// Copyright 2019 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. //! High level manager of the network. //! //! A [`Swarm`] contains the state of the network as a whole. The entire //! behaviour of a libp2p network can be controlled through the `Swarm`. //! The `Swarm` struct contains all active and pending connections to //! remotes and manages the state of all the substreams that have been //! opened, and all the upgrades that were built upon these substreams. //! //! # Initializing a Swarm //! //! Creating a `Swarm` requires three things: //! //! 1. A network identity of the local node in form of a [`PeerId`]. //! 2. An implementation of the [`Transport`] trait. This is the type that //! will be used in order to reach nodes on the network based on their //! address. See the `transport` module for more information. //! 3. An implementation of the [`NetworkBehaviour`] trait. This is a state //! machine that defines how the swarm should behave once it is connected //! to a node. //! //! # Network Behaviour //! //! The [`NetworkBehaviour`] trait is implemented on types that indicate to //! the swarm how it should behave. This includes which protocols are supported //! and which nodes to try to connect to. It is the `NetworkBehaviour` that //! controls what happens on the network. Multiple types that implement //! `NetworkBehaviour` can be composed into a single behaviour. //! //! # Protocols Handler //! //! The [`ProtocolsHandler`] trait defines how each active connection to a //! remote should behave: how to handle incoming substreams, which protocols //! are supported, when to open a new outbound substream, etc. //! mod behaviour; mod registry; #[cfg(test)] mod test; mod upgrade; pub mod protocols_handler; pub mod toggle; pub use behaviour::{ CloseConnection, DialPeerCondition, NetworkBehaviour, NetworkBehaviourAction, NetworkBehaviourEventProcess, NotifyHandler, PollParameters, }; pub use protocols_handler::{ IntoProtocolsHandler, IntoProtocolsHandlerSelect, KeepAlive, OneShotHandler, OneShotHandlerConfig, ProtocolsHandler, ProtocolsHandlerEvent, ProtocolsHandlerSelect, ProtocolsHandlerUpgrErr, SubstreamProtocol, }; pub use registry::{AddAddressResult, AddressRecord, AddressScore}; use futures::{executor::ThreadPoolBuilder, prelude::*, stream::FusedStream}; use libp2p_core::{ connection::{ ConnectedPoint, ConnectionError, ConnectionHandler, ConnectionId, ConnectionLimit, EstablishedConnection, IntoConnectionHandler, ListenerId, PendingConnectionError, Substream, }, muxing::StreamMuxerBox, network::{ self, peer::ConnectedPeer, ConnectionLimits, Network, NetworkConfig, NetworkEvent, NetworkInfo, }, transport::{self, TransportError}, upgrade::ProtocolName, Executor, Multiaddr, Negotiated, PeerId, Transport, }; use protocols_handler::{NodeHandlerWrapperBuilder, NodeHandlerWrapperError}; use registry::{AddressIntoIter, Addresses}; use smallvec::SmallVec; use std::collections::HashSet; use std::num::{NonZeroU32, NonZeroUsize}; use std::{ error, fmt, io, pin::Pin, task::{Context, Poll}, }; use upgrade::UpgradeInfoSend as _; /// Substream for which a protocol has been chosen. /// /// Implements the [`AsyncRead`](futures::io::AsyncRead) and /// [`AsyncWrite`](futures::io::AsyncWrite) traits. pub type NegotiatedSubstream = Negotiated>; /// Event generated by the [`NetworkBehaviour`] that the swarm will report back. type TBehaviourOutEvent = ::OutEvent; /// [`ProtocolsHandler`] of the [`NetworkBehaviour`] for all the protocols the [`NetworkBehaviour`] /// supports. type THandler = ::ProtocolsHandler; /// Custom event that can be received by the [`ProtocolsHandler`] of the /// [`NetworkBehaviour`]. type THandlerInEvent = < as IntoProtocolsHandler>::Handler as ProtocolsHandler>::InEvent; /// Custom event that can be produced by the [`ProtocolsHandler`] of the [`NetworkBehaviour`]. type THandlerOutEvent = < as IntoProtocolsHandler>::Handler as ProtocolsHandler>::OutEvent; /// Custom error that can be produced by the [`ProtocolsHandler`] of the [`NetworkBehaviour`]. type THandlerErr = < as IntoProtocolsHandler>::Handler as ProtocolsHandler>::Error; /// Event generated by the `Swarm`. #[derive(Debug)] pub enum SwarmEvent { /// Event generated by the `NetworkBehaviour`. Behaviour(TBehaviourOutEvent), /// A connection to the given peer has been opened. ConnectionEstablished { /// Identity of the peer that we have connected to. peer_id: PeerId, /// Endpoint of the connection that has been opened. endpoint: ConnectedPoint, /// Number of established connections to this peer, including the one that has just been /// opened. num_established: NonZeroU32, }, /// A connection with the given peer has been closed, /// possibly as a result of an error. ConnectionClosed { /// Identity of the peer that we have connected to. peer_id: PeerId, /// Endpoint of the connection that has been closed. endpoint: ConnectedPoint, /// Number of other remaining connections to this same peer. num_established: u32, /// Reason for the disconnection, if it was not a successful /// active close. cause: Option>>, }, /// A new connection arrived on a listener and is in the process of protocol negotiation. /// /// A corresponding [`ConnectionEstablished`](SwarmEvent::ConnectionEstablished), /// [`BannedPeer`](SwarmEvent::BannedPeer), or /// [`IncomingConnectionError`](SwarmEvent::IncomingConnectionError) event will later be /// generated for this connection. IncomingConnection { /// Local connection address. /// This address has been earlier reported with a [`NewListenAddr`](SwarmEvent::NewListenAddr) /// event. local_addr: Multiaddr, /// Address used to send back data to the remote. send_back_addr: Multiaddr, }, /// An error happened on a connection during its initial handshake. /// /// This can include, for example, an error during the handshake of the encryption layer, or /// the connection unexpectedly closed. IncomingConnectionError { /// Local connection