// Copyright 2017 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // TODO: use this once stable ; for now we just copy-paste the content of the README.md //#![doc(include = "../README.md")] //! Implementation of the libp2p `Transport` trait for TCP/IP. //! //! Uses [the *tokio* library](https://tokio.rs). //! //! # Usage //! //! Create [a tokio `Core`](https://docs.rs/tokio-core/0.1/tokio_core/reactor/struct.Core.html), //! then grab a handle by calling the `handle()` method on it, then create a `TcpConfig` and pass //! the handle. //! //! Example: //! //! ``` //! extern crate libp2p_tcp_transport; //! extern crate tokio_core; //! //! use libp2p_tcp_transport::TcpConfig; //! use tokio_core::reactor::Core; //! //! # fn main() { //! let mut core = Core::new().unwrap(); //! let tcp = TcpConfig::new(core.handle()); //! # } //! ``` //! //! The `TcpConfig` structs implements the `Transport` trait of the `swarm` library. See the //! documentation of `swarm` and of libp2p in general to learn how to use the `Transport` trait. extern crate futures; extern crate libp2p_core as swarm; #[macro_use] extern crate log; extern crate multiaddr; extern crate tokio_core; extern crate tokio_io; use futures::future::{self, Future, FutureResult, IntoFuture}; use futures::stream::Stream; use multiaddr::{AddrComponent, Multiaddr, ToMultiaddr}; use std::io::Error as IoError; use std::iter; use std::net::SocketAddr; use swarm::Transport; use tokio_core::net::{TcpListener, TcpStream}; use tokio_core::reactor::Handle; /// Represents the configuration for a TCP/IP transport capability for libp2p. /// /// Each connection created by this config is tied to a tokio reactor. The TCP sockets created by /// libp2p will need to be progressed by running the futures and streams obtained by libp2p /// through the tokio reactor. #[derive(Debug, Clone)] pub struct TcpConfig { event_loop: Handle, } impl TcpConfig { /// Creates a new configuration object for TCP/IP. The `Handle` is a tokio reactor the /// connections will be created with. #[inline] pub fn new(handle: Handle) -> TcpConfig { TcpConfig { event_loop: handle } } } impl Transport for TcpConfig { type Output = TcpStream; type Listener = Box>; type ListenerUpgrade = FutureResult<(Self::Output, Multiaddr), IoError>; type Dial = Box>; /// Listen on the given multi-addr. /// Returns the address back if it isn't supported. fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> { if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) { let listener = TcpListener::bind(&socket_addr, &self.event_loop); // We need to build the `Multiaddr` to return from this function. If an error happened, // just return the original multiaddr. let new_addr = match listener { Ok(ref l) => if let Ok(new_s_addr) = l.local_addr() { new_s_addr.to_multiaddr().expect( "multiaddr generated from socket addr is \ always valid", ) } else { addr }, Err(_) => addr, }; debug!("Now listening on {}", new_addr); let future = future::result(listener) .map(|listener| { // Pull out a stream of sockets for incoming connections listener.incoming().map(|(sock, addr)| { let addr = addr.to_multiaddr() .expect("generating a multiaddr from a socket addr never fails"); debug!("Incoming connection from {}", addr); Ok((sock, addr)).into_future() }) }) .flatten_stream(); Ok((Box::new(future), new_addr)) } else { Err((self, addr)) } } /// Dial to the given multi-addr. /// Returns either a future which may resolve to a connection, /// or gives back the multiaddress. fn dial(self, addr: Multiaddr) -> Result { if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) { debug!("Dialing {}", addr); let fut = TcpStream::connect(&socket_addr, &self.event_loop).map(|t| (t, addr)); Ok(Box::new(fut) as Box<_>) } else { Err((self, addr)) } } fn nat_traversal(&self, server: &Multiaddr, observed: &Multiaddr) -> Option { let server_protocols: Vec<_> = server.iter().collect(); let observed_protocols: Vec<_> = observed.iter().collect(); if server_protocols.len() != 2 || observed_protocols.len() != 2 { return None; } // Check that `server` is a valid TCP/IP address. match (&server_protocols[0], &server_protocols[1]) { (&AddrComponent::IP4(_), &AddrComponent::TCP(_)) | (&AddrComponent::IP6(_), &AddrComponent::TCP(_)) => {} _ => return None, } // Check that `observed` is a valid TCP/IP address. match (&observed_protocols[0], &observed_protocols[1]) { (&AddrComponent::IP4(_), &AddrComponent::TCP(_)) | (&AddrComponent::IP6(_), &AddrComponent::TCP(_)) => {} _ => return None, } let result = iter::once(observed_protocols[0].clone()) .chain(iter::once(server_protocols[1].clone())) .collect(); Some(result) } } // This type of logic should probably be moved into the multiaddr package fn multiaddr_to_socketaddr(addr: &Multiaddr) -> Result { let protocols: Vec<_> = addr.iter().collect(); if protocols.len() != 2 { return Err(()); } match (&protocols[0], &protocols[1]) { (&AddrComponent::IP4(ref ip), &AddrComponent::TCP(port)) => { Ok(SocketAddr::new(ip.clone().into(), port)) } (&AddrComponent::IP6(ref ip), &AddrComponent::TCP(port)) => { Ok(SocketAddr::new(ip.clone().into(), port)) } _ => Err(()), } } #[cfg(test)] mod tests { use super::{multiaddr_to_socketaddr, TcpConfig}; use futures::Future; use futures::stream::Stream; use multiaddr::Multiaddr; use std; use std::net::{IpAddr, Ipv4Addr, SocketAddr}; use swarm::Transport; use tokio_core::reactor::Core; use tokio_io; #[test] fn multiaddr_to_tcp_conversion() { use std::net::Ipv6Addr; assert!( multiaddr_to_socketaddr(&"/ip4/127.0.0.1/udp/1234".parse::().unwrap()) .is_err() ); assert_eq!( multiaddr_to_socketaddr(&"/ip4/127.0.0.1/tcp/12345".parse::().unwrap()), Ok(SocketAddr::new( IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 12345, )) ); assert_eq!( multiaddr_to_socketaddr(&"/ip4/255.255.255.255/tcp/8080" .parse::() .unwrap()), Ok(SocketAddr::new( IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)), 8080, )) ); assert_eq!( multiaddr_to_socketaddr(&"/ip6/::1/tcp/12345".parse::().unwrap()), Ok(SocketAddr::new( IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), 12345, )) ); assert_eq!( multiaddr_to_socketaddr(&"/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080" .parse::() .unwrap()), Ok(SocketAddr::new( IpAddr::V6(Ipv6Addr::new( 65535, 65535, 65535, 65535, 65535, 65535, 65535, 65535, )), 8080, )) ); } #[test] fn communicating_between_dialer_and_listener() { use std::io::Write; std::thread::spawn(move || { let mut core = Core::new().unwrap(); let addr = "/ip4/127.0.0.1/tcp/12345".parse::().unwrap(); let tcp = TcpConfig::new(core.handle()); let handle = core.handle(); let listener = tcp.listen_on(addr).unwrap().0.for_each(|sock| { sock.and_then(|(sock, _)| { // Define what to do with the socket that just connected to us // Which in this case is read 3 bytes let handle_conn = tokio_io::io::read_exact(sock, [0; 3]) .map(|(_, buf)| assert_eq!(buf, [1, 2, 3])) .map_err(|err| panic!("IO error {:?}", err)); // Spawn the future as a concurrent task handle.spawn(handle_conn); Ok(()) }) }); core.run(listener).unwrap(); }); std::thread::sleep(std::time::Duration::from_millis(100)); let addr = "/ip4/127.0.0.1/tcp/12345".parse::().unwrap(); let mut core = Core::new().unwrap(); let tcp = TcpConfig::new(core.handle()); // Obtain a future socket through dialing let socket = tcp.dial(addr.clone()).unwrap(); // Define what to do with the socket once it's obtained let action = socket.then(|sock| match sock { Ok((mut s, _)) => { let written = s.write(&[0x1, 0x2, 0x3]).unwrap(); Ok(written) } Err(x) => Err(x), }); // Execute the future in our event loop core.run(action).unwrap(); std::thread::sleep(std::time::Duration::from_millis(100)); } #[test] fn replace_port_0_in_returned_multiaddr_ipv4() { let core = Core::new().unwrap(); let tcp = TcpConfig::new(core.handle()); let addr = "/ip4/127.0.0.1/tcp/0".parse::().unwrap(); assert!(addr.to_string().contains("tcp/0")); let (_, new_addr) = tcp.listen_on(addr).unwrap(); assert!(!new_addr.to_string().contains("tcp/0")); } #[test] fn replace_port_0_in_returned_multiaddr_ipv6() { let core = Core::new().unwrap(); let tcp = TcpConfig::new(core.handle()); let addr: Multiaddr = "/ip6/::1/tcp/0".parse().unwrap(); assert!(addr.to_string().contains("tcp/0")); let (_, new_addr) = tcp.listen_on(addr).unwrap(); assert!(!new_addr.to_string().contains("tcp/0")); } #[test] fn larger_addr_denied() { let core = Core::new().unwrap(); let tcp = TcpConfig::new(core.handle()); let addr = "/ip4/127.0.0.1/tcp/12345/tcp/12345" .parse::() .unwrap(); assert!(tcp.listen_on(addr).is_err()); } #[test] fn nat_traversal() { let core = Core::new().unwrap(); let tcp = TcpConfig::new(core.handle()); let server = "/ip4/127.0.0.1/tcp/10000".parse::().unwrap(); let observed = "/ip4/80.81.82.83/tcp/25000".parse::().unwrap(); let out = tcp.nat_traversal(&server, &observed); assert_eq!( out.unwrap(), "/ip4/80.81.82.83/tcp/10000".parse::().unwrap() ); } }