// Copyright 2017 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // Libp2p's code unfortunately produces very large types. Rust's default length limit for type // names is not large enough, therefore we need this attribute. #![type_length_limit = "4194304"] extern crate bigint; extern crate bytes; extern crate env_logger; extern crate futures; extern crate libp2p; extern crate tokio_current_thread; extern crate tokio_io; extern crate multiaddr; use bigint::U512; use futures::{Future, Stream}; use libp2p::peerstore::{PeerAccess, PeerId, Peerstore}; use multiaddr::Multiaddr; use std::collections::HashMap; use std::env; use std::sync::{Arc, Mutex}; use std::time::Duration; use libp2p::core::{Transport, PublicKey, UniqueConnec}; use libp2p::core::{upgrade, either::EitherOutput}; use libp2p::kad::{KadConnecConfig, KadConnectionType, KadPeer, KadQueryEvent, KadSystem}; use libp2p::kad::{KadSystemConfig, KadIncomingRequest}; use libp2p::tcp::TcpConfig; fn main() { env_logger::init(); // Determine which addresses to listen to. let listen_addrs = { let mut args = env::args().skip(1).collect::>(); if args.is_empty() { args.push("/ip4/0.0.0.0/tcp/0".to_owned()); } args }; let peer_store = Arc::new(libp2p::peerstore::memory_peerstore::MemoryPeerstore::empty()); ipfs_bootstrap(&*peer_store); // We create a `TcpConfig` that indicates that we want TCP/IP. let transport = TcpConfig::new() // On top of TCP/IP, we will use either the plaintext protocol or the secio protocol, // depending on which one the remote supports. .with_upgrade({ let plain_text = upgrade::PlainTextConfig; let secio = { let private_key = include_bytes!("test-rsa-private-key.pk8"); let public_key = include_bytes!("test-rsa-public-key.der").to_vec(); libp2p::secio::SecioConfig { key: libp2p::secio::SecioKeyPair::rsa_from_pkcs8(private_key, public_key).unwrap(), } }; upgrade::or( upgrade::map(plain_text, |pt| EitherOutput::First(pt)), upgrade::map(secio, |out: libp2p::secio::SecioOutput<_>| EitherOutput::Second(out.stream)) ) }) // On top of plaintext or secio, we will use the multiplex protocol. .with_upgrade(libp2p::mplex::MplexConfig::new()) // The object returned by the call to `with_upgrade(MplexConfig::new())` can't be used as a // `Transport` because the output of the upgrade is not a stream but a controller for // muxing. We have to explicitly call `into_connection_reuse()` in order to turn this into // a `Transport`. .map(|val, _| ((), val)) .into_connection_reuse() .map(|((), val), _| val); let addr_resolver = { let peer_store = peer_store.clone(); move |peer_id| { peer_store .peer(&peer_id) .into_iter() .flat_map(|peer| peer.addrs()) .collect::>() .into_iter() } }; let transport = libp2p::identify::PeerIdTransport::new(transport, addr_resolver) .and_then({ let peer_store = peer_store.clone(); move |id_out, _, remote_addr| { let socket = id_out.socket; let original_addr = id_out.original_addr; id_out.info.map(move |info| { let peer_id = info.info.public_key.into_peer_id(); peer_store.peer_or_create(&peer_id).add_addr(original_addr, Duration::from_secs(3600)); (socket, remote_addr) }) } }); // We now have a `transport` variable that can be used either to dial nodes or listen to // incoming connections, and that will automatically apply secio and multiplex on top // of any opened stream. let my_peer_id = PeerId::from_public_key(PublicKey::Rsa(include_bytes!("test-rsa-public-key.der").to_vec())); println!("Local peer id is: {:?}", my_peer_id); let kad_system = Arc::new(KadSystem::without_init(KadSystemConfig { parallelism: 3, local_peer_id: my_peer_id.clone(), kbuckets_timeout: Duration::from_secs(10), request_timeout: Duration::from_secs(10), known_initial_peers: peer_store.peers(), })); let active_kad_connections = Arc::new(Mutex::new(HashMap::<_, UniqueConnec<_>>::new())); // Let's put this `transport` into a *swarm*. The swarm will handle all the incoming and // outgoing connections for us. let (swarm_controller, swarm_future) = libp2p::core::swarm( transport.clone().with_upgrade(KadConnecConfig::new()), { let peer_store = peer_store.clone(); let