address. /// This address has been earlier reported with a [`NewListenAddr`](SwarmEvent::NewListenAddr) /// event. local_addr: Multiaddr, /// Address used to send back data to the remote. send_back_addr: Multiaddr, /// The error that happened. error: PendingConnectionError, }, /// We connected to a peer, but we immediately closed the connection because that peer is banned. BannedPeer { /// Identity of the banned peer. peer_id: PeerId, /// Endpoint of the connection that has been closed. endpoint: ConnectedPoint, }, /// Tried to dial an address but it ended up being unreachaable. UnreachableAddr { /// `PeerId` that we were trying to reach. peer_id: PeerId, /// Address that we failed to reach. address: Multiaddr, /// Error that has been encountered. error: PendingConnectionError, /// Number of remaining connection attempts that are being tried for this peer. attempts_remaining: u32, }, /// Tried to dial an address but it ended up being unreachaable. /// Contrary to `UnreachableAddr`, we don't know the identity of the peer that we were trying /// to reach. UnknownPeerUnreachableAddr { /// Address that we failed to reach. address: Multiaddr, /// Error that has been encountered. error: PendingConnectionError, }, /// One of our listeners has reported a new local listening address. NewListenAddr { /// The listener that is listening on the new address. listener_id: ListenerId, /// The new address that is being listened on. address: Multiaddr, }, /// One of our listeners has reported the expiration of a listening address. ExpiredListenAddr { /// The listener that is no longer listening on the address. listener_id: ListenerId, /// The expired address. address: Multiaddr, }, /// One of the listeners gracefully closed. ListenerClosed { /// The listener that closed. listener_id: ListenerId, /// The addresses that the listener was listening on. These addresses are now considered /// expired, similar to if a [`ExpiredListenAddr`](SwarmEvent::ExpiredListenAddr) event /// has been generated for each of them. addresses: Vec, /// Reason for the closure. Contains `Ok(())` if the stream produced `None`, or `Err` /// if the stream produced an error. reason: Result<(), io::Error>, }, /// One of the listeners reported a non-fatal error. ListenerError { /// The listener that errored. listener_id: ListenerId, /// The listener error. error: io::Error, }, /// A new dialing attempt has been initiated. /// /// A [`ConnectionEstablished`](SwarmEvent::ConnectionEstablished) /// event is reported if the dialing attempt succeeds, otherwise a /// [`UnreachableAddr`](SwarmEvent::UnreachableAddr) event is reported /// with `attempts_remaining` equal to 0. Dialing(PeerId), } /// Contains the state of the network, plus the way it should behave. /// /// Note: Needs to be polled via `` in order to make /// progress. pub struct Swarm where TBehaviour: NetworkBehaviour, { network: Network< transport::Boxed<(PeerId, StreamMuxerBox)>, NodeHandlerWrapperBuilder>, >, /// Handles which nodes to connect to and how to handle the events sent back by the protocol /// handlers. behaviour: TBehaviour, /// List of protocols that the behaviour says it supports. supported_protocols: SmallVec<[Vec; 16]>, /// List of multiaddresses we're listening on. listened_addrs: SmallVec<[Multiaddr; 8]>, /// List of multiaddresses we're listening on, after account for external IP addresses and /// similar mechanisms. external_addrs: Addresses, /// List of nodes for which we deny any incoming connection. banned_peers: HashSet, /// Pending event to be delivered to connection handlers /// (or dropped if the peer disconnected) before the `behaviour` /// can be polled again. pending_event: Option<(PeerId, PendingNotifyHandler, THandlerInEvent)>, /// The configured override for substream protocol upgrades, if any. substream_upgrade_protocol_override: Option, } impl Unpin for Swarm where TBehaviour: NetworkBehaviour {} impl Swarm where TBehaviour: NetworkBehaviour, { /// Builds a new `Swarm`. pub fn new( transport: transport::Boxed<(PeerId, StreamMuxerBox)>, behaviour: TBehaviour, local_peer_id: PeerId, ) -> Self { SwarmBuilder::new(transport, behaviour, local_peer_id).build() } /// Returns information about the [`Network`] underlying the `Swarm`. pub fn network_info(&self) -> NetworkInfo { self.network.info() } /// Starts listening on the given address. /// Returns an error if the address is not supported. /// /// Listeners report their new listening addresses as [`SwarmEvent::NewListenAddr`]. /// Depending on the underlying transport, one listener may have multiple listening addresses. pub fn listen_on(&mut self, addr: Multiaddr) -> Result> { let id = self.network.listen_on(addr)?; self.behaviour.inject_new_listener(id); Ok(id) } /// Remove some listener. /// /// Returns `Ok(())` if there was a listener with this ID. pub fn remove_listener(&mut self, id: ListenerId) -> Result<(), ()> { self.network.remove_listener(id) } /// Initiates a new dialing attempt to the given address. pub fn dial_addr(&mut self, addr: Multiaddr) -> Result<(), DialError> { let handler = self .behaviour .new_handler() .into_node_handler_builder() .with_substream_upgrade_protocol_override(self.substream_upgrade_protocol_override); Ok(self.network.dial(&addr, handler).map(|_id| ())?) } /// Initiates a new dialing attempt to the given peer. pub fn dial(&mut self, peer_id: &PeerId) -> Result<(), DialError> { if self.banned_peers.contains(peer_id) { self.behaviour.inject_dial_failure(peer_id); return Err(DialError::Banned); } let self_listening = &self.listened_addrs; let mut addrs = self .behaviour .addresses_of_peer(peer_id) .into_iter() .filter(|a| !self_listening.contains(a)); let result = if let Some(first) = addrs.next() { let handler = self .behaviour .new_handler() .into_node_handler_builder() .with_substream_upgrade_protocol_override(self.substream_upgrade_protocol_override); self.network .peer(*peer_id) .dial(first, addrs, handler) .map(|_| ()) .map_err(DialError::from) } else { Err(DialError::NoAddresses) }; if let Err(error) = &result { log::debug!