// Copyright 2017 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. // TODO: use this once stable ; for now we just copy-paste the content of the README.md //#![doc(include = "../README.md")] //! Handles the `/ipfs/ping/1.0.0` protocol. This allows pinging a remote node and waiting for an //! answer. //! //! # Usage //! //! Create a `Ping` struct, which implements the `ConnectionUpgrade` trait. When used as a //! connection upgrade, it will produce a tuple of type `(Pinger, impl Future)` which //! are named the *pinger* and the *ponger*. //! //! The *pinger* has a method named `ping` which will send a ping to the remote, while the *ponger* //! is a future that will process the data received on the socket and will be signalled only when //! the connection closes. //! //! # About timeouts //! //! For technical reasons, this crate doesn't handle timeouts. The action of pinging returns a //! future that is signalled only when the remote answers. If the remote is not responsive, the //! future will never be signalled. //! //! For implementation reasons, resources allocated for a ping are only ever fully reclaimed after //! a pong has been received by the remote. Therefore if you repeatidely ping a non-responsive //! remote you will end up using more and memory memory (albeit the amount is very very small every //! time), even if you destroy the future returned by `ping`. //! //! This is probably not a problem in practice, because the nature of the ping protocol is to //! determine whether a remote is still alive, and any reasonable user of this crate will close //! connections to non-responsive remotes. //! //! # Example //! //! ```no_run //! extern crate futures; //! extern crate libp2p_ping; //! extern crate libp2p_core; //! extern crate libp2p_tcp_transport; //! extern crate tokio_core; //! //! use futures::Future; //! use libp2p_ping::Ping; //! use libp2p_core::Transport; //! //! # fn main() { //! let mut core = tokio_core::reactor::Core::new().unwrap(); //! //! let ping_finished_future = libp2p_tcp_transport::TcpConfig::new(core.handle()) //! .with_upgrade(Ping) //! .dial("127.0.0.1:12345".parse::().unwrap()).unwrap_or_else(|_| panic!()) //! .and_then(|((mut pinger, service), _)| { //! pinger.ping().map_err(|_| panic!()).select(service).map_err(|_| panic!()) //! }); //! //! // Runs until the ping arrives. //! core.run(ping_finished_future).unwrap(); //! # } //! ``` //! extern crate bytes; extern crate futures; extern crate libp2p_core; #[macro_use] extern crate log; extern crate multistream_select; extern crate parking_lot; extern crate rand; extern crate tokio_io; use bytes::{BufMut, Bytes, BytesMut}; use futures::future::{loop_fn, FutureResult, IntoFuture, Loop}; use futures::sync::{mpsc, oneshot}; use futures::{Future, Sink, Stream}; use libp2p_core::{ConnectionUpgrade, Endpoint, Multiaddr}; use log::Level; use parking_lot::Mutex; use rand::Rand; use rand::os::OsRng; use std::collections::HashMap; use std::error::Error; use std::io::Error as IoError; use std::iter; use std::sync::Arc; use tokio_io::codec::{Decoder, Encoder}; use tokio_io::{AsyncRead, AsyncWrite}; /// Represents a prototype for an upgrade to handle the ping protocol. /// /// According to the design of libp2p, this struct would normally contain the configuration options /// for the protocol, but in the case of `Ping` no configuration is required. #[derive(Debug, Copy, Clone, Default)] pub struct Ping; impl ConnectionUpgrade for Ping where C: AsyncRead + AsyncWrite + 'static, { type NamesIter = iter::Once<(Bytes, Self::UpgradeIdentifier)>; type UpgradeIdentifier = (); #[inline] fn protocol_names(&self) -> Self::NamesIter { iter::once(("/ipfs/ping/1.0.0".into(), ())) } type Output = (Pinger, Box>); type Future = FutureResult; #[inline] fn upgrade( self, socket: C, _: Self::UpgradeIdentifier, _: Endpoint, remote_addr: &Multiaddr, ) -> Self::Future { // # How does it work? // // All the actual processing is performed by the *ponger*. // We use a channel in order to send ping requests from the pinger to the ponger. let (tx, rx) = mpsc::channel(8); // Ignore the errors if `tx` closed. `tx` is only ever closed if the ponger is closed, // which means that the connection to the remote is closed. Therefore we make the `rx` // never produce anything. let rx = rx.then(|r| Ok(r.ok())).filter_map(|a| a); let os_rng = match OsRng::new() { Ok(r) => r, Err(err) => return Err(err).into_future(), }; let pinger = Pinger { send: tx, os_rng: os_rng, }; // Hashmap that associates outgoing payloads to one-shot senders. // TODO: can't figure out how to make it work without using an Arc/Mutex let expected_pongs = Arc::new(Mutex::new(HashMap::with_capacity(4))); let sink_stream = socket .framed(Codec) .map(|msg| Message::Received(msg.freeze())); let (sink, stream) = sink_stream.split(); let remote_addr = if log_enabled!