764 lines
28 KiB
Rust

// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Implementation of a Kademlia routing table as used by a single peer
//! participating in a Kademlia DHT.
//!
//! The entry point for the API of this module is a [`KBucketsTable`].
//!
//! ## Pending Insertions
//!
//! When the bucket associated with the `Key` of an inserted entry is full
//! but contains disconnected nodes, it accepts a [`PendingEntry`].
//! Pending entries are inserted lazily when their timeout is found to be expired
//! upon querying the `KBucketsTable`. When that happens, the `KBucketsTable` records
//! an [`AppliedPending`] result which must be consumed by calling [`take_applied_pending`]
//! regularly and / or after performing lookup operations like [`entry`] and [`closest`].
//!
//! [`entry`]: KBucketsTable::entry
//! [`closest`]: KBucketsTable::closest
//! [`AppliedPending`]: bucket::AppliedPending
//! [`take_applied_pending`]: KBucketsTable::take_applied_pending
//! [`PendingEntry`]: entry::PendingEntry
// [Implementation Notes]
//
// 1. Routing Table Layout
//
// The routing table is currently implemented as a fixed-size "array" of
// buckets, ordered by increasing distance relative to a local key
// that identifies the local peer. This is an often-used, simplified
// implementation that approximates the properties of the b-tree (or prefix tree)
// implementation described in the full paper [0], whereby buckets are split on-demand.
// This should be treated as an implementation detail, however, so that the
// implementation may change in the future without breaking the API.
//
// 2. Replacement Cache
//
// In this implementation, the "replacement cache" for unresponsive peers
// consists of a single entry per bucket. Furthermore, this implementation is
// currently tailored to connection-oriented transports, meaning that the
// "LRU"-based ordering of entries in a bucket is actually based on the last reported
// connection status of the corresponding peers, from least-recently (dis)connected to
// most-recently (dis)connected, and controlled through the `Entry` API. As a result,
// the nodes in the buckets are not reordered as a result of RPC activity, but only as a
// result of nodes being marked as connected or disconnected. In particular,
// if a bucket is full and contains only entries for peers that are considered
// connected, no pending entry is accepted. See the `bucket` submodule for
// further details.
//
// [0]: https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
mod bucket;
mod entry;
#[allow(clippy::ptr_offset_with_cast)]
#[allow(clippy::assign_op_pattern)]
mod key;
pub use entry::*;
use arrayvec::{self, ArrayVec};
use bucket::KBucket;
use std::collections::VecDeque;
use std::time::{Duration, Instant};
/// Maximum number of k-buckets.
const NUM_BUCKETS: usize = 256;
/// A `KBucketsTable` represents a Kademlia routing table.
#[derive(Debug, Clone)]
pub struct KBucketsTable<TKey, TVal> {
/// The key identifying the local peer that owns the routing table.
local_key: TKey,
/// The buckets comprising the routing table.
buckets: Vec<KBucket<TKey, TVal>>,
/// The list of evicted entries that have been replaced with pending
/// entries since the last call to [`KBucketsTable::take_applied_pending`].
applied_pending: VecDeque<AppliedPending<TKey, TVal>>,
}
/// A (type-safe) index into a `KBucketsTable`, i.e. a non-negative integer in the
/// interval `[0, NUM_BUCKETS)`.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
struct BucketIndex(usize);
impl BucketIndex {
/// Creates a new `BucketIndex` for a `Distance`.
///
/// The given distance is interpreted as the distance from a `local_key` of
/// a `KBucketsTable`. If the distance is zero, `None` is returned, in
/// recognition of the fact that the only key with distance `0` to a
/// `local_key` is the `local_key` itself, which does not belong in any
/// bucket.
fn new(d: &Distance) -> Option<BucketIndex> {
d.ilog2().map(|i| BucketIndex(i as usize))
}
/// Gets the index value as an unsigned integer.
fn get(&self) -> usize {
self.0
}
/// Returns the minimum inclusive and maximum inclusive [`Distance`]
/// included in the bucket for this index.