( "New dialing attempt to peer {:?} failed: {:?}.", peer_id, error ); self.behaviour.inject_dial_failure(&peer_id); } result } /// Returns an iterator that produces the list of addresses we're listening on. pub fn listeners(&self) -> impl Iterator { self.network.listen_addrs() } /// Returns the peer ID of the swarm passed as parameter. pub fn local_peer_id(&self) -> &PeerId { self.network.local_peer_id() } /// Returns an iterator for [`AddressRecord`]s of external addresses /// of the local node, in decreasing order of their current /// [score](AddressScore). pub fn external_addresses(&self) -> impl Iterator { self.external_addrs.iter() } /// Adds an external address record for the local node. /// /// An external address is an address of the local node known to /// be (likely) reachable for other nodes, possibly taking into /// account NAT. The external addresses of the local node may be /// shared with other nodes by the `NetworkBehaviour`. /// /// The associated score determines both the position of the address /// in the list of external addresses (which can determine the /// order in which addresses are used to connect to) as well as /// how long the address is retained in the list, depending on /// how frequently it is reported by the `NetworkBehaviour` via /// [`NetworkBehaviourAction::ReportObservedAddr`] or explicitly /// through this method. pub fn add_external_address(&mut self, a: Multiaddr, s: AddressScore) -> AddAddressResult { let result = self.external_addrs.add(a.clone(), s); let expired = match &result { AddAddressResult::Inserted { expired } => { self.behaviour.inject_new_external_addr(&a); expired } AddAddressResult::Updated { expired } => expired, }; for a in expired { self.behaviour.inject_expired_external_addr(&a.addr); } result } /// Removes an external address of the local node, regardless of /// its current score. See [`Swarm::add_external_address`] /// for details. /// /// Returns `true` if the address existed and was removed, `false` /// otherwise. pub fn remove_external_address(&mut self, addr: &Multiaddr) -> bool { if self.external_addrs.remove(addr) { self.behaviour.inject_expired_external_addr(addr); true } else { false } } /// Bans a peer by its peer ID. /// /// Any incoming connection and any dialing attempt will immediately be rejected. /// This function has no effect if the peer is already banned. pub fn ban_peer_id(&mut self, peer_id: PeerId) { if self.banned_peers.insert(peer_id) { if let Some(peer) = self.network.peer(peer_id).into_connected() { peer.disconnect(); } } } /// Unbans a peer. pub fn unban_peer_id(&mut self, peer_id: PeerId) { self.banned_peers.remove(&peer_id); } /// Disconnects a peer by its peer ID, closing all connections to said peer. /// /// Returns `Ok(())` if there was one or more established connections to the peer. /// /// Note: Closing a connection via [`Swarm::disconnect_peer_id`] does /// not inform the corresponding [`ProtocolsHandler`]. /// Closing a connection via a [`ProtocolsHandler`] can be done either in a /// collaborative manner across [`ProtocolsHandler`]s /// with [`ProtocolsHandler::connection_keep_alive`] or directly with /// [`ProtocolsHandlerEvent::Close`]. pub fn disconnect_peer_id(&mut self, peer_id: PeerId) -> Result<(), ()> { if let Some(peer) = self.network.peer(peer_id).into_connected() { peer.disconnect(); return Ok(()); } Err(()) } /// Checks whether the [`Network`] has an established connection to a peer. pub fn is_connected(&self, peer_id: &PeerId) -> bool { self.network.is_connected(peer_id) } /// Returns a reference to the provided [`NetworkBehaviour`]. pub fn behaviour(&self) -> &TBehaviour { &self.behaviour } /// Returns a mutable reference to the provided [`NetworkBehaviour`]. pub fn behaviour_mut(&mut self) -> &mut TBehaviour { &mut self.behaviour } /// Internal function used by everything event-related. /// /// Polls the `Swarm` for the next event. fn poll_next_event( mut self: Pin<&mut Self>, cx: &mut Context<'_>, ) -> Poll>> { // We use a `this` variable because the compiler can't mutably borrow multiple times // across a `Deref`. let this = &mut *self; loop { let mut network_not_ready = false; // First let the network make progress. match this.network.poll(cx) { Poll::Pending => network_not_ready = true, Poll::Ready(NetworkEvent::ConnectionEvent { connection, event }) => { let peer = connection.peer_id(); let connection = connection.id(); this.behaviour.inject_event(peer, connection, event); } Poll::Ready(NetworkEvent::AddressChange { connection, new_endpoint, old_endpoint, }) => { let peer = connection.peer_id(); let connection = connection.id(); this.behaviour.inject_address_change( &peer, &connection, &old_endpoint, &new_endpoint, ); } Poll::Ready(NetworkEvent::ConnectionEstablished { connection, num_established, }) => { let peer_id = connection.peer_id(); let endpoint = connection.endpoint().clone(); if this.banned_peers.contains(&peer_id) { this.network .peer(peer_id) .into_connected() .expect("the Network just notified us that we were connected; QED") .disconnect(); return Poll::Ready(SwarmEvent::BannedPeer { peer_id, endpoint }); } else { log::debug!( "Connection established: {:?}; Total (peer): {}.", connection.connected(), num_established ); let endpoint = connection.endpoint().clone(); this.behaviour.inject_connection_established( &peer_id, &connection.id(), &endpoint, ); if num_established.get() == 1 { this.behaviour.inject_connected(&peer_id); } return Poll::Ready(SwarmEvent::ConnectionEstablished { peer_id, num_established, endpoint, }); } } Poll::Ready(NetworkEvent::ConnectionClosed { id, connected, error, num_established, }) => { if let Some(error) = error.as_ref() { log::debug!("Connection {:?} closed: {:?}", connected, error); } else { log::debug!("Connection {:?