(Level::Debug) { Some(remote_addr.clone()) } else { None }; let future = loop_fn((sink, stream.select(rx)), move |(sink, stream)| { let expected_pongs = expected_pongs.clone(); let remote_addr = remote_addr.clone(); stream .into_future() .map_err(|(err, _)| err) .and_then(move |(message, stream)| { let mut expected_pongs = expected_pongs.lock(); if let Some(message) = message { match message { Message::Ping(payload, finished) => { // Ping requested by the user through the `Pinger`. if log_enabled!(Level::Debug) { debug!("Sending ping to {:?} with payload {:?}", remote_addr.expect("debug log level is enabled"), payload); } expected_pongs.insert(payload.clone(), finished); Box::new( sink.send(payload) .map(|sink| Loop::Continue((sink, stream))), ) as Box> } Message::Received(payload) => { // Received a payload from the remote. if let Some(fut) = expected_pongs.remove(&payload) { // Payload was ours. Signalling future. // Errors can happen if the user closed the receiving end of // the future, which is fine to ignore. debug!("Received pong from {:?} (payload={:?}) ; ping fufilled", remote_addr.expect("debug log level is enabled"), payload); let _ = fut.send(()); Box::new(Ok(Loop::Continue((sink, stream))).into_future()) as Box> } else { // Payload was not ours. Sending it back. debug!("Received ping from {:?} (payload={:?}) ; sending back", remote_addr.expect("debug log level is enabled"), payload); Box::new( sink.send(payload) .map(|sink| Loop::Continue((sink, stream))), ) as Box> } } } } else { Box::new(Ok(Loop::Break(())).into_future()) as Box> } }) }); Ok((pinger, Box::new(future) as Box<_>)).into_future() } } /// Controller for the ping service. Makes it possible to send pings to the remote. pub struct Pinger { send: mpsc::Sender, os_rng: OsRng, } impl Pinger { /// Sends a ping. Returns a future that is signaled when a pong is received. /// /// **Note**: Please be aware that there is no timeout on the ping. You should handle the /// timeout yourself when you call this function. pub fn ping(&mut self) -> Box>> { let (tx, rx) = oneshot::channel(); let payload: [u8; 32] = Rand::rand(&mut self.os_rng); debug!("Preparing for ping with payload {:?}", payload); // Ignore errors if the ponger has been already destroyed. The returned future will never // be signalled. let fut = self.send .clone() .send(Message::Ping(Bytes::from(payload.to_vec()), tx)) .from_err() .and_then(|_| rx.from_err()); Box::new(fut) as Box<_> } } enum Message { Ping(Bytes, oneshot::Sender<()>), Received(Bytes), } // Implementation of the `Codec` trait of tokio-io. Splits frames into groups of 32 bytes. #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] struct Codec; impl Decoder for Codec { type Item = BytesMut; type Error = IoError; #[inline] fn decode(&mut self, buf: &mut BytesMut) -> Result, IoError> { if buf.len() >= 32 { Ok(Some(buf.split_to(32))) } else { Ok(None) } } } impl Encoder for Codec { type Item = Bytes; type Error = IoError; #[inline] fn encode(&mut self, mut data: Bytes, buf: &mut BytesMut) -> Result<(), IoError> { if data.len() != 0 { let split = 32 * (1 + ((data.len() - 1) / 32)); buf.put(data.split_to(split)); } Ok(()) } } #[cfg(test)] mod tests { extern crate tokio_core; use self::tokio_core::net::TcpListener; use self::tokio_core::net::TcpStream; use self::tokio_core::reactor::Core; use super::Ping; use futures::Future; use futures::Stream; use futures::future::join_all; use libp2p_core::{ConnectionUpgrade, Endpoint}; #[test] fn ping_pong() { let mut core = Core::new().unwrap(); let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap(), &core.handle()).unwrap(); let listener_addr = listener.local_addr().unwrap(); let server = listener .incoming() .into_future() .map_err(|(e, _)| e.into()) .and_then(|(c, _)| { Ping.upgrade( c.unwrap().0, (), Endpoint::Listener, &"/ip4/127.0.0.1/tcp/10000".parse().unwrap(), ) }) .and_then(|(mut pinger, service)| { pinger .ping() .map_err(|_| panic!()) .select(service) .map_err(|_| panic!()) }); let client = TcpStream::connect(&listener_addr, &core.handle()) .map_err(|e| e.into()) .and_then(|c| { Ping.upgrade( c, (), Endpoint::Dialer, &"/ip4/127.0.0.1/tcp/10000".parse().unwrap(), ) }) .and_then(|(mut pinger, service)| { pinger .ping() .map_err(|_| panic!()) .select(service) .map_err(|_| panic!()) }); core.run(server.join(client)).unwrap(); } #[test] fn multipings() { // Check that we can send multiple pings in a row and it will still work. let mut core = Core::new().unwrap(); let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap(), &core.handle()).unwrap(); let listener_addr = listener.local_addr().unwrap(); let server = listener .incoming() .into_future() .map_err(|(e, _)| e.into()) .and_then(|(c, _)| { Ping.upgrade( c.unwrap().0, (), Endpoint::Listener, &"/ip4/127.0.0.1/tcp/10000".parse().unwrap(), ) }) .and_then(|(_, service)| service.map_err(|_| panic!())); let client = TcpStream::connect(&listener_addr, &core.handle()) .map_err(|e| e.into()) .and_then(|c| { Ping.upgrade( c, (), Endpoint::Dialer, &"/ip4/127.0.0.1/tcp/1000".parse().unwrap(), ) }) .and_then(|(mut pinger, service)| { let pings = (0..20).map(move |_| pinger.ping().map_err(|_| ())); join_all(pings) .map(|_| ()) .map_err(|_| panic!()) .select(service) .map(|_| ()) .map_err(|_| panic!()) }); core.run(server.select(client)).unwrap_or_else(|_| panic!()); } }