fn range(&self) -> (Distance, Distance) {
let min = Distance(U256::pow(U256::from(2), U256::from(self.0)));
if self.0 == usize::from(u8::MAX) {
(min, Distance(U256::MAX))
} else {
let max = Distance(U256::pow(U256::from(2), U256::from(self.0 + 1)) - 1);
(min, max)
}
}
/// Generates a random distance that falls into the bucket for this index.
fn rand_distance(&self, rng: &mut impl rand::Rng) -> Distance {
let mut bytes = [0u8; 32];
let quot = self.0 / 8;
for i in 0..quot {
bytes[31 - i] = rng.gen();
}
let rem = (self.0 % 8) as u32;
let lower = usize::pow(2, rem);
let upper = usize::pow(2, rem + 1);
bytes[31 - quot] = rng.gen_range(lower, upper) as u8;
Distance(U256::from(bytes))
}
}
impl<TKey, TVal> KBucketsTable<TKey, TVal>
where
TKey: Clone + AsRef<KeyBytes>,
TVal: Clone,
{
/// Creates a new, empty Kademlia routing table with entries partitioned
/// into buckets as per the Kademlia protocol.
///
/// The given `pending_timeout` specifies the duration after creation of
/// a [`PendingEntry`] after which it becomes eligible for insertion into
/// a full bucket, replacing the least-recently (dis)connected node.
pub fn new(local_key: TKey, pending_timeout: Duration) -> Self {
KBucketsTable {
local_key,
buckets: (0..NUM_BUCKETS)
.map(|_| KBucket::new(pending_timeout))
.collect(),
applied_pending: VecDeque::new(),
}
}
/// Returns the local key.
pub fn local_key(&self) -> &TKey {
&self.local_key
}
/// Returns an `Entry` for the given key, representing the state of the entry
/// in the routing table.
pub fn entry<'a>(&'a mut self, key: &'a TKey) -> Entry<'a, TKey, TVal> {
let index = BucketIndex::new(&self.local_key.as_ref().distance(key));
if let Some(i) = index {
let bucket = &mut self.buckets[i.get()];
if let Some(applied) = bucket.apply_pending() {
self.applied_pending.push_back(applied)
}
Entry::new(bucket, key)
} else {
Entry::SelfEntry
}
}
/// Returns an iterator over all buckets.
///
/// The buckets are ordered by proximity to the `local_key`, i.e. the first
/// bucket is the closest bucket (containing at most one key).
pub fn iter(&mut self) -> impl Iterator<Item = KBucketRef<'_, TKey, TVal>> + '_ {
let applied_pending = &mut self.applied_pending;
self.buckets.iter_mut().enumerate().map(move |(i, b)| {
if let Some(applied) = b.apply_pending() {
applied_pending.push_back(applied)
}
KBucketRef {
index: BucketIndex(i),
bucket: b,
}
})
}
/// Returns the bucket for the distance to the given key.
///
/// Returns `None` if the given key refers to the local key.
pub fn bucket<K>(&mut self, key: &K) -> Option<KBucketRef<'_, TKey, TVal>>
where
K: AsRef<KeyBytes>,
{
let d = self.local_key.as_ref().distance(key);
if let Some(index) = BucketIndex::new(&d) {
let bucket = &mut self.buckets[index.0];
if let Some(applied) = bucket.apply_pending() {
self.applied_pending.push_back(applied)
}
Some(KBucketRef { bucket, index })
} else {
None
}
}
/// Consumes the next applied pending entry, if any.
///
/// When an entry is attempted to be inserted and the respective bucket is full,
/// it may be recorded as pending insertion after a timeout, see [`InsertResult::Pending`].