} closed (active close).", connected); } let peer_id = connected.peer_id; let endpoint = connected.endpoint; this.behaviour .inject_connection_closed(&peer_id, &id, &endpoint); if num_established == 0 { this.behaviour.inject_disconnected(&peer_id); } return Poll::Ready(SwarmEvent::ConnectionClosed { peer_id, endpoint, cause: error, num_established, }); } Poll::Ready(NetworkEvent::IncomingConnection { connection, .. }) => { let handler = this .behaviour .new_handler() .into_node_handler_builder() .with_substream_upgrade_protocol_override( this.substream_upgrade_protocol_override, ); let local_addr = connection.local_addr.clone(); let send_back_addr = connection.send_back_addr.clone(); if let Err(e) = this.network.accept(connection, handler) { log::warn!("Incoming connection rejected: {:?}", e); } return Poll::Ready(SwarmEvent::IncomingConnection { local_addr, send_back_addr, }); } Poll::Ready(NetworkEvent::NewListenerAddress { listener_id, listen_addr, }) => { log::debug!("Listener {:?}; New address: {:?}", listener_id, listen_addr); if !this.listened_addrs.contains(&listen_addr) { this.listened_addrs.push(listen_addr.clone()) } this.behaviour .inject_new_listen_addr(listener_id, &listen_addr); return Poll::Ready(SwarmEvent::NewListenAddr { listener_id, address: listen_addr, }); } Poll::Ready(NetworkEvent::ExpiredListenerAddress { listener_id, listen_addr, }) => { log::debug!( "Listener {:?}; Expired address {:?}.", listener_id, listen_addr ); this.listened_addrs.retain(|a| a != &listen_addr); this.behaviour .inject_expired_listen_addr(listener_id, &listen_addr); return Poll::Ready(SwarmEvent::ExpiredListenAddr { listener_id, address: listen_addr, }); } Poll::Ready(NetworkEvent::ListenerClosed { listener_id, addresses, reason, }) => { log::debug!("Listener {:?}; Closed by {:?}.", listener_id, reason); for addr in addresses.iter() { this.behaviour.inject_expired_listen_addr(listener_id, addr); } this.behaviour.inject_listener_closed( listener_id, match &reason { Ok(()) => Ok(()), Err(err) => Err(err), }, ); return Poll::Ready(SwarmEvent::ListenerClosed { listener_id, addresses, reason, }); } Poll::Ready(NetworkEvent::ListenerError { listener_id, error }) => { this.behaviour.inject_listener_error(listener_id, &error); return Poll::Ready(SwarmEvent::ListenerError { listener_id, error }); } Poll::Ready(NetworkEvent::IncomingConnectionError { local_addr, send_back_addr, error, }) => { log::debug!("Incoming connection failed: {:?}", error); return Poll::Ready(SwarmEvent::IncomingConnectionError { local_addr, send_back_addr, error, }); } Poll::Ready(NetworkEvent::DialError { peer_id, multiaddr, error, attempts_remaining, }) => { log::debug!( "Connection attempt to {:?} via {:?} failed with {:?}. Attempts remaining: {}.", peer_id, multiaddr, error, attempts_remaining); this.behaviour .inject_addr_reach_failure(Some(&peer_id), &multiaddr, &error); if attempts_remaining == 0 { this.behaviour.inject_dial_failure(&peer_id); } return Poll::Ready(SwarmEvent::UnreachableAddr { peer_id, address: multiaddr, error, attempts_remaining, }); } Poll::Ready(NetworkEvent::UnknownPeerDialError { multiaddr, error, .. }) => { log::debug!( "Connection attempt to address {:?} of unknown peer failed with {:?}", multiaddr, error ); this.behaviour .inject_addr_reach_failure(None, &multiaddr, &error); return Poll::Ready(SwarmEvent::UnknownPeerUnreachableAddr { address: multiaddr, error, }); } } // After the network had a chance to make progress, try to deliver // the pending event emitted by the behaviour in the previous iteration // to the connection handler(s). The pending event must be delivered // before polling the behaviour again. If the targeted peer // meanwhie disconnected, the event is discarded. if let Some((peer_id, handler, event)) = this.pending_event.take() { if let Some(mut peer) = this.network.peer(peer_id).into_connected() { match handler { PendingNotifyHandler::One(conn_id) => { if let Some(mut conn) = peer.connection(conn_id) { if let Some(event) = notify_one(&mut conn, event, cx) { this.pending_event = Some((peer_id, handler, event)); return Poll::Pending; } } } PendingNotifyHandler::Any(ids) => { if let Some((event, ids)) = notify_any::<_, _, TBehaviour>(ids, &mut peer, event, cx) { let handler = PendingNotifyHandler::Any(ids); this.pending_event = Some((peer_id, handler, event)); return Poll::Pending; } } } } } debug_assert!(this.pending_event.is_none()); let behaviour_poll = { let mut parameters = SwarmPollParameters { local_peer_id: &mut this.network.local_peer_id(), supported_protocols: &this.supported_protocols, listened_addrs: &this.listened_addrs, external_addrs: &this.external_addrs, }; this.behaviour.poll(cx, &mut parameters) }; match behaviour_poll { Poll::Pending if network_not_ready => return Poll::Pending, Poll::Pending => (), Poll::Ready(NetworkBehaviourAction::GenerateEvent(event)) => { return Poll::Ready(SwarmEvent::Behaviour(event)) } Poll::Ready(NetworkBehaviourAction::DialAddress { address }) => { let _ = Swarm::dial_addr(&mut *this, address); } Poll::Ready(NetworkBehaviourAction::DialPeer { peer_id, condition }) => { if this.banned_peers.contains(&peer_id) { this.behaviour.inject_dial_failure(&peer_id); } else { let condition_matched = match condition { DialPeerCondition::Disconnected => { this.network.is_disconnected(&peer_id) } DialPeerCondition::NotDialing => !this.network.is_dialing(&peer_id), DialPeerCondition::Always => true, }; if condition_matched { if Swarm::dial(this, &peer_id).is_ok() { return Poll::Ready(SwarmEvent::Dialing(peer_id)); } } else { // Even if the condition for a _new_ dialing attempt is not met, // we always add any potentially new addresses of the peer to an // ongoing dialing attempt, if there is one. log::trace!( "Condition for new dialing attempt to {:?} not met: {:?