kad_system = kad_system.clone(); let active_kad_connections = active_kad_connections.clone(); move |(kad_ctrl, kad_stream), node_addr| { let peer_store = peer_store.clone(); let kad_system = kad_system.clone(); let active_kad_connections = active_kad_connections.clone(); node_addr.and_then(move |node_addr| { let node_id = p2p_multiaddr_to_node_id(node_addr); let node_id2 = node_id.clone(); let fut = kad_stream.for_each(move |req| { let peer_store = peer_store.clone(); kad_system.update_kbuckets(node_id2.clone()); match req { KadIncomingRequest::FindNode { searched, responder } => { let result = kad_system .known_closest_peers(&searched) .map(move |peer_id| { let addrs = peer_store .peer(&peer_id) .into_iter() .flat_map(|p| p.addrs()) .collect::>(); KadPeer { node_id: peer_id.clone(), multiaddrs: addrs, connection_ty: KadConnectionType::Connected, // meh :-/ } }) .collect::>(); responder.respond(result); }, KadIncomingRequest::PingPong => { } }; Ok(()) }); let mut active_kad_connections = active_kad_connections.lock().unwrap(); active_kad_connections .entry(node_id) .or_insert_with(Default::default) .tie_or_passthrough(kad_ctrl, fut) }) } } ); for listen_addr in listen_addrs { let addr = swarm_controller .listen_on(listen_addr.parse().expect("invalid multiaddr")) .expect("unsupported multiaddr"); println!("Now listening on {:?}", addr); } let finish_enum = kad_system .find_node(my_peer_id.clone(), |peer| { let addr = Multiaddr::from(libp2p::multiaddr::AddrComponent::P2P(peer.clone().into())); active_kad_connections.lock().unwrap().entry(peer.clone()) .or_insert_with(Default::default) .dial(&swarm_controller, &addr, transport.clone().with_upgrade(KadConnecConfig::new())) }) .filter_map(move |event| { match event { KadQueryEvent::PeersReported(peers) => { for peer in peers { peer_store.peer_or_create(&peer.node_id) .add_addrs(peer.multiaddrs, Duration::from_secs(3600)); } None }, KadQueryEvent::Finished(out) => Some(out), } }) .into_future() .map_err(|(err, _)| err) .map(|(out, _)| out.unwrap()) .and_then(|out| { let local_hash = U512::from(my_peer_id.digest()); println!("Results of peer discovery for {:?}:", my_peer_id); for n in out { let other_hash = U512::from(n.digest()); let dist = 512 - (local_hash ^ other_hash).leading_zeros(); println!("* {:?} (distance bits = {:?} (lower is better))", n, dist); } Ok(()) }); // `swarm_future` is a future that contains all the behaviour that we want, but nothing has // actually started yet. Because we created the `TcpConfig` with tokio, we need to run the // future through the tokio core. tokio_current_thread::block_on_all( finish_enum .select(swarm_future.for_each(|_| Ok(()))) .map(|(n, _)| n) .map_err(|(err, _)| err), ).unwrap(); } /// Expects a multiaddr of the format `/p2p/` and returns the node ID. /// Panics if the format is not correct. fn p2p_multiaddr_to_node_id(client_addr: Multiaddr) -> PeerId { let (first, second); { let mut iter = client_addr.iter(); first = iter.next(); second = iter.next(); } match (first, second) { (Some(libp2p::multiaddr::AddrComponent::P2P(node_id)), None) => PeerId::from_multihash(node_id).expect("libp2p always reports a valid node id"), _ => panic!("Reported multiaddress is in the wrong format ; programmer error") } } /// Stores initial addresses on the given peer store. Uses a very large timeout. pub fn ipfs_bootstrap

(peer_store: P) where P: Peerstore + Clone, { const ADDRESSES: &[&str] = &[ "/ip4/127.0.0.1/tcp/4001/p2p/QmQRx32wQkw3hB45j4UDw8V9Ju4mGbxMyhs2m8mpFrFkur", // TODO: add some bootstrap nodes here ]; let ttl = Duration::from_secs(100 * 365 * 24 * 3600); for address in ADDRESSES.iter() { let mut multiaddr = address .parse::() .expect("failed to parse hard-coded multiaddr"); let p2p_component = multiaddr.pop().expect("hard-coded multiaddr is empty"); let peer = match p2p_component { libp2p::multiaddr::AddrComponent::P2P(key) => { PeerId::from_multihash(key).expect("invalid peer id") } _ => panic!("hard-coded multiaddr didn't end with /p2p/"), }; peer_store .clone() .peer_or_create(&peer) .add_addr(multiaddr, ttl.clone()); } }