///
/// If the oldest currently disconnected entry in the respective bucket does not change
/// its status until the timeout of pending entry expires, it is evicted and
/// the pending entry inserted instead. These insertions of pending entries
/// happens lazily, whenever the `KBucketsTable` is accessed, and the corresponding
/// buckets are updated accordingly. The fact that a pending entry was applied is
/// recorded in the `KBucketsTable` in the form of `AppliedPending` results, which must be
/// consumed by calling this function.
pub fn take_applied_pending(&mut self) -> Option<AppliedPending<TKey, TVal>> {
self.applied_pending.pop_front()
}
/// Returns an iterator over the keys closest to `target`, ordered by
/// increasing distance.
pub fn closest_keys<'a, T>(&'a mut self, target: &'a T) -> impl Iterator<Item = TKey> + 'a
where
T: AsRef<KeyBytes>,
{
let distance = self.local_key.as_ref().distance(target);
ClosestIter {
target,
iter: None,
table: self,
buckets_iter: ClosestBucketsIter::new(distance),
fmap: |b: &KBucket<TKey, _>| -> ArrayVec<_, { K_VALUE.get() }> {
b.iter().map(|(n, _)| n.key.clone()).collect()
},
}
}
/// Returns an iterator over the nodes closest to the `target` key, ordered by
/// increasing distance.
pub fn closest<'a, T>(
&'a mut self,
target: &'a T,
) -> impl Iterator<Item = EntryView<TKey, TVal>> + 'a
where
T: Clone + AsRef<KeyBytes>,
TVal: Clone,
{
let distance = self.local_key.as_ref().distance(target);
ClosestIter {
target,
iter: None,
table: self,
buckets_iter: ClosestBucketsIter::new(distance),
fmap: |b: &KBucket<_, TVal>| -> ArrayVec<_, { K_VALUE.get() }> {
b.iter()
.map(|(n, status)| EntryView {
node: n.clone(),
status,
})
.collect()
},
}
}
/// Counts the number of nodes between the local node and the node
/// closest to `target`.
///
/// The number of nodes between the local node and the target are
/// calculated by backtracking from the target towards the local key.
pub fn count_nodes_between<T>(&mut self, target: &T) -> usize
where
T: AsRef<KeyBytes>,
{
let local_key = self.local_key.clone();
let distance = target.as_ref().distance(&local_key);
let mut iter = ClosestBucketsIter::new(distance).take_while(|i| i.get() != 0);
if let Some(i) = iter.next() {
let num_first = self.buckets[i.get()]
.iter()
.filter(|(n, _)| n.key.as_ref().distance(&local_key) <= distance)
.count();
let num_rest: usize = iter.map(|i| self.buckets[i.get()].num_entries()).sum();
num_first + num_rest
} else {
0
}
}
}
/// An iterator over (some projection of) the closest entries in a
/// `KBucketsTable` w.r.t. some target `Key`.
struct ClosestIter<'a, TTarget, TKey, TVal, TMap, TOut> {
/// A reference to the target key whose distance to the local key determines
/// the order in which the buckets are traversed. The resulting
/// array from projecting the entries of each bucket using `fmap` is
/// sorted according to the distance to the target.
target: &'a TTarget,
/// A reference to all buckets of the `KBucketsTable`.
table: &'a mut KBucketsTable<TKey, TVal>,
/// The iterator over the bucket indices in the order determined by the
/// distance of the local key to the target.
buckets_iter: ClosestBucketsIter,
/// The iterator over the entries in the currently traversed bucket.
iter: Option<arrayvec::IntoIter<TOut, { K_VALUE.get() }>>,
/// The projection function / mapping applied on each bucket as
/// it is encountered, producing the next `iter`ator.
fmap: TMap,
}
/// An iterator over the bucket indices, in the order determined by the `Distance` of
/// a target from the `local_key`, such that the entries in the buckets are incrementally
/// further away from the target, starting with the bucket covering the target.
struct ClosestBucketsIter {
/// The distance to the `local_key`.
distance: Distance,
/// The current state of the iterator.
state: ClosestBucketsIterState,
}
/// Operating states of a `ClosestBucketsIter`.
enum ClosestBucketsIterState {
/// The starting state of the iterator yields the first bucket index and
/// then transitions to `ZoomIn`.
Start(BucketIndex),
/// The iterator "zooms in" to to yield the next bucket cotaining nodes that
/// are incrementally closer to the local node but further from the `target`.
/// These buckets are identified by a `1` in the corresponding bit position
/// of the distance bit string. When bucket `0` is reached, the iterator
/// transitions to `ZoomOut`.