}", peer_id, condition ); let self_listening = &this.listened_addrs; if let Some(mut peer) = this.network.peer(peer_id).into_dialing() { let addrs = this.behaviour.addresses_of_peer(peer.id()); let mut attempt = peer.some_attempt(); for a in addrs { if !self_listening.contains(&a) { attempt.add_address(a); } } } } } } Poll::Ready(NetworkBehaviourAction::NotifyHandler { peer_id, handler, event, }) => { if let Some(mut peer) = this.network.peer(peer_id).into_connected() { match handler { NotifyHandler::One(connection) => { if let Some(mut conn) = peer.connection(connection) { if let Some(event) = notify_one(&mut conn, event, cx) { let handler = PendingNotifyHandler::One(connection); this.pending_event = Some((peer_id, handler, event)); return Poll::Pending; } } } NotifyHandler::Any => { let ids = peer.connections().into_ids().collect(); if let Some((event, ids)) = notify_any::<_, _, TBehaviour>(ids, &mut peer, event, cx) { let handler = PendingNotifyHandler::Any(ids); this.pending_event = Some((peer_id, handler, event)); return Poll::Pending; } } } } } Poll::Ready(NetworkBehaviourAction::ReportObservedAddr { address, score }) => { for addr in this.network.address_translation(&address) { this.add_external_address(addr, score); } } Poll::Ready(NetworkBehaviourAction::CloseConnection { peer_id, connection, }) => { if let Some(mut peer) = this.network.peer(peer_id).into_connected() { match connection { CloseConnection::One(connection_id) => { if let Some(conn) = peer.connection(connection_id) { conn.start_close(); } } CloseConnection::All => { peer.disconnect(); } } } } } } } } /// Connection to notify of a pending event. /// /// The connection IDs out of which to notify one of an event are captured at /// the time the behaviour emits the event, in order not to forward the event to /// a new connection which the behaviour may not have been aware of at the time /// it issued the request for sending it. enum PendingNotifyHandler { One(ConnectionId), Any(SmallVec<[ConnectionId; 10]>), } /// Notify a single connection of an event. /// /// Returns `Some` with the given event if the connection is not currently /// ready to receive another event, in which case the current task is /// scheduled to be woken up. /// /// Returns `None` if the connection is closing or the event has been /// successfully sent, in either case the event is consumed. fn notify_one<'a, THandlerInEvent>( conn: &mut EstablishedConnection<'a, THandlerInEvent>, event: THandlerInEvent, cx: &mut Context<'_>, ) -> Option { match conn.poll_ready_notify_handler(cx) { Poll::Pending => Some(event), Poll::Ready(Err(())) => None, // connection is closing Poll::Ready(Ok(())) => { // Can now only fail if connection is closing. let _ = conn.notify_handler(event); None } } } /// Notify any one of a given list of connections of a peer of an event. /// /// Returns `Some` with the given event and a new list of connections if /// none of the given connections was able to receive the event but at /// least one of them is not closing, in which case the current task /// is scheduled to be woken up. The returned connections are those which /// may still become ready to receive another event. /// /// Returns `None` if either all connections are closing or the event /// was successfully sent to a handler, in either case the event is consumed. fn notify_any<'a, TTrans, THandler, TBehaviour>( ids: SmallVec<[ConnectionId; 10]>, peer: &mut ConnectedPeer<'a, TTrans, THandler>, event: THandlerInEvent, cx: &mut Context<'_>, ) -> Option<(THandlerInEvent, SmallVec<[ConnectionId; 10]>)> where TTrans: Transport, TBehaviour: NetworkBehaviour, THandler: IntoConnectionHandler, THandler::Handler: ConnectionHandler< InEvent = THandlerInEvent, OutEvent = THandlerOutEvent, >, { let mut pending = SmallVec::new(); let mut event = Some(event); // (1) for id in ids.into_iter() { if let Some(mut conn) = peer.connection(id) { match conn.poll_ready_notify_handler(cx) { Poll::Pending => pending.push(id), Poll::Ready(Err(())) => {} // connection is closing Poll::Ready(Ok(())) => { let e = event.take().expect("by (1),(2)"); if let Err(e) = conn.notify_handler(e) { event = Some(e) // (2) } else { break; } } } } } event.and_then(|e| { if !pending.is_empty() { Some((e, pending)) } else { None } }) } /// Stream of events returned by [`Swarm`]. /// /// Includes events from the [`NetworkBehaviour`] as well as events about /// connection and listener status. See [`SwarmEvent`] for details. /// /// Note: This stream is infinite and it is guaranteed that /// [`Stream::poll_next`] will never return `Poll::Ready(None)`. impl Stream for Swarm where TBehaviour: NetworkBehaviour, { type Item = SwarmEvent, THandlerErr>; fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll> { self.as_mut().poll_next_event(cx).map(Some) } } /// The stream of swarm events never terminates, so we can implement fused for it. impl FusedStream for Swarm where TBehaviour: NetworkBehaviour, { fn is_terminated(&self) -> bool { false } } /// Parameters passed to `poll()`, that the `NetworkBehaviour` has access to. // TODO: #[derive(Debug)] pub struct SwarmPollParameters<'a> { local_peer_id: &'a PeerId, supported_protocols: &'a [Vec], listened_addrs: &'a [Multiaddr], external_addrs: &'a Addresses, } impl<'a> PollParameters for SwarmPollParameters<'a> { type SupportedProtocolsIter = std::vec::IntoIter>; type ListenedAddressesIter = std::vec::IntoIter; type ExternalAddressesIter = AddressIntoIter; fn supported_protocols(&self) -> Self::SupportedProtocolsIter { self.supported_protocols.to_vec().into_iter() } fn listened_addresses(&self) -> Self::ListenedAddressesIter { self.listened_addrs.to_vec().into_iter() } fn external_addresses(&self) -> Self::ExternalAddressesIter { self.external_addrs.clone().into_iter() } fn local_peer_id(&self) -> &PeerId { &self.local_peer_id } } /// A `SwarmBuilder` provides an API for configuring and constructing a `Swarm`, /// including the underlying [`Network`]. pub struct SwarmBuilder { local_peer_id: PeerId, transport: transport::Boxed<(PeerId, StreamMuxerBox)>, behaviour: TBehaviour, network_config: NetworkConfig, substream_upgrade_protocol_override: Option, } impl SwarmBuilder where TBehaviour: NetworkBehaviour, { /// Creates a new `SwarmBuilder` from the given transport, behaviour and /// local peer ID. The `Swarm` with its underlying `Network` is obtained /// via [`SwarmBuilder::build`]. pub fn new( transport: transport::Boxed<(PeerId, StreamMuxerBox)>, behaviour: TBehaviour, local_peer_id: PeerId, ) -> Self { SwarmBuilder { local_peer_id, transport, behaviour, network_config: Default::default(), substream_upgrade_protocol_override: None, } } /// Configures the `Executor` to use for spawning background tasks. /// /// By default, unless another executor has been configured, /// [`SwarmBuilder::build`] will try to set up a `ThreadPool`. pub fn executor(mut self, e: Box) -> Self { self.network_config = self.network_config.with_executor(e); self } /// Configures the number of events from the [`NetworkBehaviour`] in /// destination to the [`ProtocolsHandler`] that can be buffered before /// the [`Swarm`] has to wait. An individual buffer with this number of /// events exists for each individual connection. /// /// The ideal value depends on the executor used, the CPU speed, and the /// volume of events. If this value is too low, then the [`Swarm`] will /// be sleeping more often than necessary. Increasing this value increases /// the overall memory usage. pub fn notify_handler_buffer_size(mut self, n: NonZeroUsize) -> Self { self.network_config = self.network_config.with_notify_handler_buffer_size(n); self } /// Configures the number of extra events from the [`ProtocolsHandler`] in /// destination to the [`NetworkBehaviour`] that can be buffered before /// the [`ProtocolsHandler`] has to go to sleep. /// /// There exists a buffer of events received from [`ProtocolsHandler`]s /// that the [`NetworkBehaviour`] has yet to process. This buffer is /// shared between all instances of [`ProtocolsHandler`]. Each instance of /// [`ProtocolsHandler`] is guaranteed one slot in this buffer, meaning /// that delivering an event for the first time is guaranteed to be /// instantaneous. Any extra event delivery, however, must wait for that /// first event to be delivered or for an "extra slot" to be available. /// /// This option configures the number of such "extra slots" in this /// shared buffer. These extra slots are assigned in a first-come, /// first-served basis. /// /// The ideal value depends on the executor used, the CPU speed, the /// average number of connections, and the volume of events. If this value /// is too low, then the [`ProtocolsHandler`]s will be sleeping more often /// than necessary. Increasing this value increases the overall memory /// usage, and more importantly the latency between the moment when an /// event is emitted and the moment when it is received by the /// [`NetworkBehaviour`]. pub fn connection_event_buffer_size(mut self, n: usize) -> Self { self.network_config = self.network_config.with_connection_event_buffer_size(n); self } /// Configures the connection limits. pub fn connection_limits(mut self, limits: ConnectionLimits) -> Self { self.network_config = self.network_config.with_connection_limits(limits); self } /// Configures an override for the substream upgrade protocol to use. /// /// The subtream upgrade protocol is the multistream-select protocol /// used for protocol negotiation on substreams. Since a listener /// supports all existing versions, the choice of upgrade protocol /// only effects the "dialer", i.e. the peer opening a substream. /// /// > **Note**: If configured, specific upgrade protocols for /// > individual [`SubstreamProtocol`]s emitted by the `NetworkBehaviour` /// > are ignored. pub fn substream_upgrade_protocol_override(mut self, v: libp2p_core::upgrade::Version) -> Self { self.substream_upgrade_protocol_override = Some(v); self } /// Builds a `Swarm` with the current configuration. pub fn build(mut self) -> Swarm { let supported_protocols = self .behaviour .new_handler() .inbound_protocol() .protocol_info() .into_iter() .map(|info| info.protocol_name().to_vec()) .collect(); // If no executor has been explicitly configured, try to set up a thread pool. let network_cfg = self.network_config.or_else_with_executor(|| { match ThreadPoolBuilder::new() .name_prefix("libp2p-swarm-task-") .create() { Ok(tp) => Some(Box::new(move |f| tp.spawn_ok(f))), Err(err) => { log::warn!("Failed to create executor thread pool: {:?}", err); None } } }); let network = Network::new(self.transport, self.local_peer_id, network_cfg); Swarm { network, behaviour: self.behaviour, supported_protocols, listened_addrs: SmallVec::new(), external_addrs: Addresses::default(), banned_peers: HashSet::new(), pending_event: None, substream_upgrade_protocol_override: self.substream_upgrade_protocol_override, } } } /// The possible failures of [`Swarm::dial`]. #[derive(Debug)] pub enum DialError { /// The peer is currently banned. Banned, /// The configured limit for simultaneous outgoing connections /// has been reached. ConnectionLimit(ConnectionLimit), /// The address given for dialing is invalid. InvalidAddress(Multiaddr), /// [`NetworkBehaviour::addresses_of_peer`] returned no addresses /// for the peer to dial. NoAddresses, } impl From for DialError { fn from(err: network::DialError) -> DialError { match err { network::DialError::ConnectionLimit(l) => DialError::ConnectionLimit(l), network::DialError::InvalidAddress(a) => DialError::InvalidAddress(a), } } } impl fmt::Display for DialError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { DialError::ConnectionLimit(err) => write!(f, "Dial error: {}", err), DialError::NoAddresses => write!(f, "Dial error: no addresses for peer."), DialError::InvalidAddress(a) => write!(f, "Dial error: invalid address: {}", a), DialError::Banned => write!