// Copyright 2017 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. //! Implementation of the libp2p `Transport` trait for TCP/IP. extern crate libp2p_swarm as swarm; extern crate tokio_core; extern crate tokio_io; extern crate multiaddr; extern crate futures; use std::io::Error as IoError; use std::net::{IpAddr, Ipv4Addr, SocketAddr}; use tokio_core::reactor::Handle; use tokio_core::net::{TcpStream, TcpListener, TcpStreamNew}; use futures::Future; use futures::stream::Stream; use multiaddr::{Multiaddr, Protocol}; use swarm::Transport; /// Represents a TCP/IP transport capability for libp2p. /// /// Each `Tcp` struct is tied to a tokio reactor. The TCP sockets created by libp2p will need to /// be progressed by running the futures and streams obtained by libp2p through the tokio reactor. #[derive(Debug, Clone)] pub struct Tcp { event_loop: Handle, } impl Tcp { pub fn new(handle: Handle) -> Result { Ok(Tcp { event_loop: handle }) } } impl Transport for Tcp { /// The raw connection. type RawConn = TcpStream; /// The listener produces incoming connections. type Listener = Box>; /// A future which indicates currently dialing to a peer. type Dial = TcpStreamNew; /// Listen on the given multi-addr. /// Returns the address back if it isn't supported. fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> { if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) { let listener = TcpListener::bind(&socket_addr, &self.event_loop); // We need to build the `Multiaddr` to return from this function. If an error happened, // just return the original multiaddr. let new_addr = match listener { Ok(ref l) => if let Ok(new_s_addr) = l.local_addr() { Multiaddr::new(&format!("/ip4/{}/tcp/{}", new_s_addr.ip(), new_s_addr.port())) .expect("manually-generated multiaddr is always valid") } else { addr } Err(_) => addr, }; let future = futures::future::result(listener).map(|listener| { // Pull out a stream of sockets for incoming connections listener.incoming().map(|x| x.0) }) .flatten_stream(); Ok((Box::new(future), new_addr)) } else { Err((self, addr)) } } /// Dial to the given multi-addr. /// Returns either a future which may resolve to a connection, /// or gives back the multiaddress. fn dial(self, addr: Multiaddr) -> Result { if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) { Ok(TcpStream::connect(&socket_addr, &self.event_loop)) } else { Err((self, addr)) } } } // This type of logic should probably be moved into the multiaddr package fn multiaddr_to_socketaddr(addr: &Multiaddr) -> Result { let protocols = addr.protocol(); // TODO: This is nonconforming (since a multiaddr could specify TCP first) but we can't fix that // until multiaddrs-rs is improved. match (protocols[0], protocols[1]) { (Protocol::IP4, Protocol::TCP) => { let bs = addr.as_slice(); Ok(SocketAddr::new( IpAddr::V4(Ipv4Addr::new(bs[1], bs[2], bs[3], bs[4])), (bs[6] as u16) << 8 | bs[7] as u16, )) } (Protocol::IP6, Protocol::TCP) => { let bs = addr.as_slice(); if let Ok(Some(s)) = Protocol::IP6.bytes_to_string(&bs[1..17]) { if let Ok(ipv6addr) = s.parse() { return Ok(SocketAddr::new( IpAddr::V6(ipv6addr), (bs[18] as u16) << 8 | bs[19] as u16, )); } } Err(()) } _ => Err(()), } } #[cfg(test)] mod tests { use super::{Tcp, multiaddr_to_socketaddr}; use std; use std::net::{IpAddr, Ipv4Addr, SocketAddr}; use tokio_core::reactor::Core; use tokio_io; use futures::Future; use futures::stream::Stream; use multiaddr::Multiaddr; use swarm::Transport; #[test] fn multiaddr_to_tcp_conversion() { use std::net::Ipv6Addr; assert!(multiaddr_to_socketaddr(&Multiaddr::new("/ip4/127.0.0.1/udp/1234").unwrap()).is_err()); assert_eq!( multiaddr_to_socketaddr(&Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap()), Ok(SocketAddr::new( IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 12345, )) ); assert_eq!( multiaddr_to_socketaddr(&Multiaddr::new("/ip4/255.255.255.255/tcp/8080").unwrap()), Ok(SocketAddr::new( IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)), 8080, )) ); assert_eq!( multiaddr_to_socketaddr(&Multiaddr::new("/ip6/::1/tcp/12345").unwrap()), Ok(SocketAddr::new( IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), 12345, )) ); assert_eq!( multiaddr_to_socketaddr(&Multiaddr::new( "/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080", ).unwrap()), Ok(SocketAddr::new( IpAddr::V6(Ipv6Addr::new( 65535, 65535, 65535, 65535, 65535, 65535, 65535, 65535, )), 8080, )) ); } #[test] fn communicating_between_dialer_and_listener() { use std::io::Write; std::thread::spawn(move || { let mut core = Core::new().unwrap(); let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap(); let tcp = Tcp::new(core.handle()).unwrap(); let handle = core.handle(); let listener = tcp.listen_on(addr).unwrap().0.for_each(|sock| { // Define what to do with the socket that just connected to us // Which in this case is read 3 bytes let handle_conn = tokio_io::io::read_exact(sock, [0; 3]) .map(|(_, buf)| assert_eq!(buf, [1, 2, 3])) .map_err(|err| panic!("IO error {:?}", err)); // Spawn the future as a concurrent task handle.spawn(handle_conn); Ok(()) }); core.run(listener).unwrap(); }); std::thread::sleep(std::time::Duration::from_millis(100)); let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap(); let mut core = Core::new().unwrap(); let tcp = Tcp::new(core.handle()).unwrap(); // Obtain a future socket through dialing let socket = tcp.dial(addr.clone()).unwrap(); // Define what to do with the socket once it's obtained let action = socket.then(|sock| match sock { Ok(mut s) => { let written = s.write(&[0x1, 0x2, 0x3]).unwrap(); Ok(written) } Err(x) => Err(x), }); // Execute the future in our event loop core.run(action).unwrap(); std::thread::sleep(std::time::Duration::from_millis(100)); } #[test] fn replace_port_0_in_returned_multiaddr() { let core = Core::new().unwrap(); let tcp = Tcp::new(core.handle()).unwrap(); let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/0").unwrap(); assert!(addr.to_string().contains("tcp/0")); let (_, new_addr) = tcp.listen_on(addr).unwrap(); assert!(!new_addr.to_string().contains("tcp/0")); } }