ZoomIn(BucketIndex),
/// Once bucket `0` has been reached, the iterator starts "zooming out"
/// to buckets containing nodes that are incrementally further away from
/// both the local key and the target. These are identified by a `0` in
/// the corresponding bit position of the distance bit string. When bucket
/// `255` is reached, the iterator transitions to state `Done`.
ZoomOut(BucketIndex),
/// The iterator is in this state once it has visited all buckets.
Done,
}
impl ClosestBucketsIter {
fn new(distance: Distance) -> Self {
let state = match BucketIndex::new(&distance) {
Some(i) => ClosestBucketsIterState::Start(i),
None => ClosestBucketsIterState::Start(BucketIndex(0)),
};
Self { distance, state }
}
fn next_in(&self, i: BucketIndex) -> Option<BucketIndex> {
(0..i.get()).rev().find_map(|i| {
if self.distance.0.bit(i) {
Some(BucketIndex(i))
} else {
None
}
})
}
fn next_out(&self, i: BucketIndex) -> Option<BucketIndex> {
(i.get() + 1..NUM_BUCKETS).find_map(|i| {
if !self.distance.0.bit(i) {
Some(BucketIndex(i))
} else {
None
}
})
}
}
impl Iterator for ClosestBucketsIter {
type Item = BucketIndex;
fn next(&mut self) -> Option<Self::Item> {
match self.state {
ClosestBucketsIterState::Start(i) => {
self.state = ClosestBucketsIterState::ZoomIn(i);
Some(i)
}
ClosestBucketsIterState::ZoomIn(i) => {
if let Some(i) = self.next_in(i) {
self.state = ClosestBucketsIterState::ZoomIn(i);
Some(i)
} else {
let i = BucketIndex(0);
self.state = ClosestBucketsIterState::ZoomOut(i);
Some(i)
}
}
ClosestBucketsIterState::ZoomOut(i) => {
if let Some(i) = self.next_out(i) {
self.state = ClosestBucketsIterState::ZoomOut(i);
Some(i)
} else {
self.state = ClosestBucketsIterState::Done;
None
}
}
ClosestBucketsIterState::Done => None,
}
}
}
impl<TTarget, TKey, TVal, TMap, TOut> Iterator for ClosestIter<'_, TTarget, TKey, TVal, TMap, TOut>
where
TTarget: AsRef<KeyBytes>,
TKey: Clone + AsRef<KeyBytes>,
TVal: Clone,
TMap: Fn(&KBucket<TKey, TVal>) -> ArrayVec<TOut, { K_VALUE.get() }>,
TOut: AsRef<KeyBytes>,
{
type Item = TOut;
fn next(&mut self) -> Option<Self::Item> {
loop {
match &mut self.iter {
Some(iter) => match iter.next() {
Some(k) => return Some(k),
None => self.iter = None,
},
None => {
if let Some(i) = self.buckets_iter.next() {
let bucket = &mut self.table.buckets[i.get()];
if let Some(applied) = bucket.apply_pending() {
self.table.applied_pending.push_back(applied)
}
let mut v = (self.fmap)(bucket);
v.sort_by(|a, b| {
self.target
.as_ref()
.distance(a.as_ref())
.cmp(&self.target.as_ref().distance(b.as_ref()))
});
self.iter = Some(v.into_iter());
} else {
return None;
}
}
}
}
}
}
/// A reference to a bucket in a [`KBucketsTable`].
pub struct KBucketRef<'a, TKey, TVal> {
index: BucketIndex,
bucket: &'a mut KBucket<TKey, TVal>,
}
impl<'a, TKey, TVal> KBucketRef<'a, TKey, TVal>
where
TKey: Clone + AsRef<KeyBytes>,
TVal: Clone,
{
/// Returns the minimum inclusive and maximum inclusive [`Distance`] for
/// this bucket.
pub fn range(&self) -> (Distance, Distance) {
self.index.range()
}
/// Checks whether the bucket is empty.
pub fn is_empty(&self) -> bool {
self.num_entries() == 0
}
/// Returns the number of entries in the bucket.
pub fn num_entries(&self) -> usize {
self.bucket.num_entries()
}
/// Returns true if the bucket has a pending node.
pub fn has_pending(&self) -> bool {
self.bucket.pending().map_or(false, |n| !n.is_ready())
}
/// Tests whether the given distance falls into this bucket.
pub fn contains(&self, d: &Distance) -> bool {
BucketIndex::new(d).map_or(false, |i| i == self.index)
}
/// Generates a random distance that falls into this bucket.