(f, "Dial error: peer is banned."), } } } impl error::Error for DialError { fn source(&self) -> Option<&(dyn error::Error + 'static)> { match self { DialError::ConnectionLimit(err) => Some(err), DialError::InvalidAddress(_) => None, DialError::NoAddresses => None, DialError::Banned => None, } } } /// Dummy implementation of [`NetworkBehaviour`] that doesn't do anything. #[derive(Clone)] pub struct DummyBehaviour { keep_alive: KeepAlive, } impl DummyBehaviour { pub fn with_keep_alive(keep_alive: KeepAlive) -> Self { Self { keep_alive } } pub fn keep_alive_mut(&mut self) -> &mut KeepAlive { &mut self.keep_alive } } impl Default for DummyBehaviour { fn default() -> Self { Self { keep_alive: KeepAlive::No, } } } impl NetworkBehaviour for DummyBehaviour { type ProtocolsHandler = protocols_handler::DummyProtocolsHandler; type OutEvent = void::Void; fn new_handler(&mut self) -> Self::ProtocolsHandler { protocols_handler::DummyProtocolsHandler { keep_alive: self.keep_alive, } } fn inject_event( &mut self, _: PeerId, _: ConnectionId, event: ::OutEvent, ) { void::unreachable(event) } fn poll( &mut self, _: &mut Context<'_>, _: &mut impl PollParameters, ) -> Poll< NetworkBehaviourAction< ::InEvent, Self::OutEvent, >, > { Poll::Pending } } #[cfg(test)] mod tests { use super::*; use crate::protocols_handler::DummyProtocolsHandler; use crate::test::{CallTraceBehaviour, MockBehaviour}; use futures::{executor, future}; use libp2p_core::{identity, multiaddr, transport, upgrade}; use libp2p_noise as noise; // Test execution state. // Connection => Disconnecting => Connecting. enum State { Connecting, Disconnecting, } fn new_test_swarm(handler_proto: T) -> Swarm>> where T: ProtocolsHandler + Clone, T::OutEvent: Clone, O: Send + 'static, { let id_keys = identity::Keypair::generate_ed25519(); let pubkey = id_keys.public(); let noise_keys = noise::Keypair::::new() .into_authentic(&id_keys) .unwrap(); let transport = transport::MemoryTransport::default() .upgrade(upgrade::Version::V1) .authenticate(noise::NoiseConfig::xx(noise_keys).into_authenticated()) .multiplex(libp2p_mplex::MplexConfig::new()) .boxed(); let behaviour = CallTraceBehaviour::new(MockBehaviour::new(handler_proto)); SwarmBuilder::new(transport, behaviour, pubkey.into()).build() } fn swarms_connected( swarm1: &Swarm>, swarm2: &Swarm>, num_connections: usize, ) -> bool where TBehaviour: NetworkBehaviour, <::Handler as ProtocolsHandler>::OutEvent: Clone, { for s in &[swarm1, swarm2] { if s.behaviour.inject_connection_established.len() > 0 { assert_eq!(s.behaviour.inject_connected.len(), 1); } else { assert_eq!(s.behaviour.inject_connected.len(), 0); } assert!(s.behaviour.inject_connection_closed.is_empty()); assert!(s.behaviour.inject_disconnected.is_empty()); } [swarm1, swarm2] .iter() .all(|s| s.behaviour.inject_connection_established.len() == num_connections) } fn swarms_disconnected( swarm1: &Swarm>, swarm2: &Swarm>, num_connections: usize, ) -> bool where TBehaviour: NetworkBehaviour, <::Handler as ProtocolsHandler>::OutEvent: Clone { for s in &[swarm1, swarm2] { if s.behaviour.inject_connection_closed.len() < num_connections { assert_eq!(s.behaviour.inject_disconnected.len(), 0); } else { assert_eq!(s.behaviour.inject_disconnected.len(), 1); } assert_eq!(s.behaviour.inject_connection_established.len(), 0); assert_eq!(s.behaviour.inject_connected.len(), 0); } [swarm1, swarm2] .iter() .all(|s| s.behaviour.inject_connection_closed.len() == num_connections) } /// Establishes multiple connections between two peers, /// after which one peer bans the other. /// /// The test expects both behaviours to be notified via pairs of /// inject_connected / inject_disconnected as well as /// inject_connection_established / inject_connection_closed calls. #[test] fn test_connect_disconnect_ban() { // Since the test does not try to open any substreams, we can // use the dummy protocols handler. let handler_proto = DummyProtocolsHandler { keep_alive: KeepAlive::Yes, }; let mut swarm1 = new_test_swarm::<_, ()>(handler_proto.clone()); let mut swarm2 = new_test_swarm::<_, ()>(handler_proto); let addr1: Multiaddr = multiaddr::Protocol::Memory(rand::random::()).into(); let addr2: Multiaddr = multiaddr::Protocol::Memory(rand::random::()).into(); swarm1.listen_on(addr1.clone().into()).unwrap(); swarm2.listen_on(addr2.clone().into()).unwrap(); let swarm1_id = *swarm1.local_peer_id(); let mut banned = false; let mut unbanned = false; let num_connections = 10; for _ in 0..num_connections { swarm1.dial_addr(addr2.clone()).unwrap(); } let mut state = State::Connecting; executor::block_on(future::poll_fn(move |cx| { loop { let poll1 = Swarm::poll_next_event(Pin::new(&mut swarm1), cx); let poll2 = Swarm::poll_next_event(Pin::new(&mut swarm2), cx); match state { State::Connecting => { if swarms_connected(&swarm1, &swarm2, num_connections) { if banned { return Poll::Ready(()); } swarm2.ban_peer_id(swarm1_id.clone()); swarm1.behaviour.reset(); swarm2.behaviour.reset(); banned = true; state = State::Disconnecting; } } State::Disconnecting => { if swarms_disconnected(&swarm1, &swarm2, num_connections) { if unbanned { return Poll::Ready(()); } // Unban the first peer and reconnect. swarm2.unban_peer_id(swarm1_id.clone()); swarm1.behaviour.reset(); swarm2.behaviour.reset(); unbanned = true; for _ in 0..num_connections { swarm2.dial_addr(addr1.clone()).unwrap(); } state = State::Connecting; } } } if poll1.is_pending() && poll2.is_pending() { return Poll::Pending; } } })) } /// Establishes multiple connections between two peers, /// after which one peer disconnects the other using [`Swarm::disconnect_peer_id`]. /// /// The test expects both behaviours to be notified via pairs of /// inject_connected / inject_disconnected as well as /// inject_connection_established / inject_connection_closed calls. #[test] fn test_swarm_disconnect() { // Since the test does not try to open any substreams, we can // use the dummy protocols handler. let handler_proto = DummyProtocolsHandler { keep_alive: KeepAlive::Yes, }; let mut