
(),
Result<Duration, Failure>,
Self::Error,
>,
> {
match self.state {
State::Inactive { reported: true } => {
return Poll::Pending; // nothing to do on this connection
}
State::Inactive { reported: false } => {
self.state = State::Inactive { reported: true };
return Poll::Ready(ConnectionHandlerEvent::NotifyBehaviour(Err(
Failure::Unsupported,
)));
}
State::Active => {}
}
// Respond to inbound pings.
if let Some(fut) = self.inbound.as_mut() {
match fut.poll_unpin(cx) {
Poll::Pending => {}
Poll::Ready(Err(e)) => {
log::debug!("Inbound ping error: {:?}", e);
self.inbound = None;
}
Poll::Ready(Ok(stream)) => {
log::trace!("answered inbound ping from {}", self.peer);
// A ping from a remote peer has been answered, wait for the next.
self.inbound = Some(protocol::recv_ping(stream).boxed());
}
}
}
loop {
// Check for outbound ping failures.
if let Some(error) = self.pending_errors.pop_back() {
log::debug!("Ping failure: {:?}", error);
self.failures += 1;
// Note: For backward-compatibility the first failure is always "free"
// and silent. This allows peers who use a new substream
// for each ping to have successful ping exchanges with peers
// that use a single substream, since every successful ping
// resets `failures` to `0`.
if self.failures > 1 {
return Poll::Ready(ConnectionHandlerEvent::NotifyBehaviour(Err(error)));
}
}
// Continue outbound pings.
match self.outbound.take() {
Some(OutboundState::Ping(mut ping)) => match ping.poll_unpin(cx) {
Poll::Pending => {
self.outbound = Some(OutboundState::Ping(ping));
break;
}
Poll::Ready(Ok((stream, rtt))) => {
log::debug!("latency to {} is {}ms", self.peer, rtt.as_millis());
self.failures = 0;
self.interval.reset(self.config.interval);
self.outbound = Some(OutboundState::Idle(stream));
return Poll::Ready(ConnectionHandlerEvent::NotifyBehaviour(Ok(rtt)));
}
Poll::Ready(Err(e)) => {
self.pending_errors.push_front(e);
}
},
Some(OutboundState::Idle(stream)) => match self.interval.poll_unpin(cx) {
Poll::Pending => {
self.outbound = Some(OutboundState::Idle(stream));
break;
}
Poll::Ready(()) => {
self.outbound = Some(OutboundState::Ping(
send_ping(stream, self.config.timeout).boxed(),
));
}
},
Some(OutboundState::OpenStream) => {
self.outbound = Some(OutboundState::OpenStream);
break;
}
None => {
self.outbound = Some(OutboundState::OpenStream);
let protocol = SubstreamProtocol::new(ReadyUpgrade::new(PROTOCOL_NAME), ());
return Poll::Ready(ConnectionHandlerEvent::OutboundSubstreamRequest {
protocol,
});
}
}
}
Poll::Pending
}
fn on_connection_event(
&mut self,
event: ConnectionEvent<
Self::InboundProtocol,
Self::OutboundProtocol,
Self::InboundOpenInfo,
Self::OutboundOpenInfo,
>,
) {
match event {
ConnectionEvent::FullyNegotiatedInbound(FullyNegotiatedInbound {
protocol: stream,
..
}) => {
self.inbound = Some(protocol::recv_ping(stream).boxed());
}
ConnectionEvent::FullyNegotiatedOutbound(FullyNegotiatedOutbound {
protocol: stream,
..
}) => {
self.outbound = Some(OutboundState::Ping(
send_ping(stream, self.config.timeout).boxed(),
));
}
ConnectionEvent::DialUpgradeError(dial_upgrade_error) => {
self.on_dial_upgrade_error(dial_upgrade_error)
}
ConnectionEvent::AddressChange(_)
| ConnectionEvent::ListenUpgradeError(_)
| ConnectionEvent::LocalProtocolsChange(_)
| ConnectionEvent::RemoteProtocolsChange(_) => {}
}
}
}
type PingFuture = BoxFuture<'static, Result<(Stream, Duration), Failure>>;
type PongFuture = BoxFuture<'static, Result<Stream, io::Error>>;
/// The current state w.r.t. outbound pings.
enum OutboundState {
/// A new substream is being negotiated for the ping protocol.
OpenStream,
/// The substream is idle, waiting to send the next ping.
Idle(Stream),
/// A ping is being sent and the response awaited.
Ping(PingFuture),
}
/// A wrapper around [`protocol::send_ping`] that enforces a time out.
async fn send_ping(stream: Stream, timeout: Duration) -> Result<(Stream, Duration), Failure> {
let ping = protocol::send_ping(stream);
futures::pin_mut!(ping);
match future::select(ping, Delay::new(timeout)).await {
Either::Left((Ok((stream, rtt)), _)) => Ok((stream, rtt)),
Either::Left((Err(e), _)) => Err(Failure::other(e)),
Either::Right(((), _)) => Err(Failure::Timeout),
}
}