///
/// Together with a known key `a` (e.g. the local key), a random distance `d` for
/// this bucket w.r.t `k` gives rise to the corresponding (random) key `b` s.t.
/// the XOR distance between `a` and `b` is `d`. In other words, it gives
/// rise to a random key falling into this bucket. See [`key::Key::for_distance`].
pub fn rand_distance(&self, rng: &mut impl rand::Rng) -> Distance {
self.index.rand_distance(rng)
}
/// Returns an iterator over the entries in the bucket.
pub fn iter(&'a self) -> impl Iterator<Item = EntryRefView<'a, TKey, TVal>> {
self.bucket.iter().map(move |(n, status)| EntryRefView {
node: NodeRefView {
key: &n.key,
value: &n.value,
},
status,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
use libp2p_core::PeerId;
use quickcheck::*;
use rand::Rng;
type TestTable = KBucketsTable<KeyBytes, ()>;
impl Arbitrary for TestTable {
fn arbitrary<G: Gen>(g: &mut G) -> TestTable {
let local_key = Key::from(PeerId::random());
let timeout = Duration::from_secs(g.gen_range(1, 360));
let mut table = TestTable::new(local_key.clone().into(), timeout);
let mut num_total = g.gen_range(0, 100);
for (i, b) in &mut table.buckets.iter_mut().enumerate().rev() {
let ix = BucketIndex(i);
let num = g.gen_range(0, usize::min(K_VALUE.get(), num_total) + 1);
num_total -= num;
for _ in 0..num {
let distance = ix.rand_distance(g);
let key = local_key.for_distance(distance);
let node = Node {
key: key.clone(),
value: (),
};
let status = NodeStatus::arbitrary(g);
match b.insert(node, status) {
InsertResult::Inserted => {}
_ => panic!(),
}
}
}
table
}
}
#[test]
fn buckets_are_non_overlapping_and_exhaustive() {
let local_key = Key::from(PeerId::random());
let timeout = Duration::from_secs(0);
let mut table = KBucketsTable::<KeyBytes, ()>::new(local_key.into(), timeout);
let mut prev_max = U256::from(0);
for bucket in table.iter() {
let (min, max) = bucket.range();
assert_eq!(Distance(prev_max + U256::from(1)), min);
prev_max = max.0;
}
assert_eq!(U256::MAX, prev_max);
}
#[test]
fn bucket_contains_range() {
fn prop(ix: u8) {
let index = BucketIndex(ix as usize);
let mut bucket = KBucket::<Key<PeerId>, ()>::new(Duration::from_secs(0));
let bucket_ref = KBucketRef {
index,
bucket: &mut bucket,
};
let (min, max) = bucket_ref.range();
assert!(min <= max);
assert!(bucket_ref.contains(&min));
assert!(bucket_ref.contains(&max));
assert!(!bucket_ref.contains(&Distance(min.0 - 1)));
assert!(!bucket_ref.contains(&Distance(max.0 + 1)));
}
quickcheck(prop as fn(_));
}
#[test]
fn rand_distance() {
fn prop(ix: u8) -> bool {
let d = BucketIndex(ix as usize).rand_distance(&mut rand::thread_rng());
let n = U256::from(<[u8; 32]>::from(d.0));
let b = U256::from(2);
let e = U256::from(ix);
let lower = b.pow(e);
let upper = b.pow(e + U256::from(1)) - U256::from(1);
lower <= n && n <= upper
}
quickcheck(prop as fn(_) -> _);
}
#[test]
fn entry_inserted() {
let local_key = Key::from(PeerId::random());
let other_id = Key::from(PeerId::random());
let mut table = KBucketsTable::<_, ()>::new(local_key, Duration::from_secs(5));
if let Entry::Absent(entry) = table.entry(&other_id) {
match entry.insert((), NodeStatus::Connected) {
InsertResult::Inserted => (),
_ => panic!(),
}
} else {
panic!()
}
let res = table.closest_keys(&other_id).collect::<Vec<_>>();
assert_eq!(res.len(), 1);
assert_eq!(res[0], other_id);
}