swarm1 = new_test_swarm::<_, ()>(handler_proto.clone()); let mut swarm2 = new_test_swarm::<_, ()>(handler_proto); let addr1: Multiaddr = multiaddr::Protocol::Memory(rand::random::()).into(); let addr2: Multiaddr = multiaddr::Protocol::Memory(rand::random::()).into(); swarm1.listen_on(addr1.clone().into()).unwrap(); swarm2.listen_on(addr2.clone().into()).unwrap(); let swarm1_id = *swarm1.local_peer_id(); let mut reconnected = false; let num_connections = 10; for _ in 0..num_connections { swarm1.dial_addr(addr2.clone()).unwrap(); } let mut state = State::Connecting; executor::block_on(future::poll_fn(move |cx| loop { let poll1 = Swarm::poll_next_event(Pin::new(&mut swarm1), cx); let poll2 = Swarm::poll_next_event(Pin::new(&mut swarm2), cx); match state { State::Connecting => { if swarms_connected(&swarm1, &swarm2, num_connections) { if reconnected { return Poll::Ready(()); } swarm2 .disconnect_peer_id(swarm1_id.clone()) .expect("Error disconnecting"); swarm1.behaviour.reset(); swarm2.behaviour.reset(); state = State::Disconnecting; } } State::Disconnecting => { if swarms_disconnected(&swarm1, &swarm2, num_connections) { if reconnected { return Poll::Ready(()); } reconnected = true; swarm1.behaviour.reset(); swarm2.behaviour.reset(); for _ in 0..num_connections { swarm2.dial_addr(addr1.clone()).unwrap(); } state = State::Connecting; } } } if poll1.is_pending() && poll2.is_pending() { return Poll::Pending; } })) } /// Establishes multiple connections between two peers, /// after which one peer disconnects the other /// using [`NetworkBehaviourAction::CloseConnection`] returned by a [`NetworkBehaviour`]. /// /// The test expects both behaviours to be notified via pairs of /// inject_connected / inject_disconnected as well as /// inject_connection_established / inject_connection_closed calls. #[test] fn test_behaviour_disconnect_all() { // Since the test does not try to open any substreams, we can // use the dummy protocols handler. let handler_proto = DummyProtocolsHandler { keep_alive: KeepAlive::Yes, }; let mut swarm1 = new_test_swarm::<_, ()>(handler_proto.clone()); let mut swarm2 = new_test_swarm::<_, ()>(handler_proto); let addr1: Multiaddr = multiaddr::Protocol::Memory(rand::random::()).into(); let addr2: Multiaddr = multiaddr::Protocol::Memory(rand::random::()).into(); swarm1.listen_on(addr1.clone().into()).unwrap(); swarm2.listen_on(addr2.clone().into()).unwrap(); let swarm1_id = *swarm1.local_peer_id(); let mut reconnected = false; let num_connections = 10; for _ in 0..num_connections { swarm1.dial_addr(addr2.clone()).unwrap(); } let mut state = State::Connecting; executor::block_on(future::poll_fn(move |cx| loop { let poll1 = Swarm::poll_next_event(Pin::new(&mut swarm1), cx); let poll2 = Swarm::poll_next_event(Pin::new(&mut swarm2), cx); match state { State::Connecting => { if swarms_connected(&swarm1, &swarm2, num_connections) { if reconnected { return Poll::Ready(()); } swarm2.behaviour.inner().next_action.replace( NetworkBehaviourAction::CloseConnection { peer_id: swarm1_id.clone(), connection: CloseConnection::All, }, ); swarm1.behaviour.reset(); swarm2.behaviour.reset(); state = State::Disconnecting; } } State::Disconnecting => { if swarms_disconnected(&swarm1, &swarm2, num_connections) { if reconnected { return Poll::Ready(()); } reconnected = true; swarm1.behaviour.reset(); swarm2.behaviour.reset(); for _ in 0..num_connections { swarm2.dial_addr(addr1.clone()).unwrap(); } state = State::Connecting; } } } if poll1.is_pending() && poll2.is_pending() { return Poll::Pending; } })) } /// Establishes multiple connections between two peers, /// after which one peer closes a single connection /// using [`NetworkBehaviourAction::CloseConnection`] returned by a [`NetworkBehaviour`]. /// /// The test expects both behaviours to be notified via pairs of /// inject_connected / inject_disconnected as well as /// inject_connection_established / inject_connection_closed calls. #[test] fn test_behaviour_disconnect_one() { // Since the test does not try to open any substreams, we can // use the dummy protocols handler. let handler_proto = DummyProtocolsHandler { keep_alive: KeepAlive::Yes, }; let mut swarm1 = new_test_swarm::<_, ()>(handler_proto.clone()); let mut swarm2 = new_test_swarm::<_, ()>(handler_proto); let addr1: Multiaddr = multiaddr::Protocol::Memory(rand::random::()).into(); let addr2: Multiaddr = multiaddr::Protocol::Memory(rand::random::()).into(); swarm1.listen_on(addr1.clone().into()).unwrap(); swarm2.listen_on(addr2.clone().into()).unwrap(); let swarm1_id = *swarm1.local_peer_id(); let num_connections = 10; for _ in 0..num_connections { swarm1.dial_addr(addr2.clone()).unwrap(); } let mut state = State::Connecting; let mut disconnected_conn_id = None; executor::block_on(future::poll_fn(move |cx| loop { let poll1 = Swarm::poll_next_event(Pin::new(&mut swarm1), cx); let poll2 = Swarm::poll_next_event(Pin::new(&mut swarm2), cx); match state { State::Connecting => { if swarms_connected(&swarm1, &swarm2, num_connections) { disconnected_conn_id = { let conn_id = swarm2.behaviour.inject_connection_established [num_connections / 2] .1; swarm2.behaviour.inner().next_action.replace( NetworkBehaviourAction::CloseConnection { peer_id: swarm1_id.clone(), connection: CloseConnection::One(conn_id), }, ); Some(conn_id) }; swarm1.behaviour.reset(); swarm2.behaviour.reset(); state = State::Disconnecting; } } State::Disconnecting => { for s in &[&swarm1, &swarm2] { assert_eq!(s.behaviour.inject_disconnected.len(), 0); assert_eq!(s.behaviour.inject_connection_established.len(), 0); assert_eq!(s.behaviour.inject_connected.len(), 0); } if [&swarm1, &swarm2] .iter() .all(|s| s.behaviour.inject_connection_closed.len() == 1) { let conn_id = swarm2.behaviour.inject_connection_closed[0].1; assert_eq!(Some(conn_id), disconnected_conn_id); return Poll::Ready(()); } } } if poll1.is_pending() && poll2.is_pending() { return Poll::Pending; } })) } }