#[test]
fn entry_self() {
let local_key = Key::from(PeerId::random());
let mut table = KBucketsTable::<_, ()>::new(local_key.clone(), Duration::from_secs(5));
match table.entry(&local_key) {
Entry::SelfEntry => (),
_ => panic!(),
}
}
#[test]
fn closest() {
let local_key = Key::from(PeerId::random());
let mut table = KBucketsTable::<_, ()>::new(local_key, Duration::from_secs(5));
let mut count = 0;
loop {
if count == 100 {
break;
}
let key = Key::from(PeerId::random());
if let Entry::Absent(e) = table.entry(&key) {
match e.insert((), NodeStatus::Connected) {
InsertResult::Inserted => count += 1,
_ => continue,
}
} else {
panic!("entry exists")
}
}
let mut expected_keys: Vec<_> = table
.buckets
.iter()
.flat_map(|t| t.iter().map(|(n, _)| n.key.clone()))
.collect();
for _ in 0..10 {
let target_key = Key::from(PeerId::random());
let keys = table.closest_keys(&target_key).collect::<Vec<_>>();
// The list of keys is expected to match the result of a full-table scan.
expected_keys.sort_by_key(|k| k.distance(&target_key));
assert_eq!(keys, expected_keys);
}
}
#[test]
fn applied_pending() {
let local_key = Key::from(PeerId::random());
let mut table = KBucketsTable::<_, ()>::new(local_key.clone(), Duration::from_millis(1));
let expected_applied;
let full_bucket_index;
loop {
let key = Key::from(PeerId::random());
if let Entry::Absent(e) = table.entry(&key) {
match e.insert((), NodeStatus::Disconnected) {
InsertResult::Full => {
if let Entry::Absent(e) = table.entry(&key) {
match e.insert((), NodeStatus::Connected) {
InsertResult::Pending { disconnected } => {
expected_applied = AppliedPending {
inserted: Node {
key: key.clone(),
value: (),
},
evicted: Some(Node {
key: disconnected,
value: (),
}),
};
full_bucket_index = BucketIndex::new(&key.distance(&local_key));
break;
}
_ => panic!(),
}
} else {
panic!()
}
}
_ => continue,
}
} else {
panic!("entry exists")
}
}
// Expire the timeout for the pending entry on the full bucket.`
let full_bucket = &mut table.buckets[full_bucket_index.unwrap().get()];
let elapsed = Instant::now() - Duration::from_secs(1);
full_bucket.pending_mut().unwrap().set_ready_at(elapsed);
match table.entry(&expected_applied.inserted.key) {
Entry::Present(_, NodeStatus::Connected) => {}
x => panic!("Unexpected entry: {:?}", x),
}
match table.entry(&expected_applied.evicted.as_ref().unwrap().key) {
Entry::Absent(_) => {}
x => panic!("Unexpected entry: {:?}", x),
}
assert_eq!(Some(expected_applied), table.take_applied_pending());
assert_eq!(None, table.take_applied_pending());
}
#[test]
fn count_nodes_between() {
fn prop(mut table: TestTable, target: Key<PeerId>) -> bool {
let num_to_target = table.count_nodes_between(&target);
let distance = table.local_key.distance(&target);
let base2 = U256::from(2);
let mut iter = ClosestBucketsIter::new(distance);
iter.all(|i| {
// Flip the distance bit related to the bucket.
let d = Distance(distance.0 ^ (base2.pow(U256::from(i.get()))));
let k = table.local_key.for_distance(d);
if distance.0.bit(i.get()) {
// Bit flip `1` -> `0`, the key must be closer than `target`.
d < distance && table.count_nodes_between(&k) <= num_to_target
} else {
// Bit flip `0` -> `1`, the key must be farther than `target`.
d > distance && table.count_nodes_between(&k) >= num_to_target
}
})
}
QuickCheck::new()
.tests(10)
.quickcheck(prop as fn(_, _) -> _)
}
}